Безопасность пищевых продуктов

Биологические функции гистамина и серотонина в организме человека. Распространение алкалоидов и факторы, влияющие на их накопление. Химическая классификация сырья, содержащего алкалоиды, группы природных кумаринов. Пути загрязнения продуктов питания.

Рубрика Кулинария и продукты питания
Вид контрольная работа
Язык русский
Дата добавления 20.03.2016
Размер файла 31,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Биогенные амины

2. Алкалоиды

2.1 Определение

2.2 Распространение

2.3 Факторы, влияющие на накопление алкалоидов

2.4 Биологическая роль алкалоидов

2.5 Классификация

2.6 Физико-химические свойства

2.7 Способы получения

3. Цианогенные гликозиды

4. Кумарины

5. Основные пути загрязнения продуктов питания

6. Безопасность

Заключение

Используемая литература

Введение

В условиях, сложившихся в наше время, в месте с продуктами питания человек постоянно употребляет в пищу различные микрокомпоненты, которые могут оказывать неблагоприятный эффект на организм, будучи накоплены или употреблены в относительно повышенных количествах. Рассмотрим некоторые такие вещества.

Во-первых, в их число входят так называемые природные токсиканты. К ним относятся натуральные, присущие данному виду продукта, образующиеся в ходе самого роста биологически активные вещества, которые, при условии возникновения определенных обстоятельств, могут вызвать токсический эффект.

Ко второму типу относятся "загрязнители", т.е. токсичные вещества, которые поступают в пищевые продукты из окружающей среды из-за различных нарушений технологии выращивания, производства или хранения продуктов, а также других причин, к которым можно отнести загрязнение среды, плохую экологию и техногенные загрязнения.

В число природных токсикантов входят такие вещества, как биогенные амины, некоторые алкалоиды, цианогенные гликозиды, кумарины и др.

1. Биогенные амины

Биогенные амины -- вещества, образующиеся в организме животных или растений из аминокислот при их декарбоксилировании (удалении карбоксильной группы) ферментами декарбоксилазами и обладающие высокой биологической активностью. К биогенным аминам относятся дофамин, норадреналин и адреналин (синтезируются изначально из аминокислоты тирозина), серотонин, мелатонин и триптамин (синтезируются из триптофана) и многие другие соединения. В организме животных многие биогенные амины выполняют роль гормонов и нейромедиаторов. Разлагаются в организме при участии ферментов аминоксидаз. Биогенными аминами (устаревший синоним термина -- трупные яды, птомаины) также называют биогенные диамины, получающиеся в результате гнилостных процессов -- частичного разложения белка и декарбоксилирования его аминокислот, ведущая роль среди которых принадлежит путресцину и кадаверину, а также спермидин и спермин. Имеют характерный отвратительный «сладковатый» (типичный трупный) запах. Однако острая токсичность полиаминов (в опытах на крысах) сравнительно невелика: кадаверин -- 2000 мг/кг, путресцин -- 2000 мг/кг, спермидин и спермин -- 600 мг/кг. Кроме того, ранее трупным ядом называли гипотетическое вещество, действию которого приписывали смертельные заболевания лиц, вскрывающих трупы; по современным представлениям, причина этих заболеваний -- заражение патогенными микроорганизмами.[6.134]

Гистамин образуется при декарбоксилировании гистидина в тучных клетках соединительной ткани. В организме человека выполняет следующие функции:

· стимулирует секрецию желудочного сока и слюны;

· повышает проницаемость капилляров, вызывает отеки, снижает АД, но увеличивает внутричерепное давление, вызывая головную боль;

· сокращает гладкую мускулатуру легких, вызывает удушье;

· участвует в формировании воспалительных реакций - расширение сосудов, покраснение, отечность ткани;

· вызывает аллергическую реакцию;

· нейромедиатор;

· медиатор боли.

Серотонин - образуется при декарбоксилировании и дальнейшем окислении триптофана. Биологические функции:

· оказывает мощное сосудосуживающее действие;

· повышает кровяное давление;

· участвует в регуляции температуры тела, дыхания;

· медиатор нервных процессов в ЦНС (обладает антидепрессантным действием).

Дофамин образуется при декарбоксилировании диоксифенилаланина (ДОФА). При дальнейшем окислении и метилировании образуюся адреналин и норадреналин. Дофамин является нейромедиатором, контролирующим произвольные движения, эмоции и память. В высоких концентрациях дофамин стимулирует адренорецепторы, увеличивает силу сердечных сокращений, повышает сопротивление периферических сосудов (с параллельным увеличением почечного и коронарного кровотока). Кроме того, дофамин тормозит секрецию пролактина и соматотропина.

В нервных клетках декарбоксилирование глутамата приводит к образованию g-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга. Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса.

Цикл превращений ГАМК в мозге включает три сопряженных реакции, получивших название ГАМК-шунта. Первую катализирует глутаматкарбоксилаза. Эта реакция является регуляторной и обеспечивает скорость образования ГАМК в клетках мозга. Последующие 2 две реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат затем используется в цикле Кребса. Инактивация ГАМК возможна и окислительным путем под действием моноамионоксидазы.

При декарбоксилировании орнитина образуется путресцин, который является предшественником биологически активных веществ спермина и спермидина. Путресцин, спермин и спермидин имеют большой положительный заряд, легко связываются с отрицательно заряженными молекулами ДНК и РНК, входят в состав хроматина и участвуют в репликации РНК. Кроме того эти вещества стабилизируют структуру мембран клеток.

Этаноламин образуется при декарбоксилировании серина. В организме используется для синтеза холина, ацетилхолина, фосфатидилэтаноламинов, фосфатидилхолинов.

При декарбоксилировании лизина образуется кадаверин, который является трупным ядом.

Для осуществления биологической функции в организме требуется определенная концентрация биогенных аминов. Избыточное их накопление может вызвать различные патологические отклонения. В связи с этим большое значение приобретают механизмы их инактивации:

· окисление ферментами моноаминооксидазами (МАО) (кофермент ФАД). Таким путем чаще всего инактивируются дофамин, норадреналин, серотонин и ГАМК. При этом происходит окислительное дезаминирование биогенных аминов с образованием альдегидов, а затем соответствующих кислот, которые выводятся почками.

· метилирование с участием S-аденозилметионина. Таким путем чаще всего инактивируются катехоламины - фермент катехол-орто-метилтрансфераза (КОМТ).

· окисление с помощью диаминооксидаз - инактивация гистамина, а также короткоцепочечных алифатических диаминов (путресцина и кадаверина).[2.213-226]

2. Алкалоиды

2.1 Определение

Алкалоиды - это природные азотсодержащие органические соединения основного характера, имеющие сложный состав и обладающие сильным специфическим действием. Большинство их относится к соединениям с гетероциклическим атомом азота в кольце, реже азот находится в боковой цепи. Синтезируются преимущественно растениями.

В переводе термин "алкалоид" (от араб. "alkali" - щелочь и греч. "eidos" - подобный) означает щелочноподобный. Подобно щелочам, алкалоиды образуют с кислотами соли.

2.2 Распространение

В растительном мире распределены неравномерно. В низших растениях их мало. Встречаются в семействе плауновых (плаун-баранец). У злаков и осоковых растений встречаются редко. Наиболее богаты алкалоидами растения семейств маковых, пасленовых, лилейных, мареновых, сельдерейных, амариллисовых, бобовых, лютиковых. В растениях алкалоиды находятся в клеточном соке в растворенном виде. Содержание колеблется от тысячных долей процента до нескольких процентов, а в коре хинного дерева от 15 до 20%.

У некоторых растений алкалоиды содержатся во всех органах (красавка обыкновенная и кавказская), у большинства они преобладают в каком-либо одном органе. Часто у одного растения в разных органах имеется различное число алкалоидов, некоторые органы могут быть безалкалоидными, например) мак опийный во всех органах, кроме семян, содержит алкалоиды. Обычно в растении встречается несколько алкалоидов: в опии, например, 26 алкалоидов, в корнях раувольфии - 35. Редко присутствует в растении один алкалоид.

2.3 Факторы, влияющие на накопление алкалоидов

Обычно богаты алкалоидами растения влажного тропического климата. Теплая погода способствует повышению содержания в растениях алкалоидов, холодная - тормозит, а при заморозках алкалоиды в растении не накапливаются. Например, на Кавказе надземную часть чемерицы после заморозков животные поедают без последующего отравления, а в Средней Азии после заморозков верблюды поедают анабазис. Содержание алкалоидов меняется даже в течение суток. У лобелии одутлой количество их в ночное время на 40% больше, чем в полдень (Г. К. Крейер). Надрезы коробочек опийного мака в вечерние часы дают больший выход опия и содержание в нем алкалоидов выше. Исследования В. С. Соколова показали преимущества сборов солянки Рихтера ранним утром и ночью. Небезразличен для содержания алкалоидов и высотный фактор.

Установлено, что для каждого вида имеются свои оптимальные высоты. У крестовника плосколистного наибольшее количество алкалоидов накапливается на высоте 1800-2000 м над уровнем моря (крестовник встречается в горах на высоте до 2500 м), после чего содержание алкалоидов снижается. Такое явление наблюдается у хинного дерева, красавки, эфедры.

Важным фактором служат почвенные условия. Например, солянка Рихтера, растущая на песках, дает около 1% алкалоидов, а выросшая на глинистой почве содержит лишь их следы. У культивируемых растений отмечается повышение содержания алкалоидов при внесении азотсодержащих удобрений. Имеет значение и внутривидовая (индивидуальная) изменчивость. Наблюдается значительная разница в содержании алкалоидов у растений одного вида, растущих в одинаковых условиях, зависящая от индивидуальных свойств растений.

Колебания в содержании алкалоидов выявляются также при сушке и хранении сырья. При замедленной сушке нестойкие алкалоиды разлагаются. Содержание алкалоидов снижается также при хранении сырья в сырых помещениях.

2.4 Биологическая роль алкалоидов

Окончательно не выяснена. С. Ю. Юнусов (1948) считает, что алкалоиды при дыхании растений окисляются в пероксид, который переходит в оксид алкалоида, а освобождающийся при этом активированный кислород используется растением для дальнейшего фотосинтеза. Алкалоиды подземных частей, по-видимому, регулируют рост и обмен веществ.

2.5 Классификация

В фармакогнозии принята химическая классификация сырья, содержащего алкалоиды, разработанная акад. А. П. Ореховым. В основу классификации положено деление на группы в зависимости от строения углеродного скелета. Из них некоторые группы встречаются редко.

1) Алкалоиды с азотом в боковой цепи - эфедрин из различных видов эфедры, сферофизин из травы сферофизы солонцовой, колхицин и колхамин из клубнелуковиц безвременников.

2) Производные пирролидина и пирролизидина (платифиллин, саррацин, сенецифилллин из крестовника плосколистного и ромболистного).

3) Производные пиридина и пиперидина (анабазин, лобелин) из анабазиса безлистного и лобелии одутлой.

4) Алкалоиды с конденсированными пирролидиновыми и пиперидиновыми кольцами (производные тропана) - гиосциамин, атропин, скополамин из красавки, белены, дурмана.

5) Производные хинолизидина (пахикарпин, термопсин) - софора толстоплодная, термопсис.

6) Производные хинолина - хинин из хинной коры, эхинопсин из плодов мордовника.

7) Производные изохинолина - сальсолин из солянки Рихтера, морфин и папаверин из коробочек мака, алкалоиды чистотела, барбариса, мачка желтого.

8) Производные индола - алкалоиды спорыньи, барвинков, резерпин из корня раувольфии, стрихнин из семян чилибухи, катарантус розовый.

9) Производные пурина - кофеин из листьев чая и семян колы.

10) Стероидные алкалоиды - соласонин паслена дольчатого, алкалоиды чемерицы и др.

2.6 Физико-химические свойства

В состав алкалоидов в основном входят углерод, водород, азот и кислород; алкалоиды кубышки дополнительно содержат серу.

Большинство алкалоидов, содержащих кислород - бесцветные, оптически активные, кристаллические или аморфные вещества со щелочной реакцией; некоторые алкалоиды окрашены (например, алкалоид берберин из барбариса желтого цвета), без запаха, горького вкуса. Бескислородные алкалоиды - летучие жидкости с неприятным запахом (например, алкалоид никотин из табака, кониин из болиголова).

Алкалоиды-основания, в воде почти нерастворимы; растворяются в спирте, эфире, хлороформе и других органических растворителях. Соли алкалоидов растворимы в воде и спирте, но нерастворимы в органических растворителях. Алкалоиды в растениях находятся в виде солей, связаны с органическими кислотами: щавелевой, лимонной, яблочной, винной. Для мака снотворного характерна меконовая кислота, а для хинной коры - хинная кислота.

2.7 Способы получения

Получение алкалоидов проходит три стадии: извлечение из растительного сырья щелочами; очистка полученных извлечений; разделение суммы алкалоидов и очистка алкалоидов. Для выделения или разделения суммы алкалоидов пользуются методом хроматографии на бумаге. Для обнаружения алкалоидов достаточно нанести на полоску фильтровальной бумаги каплю испытуемого раствора и "проявить" соответствующим реактивом.[3.459-523]

3. Цианогенные гликозиды

Цианогенные гликозиды в растениях - это линамарин, который является компонентом семян льна и белой фасоли; амигдалин, который находится в ядре косточковых плодов и горького миндаля; дхурин, входящий в состав зерна сорго.

Синильная кислота, освобождающаяся под влиянием ферментов из гликозидов, - это легкая летучая жидкость с характерным запахом горького миндаля. В количестве 0,05 г она вызывает у человека смертельное отравление.

Отравления цианидами происходят вследствие употребления в пищу большого количества ядер косточек персика, абрикоса, вишни, сливы, а также и других растений семейства розоцветных или настоек из них, клубней маниока.

Употребление даже небольшого количества (примерно 60-80 г) очищенных горьких ядер абрикосов или миндаля может вызвать смертельное отравление. Поэтому применение горького миндаля в кондитерском производстве ограничивается. Ограничивается также настаивание косточковых плодов в производстве алкогольных напитков.

Клиническая картина отравления цианидами заключается в следующем: в легких случаях отравления возникают головная боль и тошнота; в тяжелых - поражение дыхательного центра, которое приводит к параличу дыхания и смерти.[1.683-688]

4. Кумарины

Кумаринами называются природные соединения, в основе структуры которых лежит скелет 9,10-бензо- б -пирона. Структура его была установлена в 1877 году Перкиным, который указал на связь этого соединения с о-гидроксикоричной (о-кумаровой) кислотой.

Кумарины попали в поле зрения ученых благодаря мексиканским бобовым деревьям, местное название кумарун. Сейчас кумарин получают из плодов тонко диптерикса душистого, также значимое количество кумарина можно встретить в астровых, зонтичных, бобовых, сложноцветных. Кумарин представляет собой кристаллы с температурой плавления 70о С, и кипения 291о С, с запахом свежескошенного сена, кристаллы нерастворимы или плохорастворимы в воде. хорошо растворяются в спирте и эфире. Своеобразный запах кумарина используется для ароматизации табачных изделий и в парфюмерной промышленности, обладает свойством фиксировать запахи. Может быть синтезирован в лабораторных условиях.

В настоящее время открыто более 150 природных соединений кумаринов, которые, как правило, находятся в листьях и плодах растений в свободном состоянии, реже -- в форме гликозидов.

Природные кумарины разделяют на несколько групп:

1) кумарин, дигидрокумарин и гликозид кумарина -- мелилотозид;

2) окси, метокси и метилендиоксикумарины;

3) фурокумарины, или кумаронaпироны;

4) паранокумарины;

5) бензокумарины;

6) кумарины, содержащие систему бензофурана;

7) более сложные соединения, в состав которых входит кумариновая система (новобиоцин и др.).

Они обнаружены в листьях и плодах вишни, корнях и листьях боярышника; в листьях мускатной земляники, сливы, некоторых видах роз, черники, голубики, брусники; в плодах отдельных сортов смородины черной, крыжовника, малины, яблони, груши, земляники, инжира, ягодах терна, ирги, лоха узколистного, винограда, облепихи; в мякоти апельсинов, мандаринов, лимонов, грейпфрутов; в корнях, коре и плодах гранатового дерева, в коре калины.

Природные кумарины могут значительно отличаться по структуре и своему действию на организм человека. Среди кумаринов выделяют, оказывающие:

1. антибактериальное действие грамотрицательных бактерий.

2. бактериостатическое действие пиранохромонов.

3. антиаллергическое и анальгетическое действие тетразольных производных.

4. спазмометрическое, коронарорасширяющее действие хромонов с бензольными радикалами.

5. антикоагулирующее действие хромонкорбоновых кислот.

6. фотосенсобилизирующее действие фурокумаринов.

Производные кумаринов со спазмолити­ческим и коронарорасширяющим свойствами обладают также папавериноподобным механизмом действия на неисчерченную мускулатуру внутренних органов и коро­нарные сосуды. Большое практическое значение имеют антикоагулянтное влияние не­которых дикумаринов (дикумарола и его аналогов), которые способны предупреж­дать развитие тромбозов кровеносных сосудов.

Ряд кумаринов, обладая успокаивающим и стимулирующим действием, расширяют сосуды сердца, благоприятно влияют на нервную систему.

Фурокумарины повышают чувствительность организма человека и животных к солнечным лучам (фотосенсибилизирующее действие), усиливают чувствительность кожи к солнечному свету и ее пигментообразование, что может вызвать реакцию, напоминающую дерматит и пигментацию кожи. Некоторые фурокумарины тормозят патологический рост тканей -- проявляют противоопухолевые свойства, в медицине применяются при лечении витилиго, лейкодермы, гнездной плешивости и ряда других заболеваний кожи.

Кумарины -- природные соединения, токсические вещества кумулятивного действия. Обращаться с ними следует край¬не осторожно и применять только тогда, когда нет другого выхода. При передозировке кумаринов возникают тошнота, рвота, исчезает аппетит, появляются понос, сыпь на коже, кровоточивость слизистых оболочек. Учитывая, что кумарины, содержащиеся в сырье, способны вызывать дерматиты, поражение кожи, сбор и сушку сырья следует проводить в перчатках. [1.683-688]

5. Основные пути загрязнения продуктов питания

Основные пути загрязнения продуктов питания и продовольственного сырья: питание алкалоид кумарин гистамин

* Использование неразрешенных красителей, консервантов, антиокислителей или применение разрешенных в повышенных дозах.

* Применение новых нетрадиционных технологий производства продуктов питания или отдельных пищевых веществ, в том числе полученных путем химического и микробиологического синтеза.

* Загрязнение сельскохозяйственных культур и продуктов животноводства пестицидами, используемыми для борьбы с вредителями растений и в ветеринарной практике для профилактики заболеваний животных.

* Нарушение гигиенических правил использования удобрений (в растениеводстве), оросительных вод, твердых и жидких отходов промышленности и животноводства, коммунальных и других сточных вод, осадков очистных сооружений и т. д.

* Использование в животноводстве и птицеводстве неразрешенных кормовых добавок, консервантов, стимуляторов роста, профилактических и лечебных медикаментов или применение разрешенных добавок и других соединений в повышенных дозах.

* Миграция в продукты питания токсических веществ из пищевого оборудования, посуды, инвентаря, тары, упаковок вследствие использования неразрешенных полимерных, резиновых и металлических материалов.

* Образование в пищевых продуктах эндогенных токсических соединений в процессе теплового воздействия (например, кипячения, жареная, облучения), других способов технологической обработки.

* Несоблюдение санитарных требований в технологии производства и хранения пищевых продуктов, что приводит к образованию бактериальных токсинов (микотоксины, батулотоксины и др.).

* Поступление в продукты питания токсических веществ, в том числе радионуклидов, из окружающей среды -- атмосферноro воздуха, почвы, водоемов.[4.661-666]

Наибольшую опасность с точки зрения распространенности и токсичности имеют следующие контаминанты:

1. Токсины микроорганизмов -- относятся к числу наиболее опасных природных загрязнителей. Наиболее распространены в растительном сырье. Так, в поступающем по импорту арахисе обнаруживаются афлотоксины до 26% от объема исследуемого продукта, в кукурузе -- до 2,8%, ячмене -- до 6%. Патулин, как правило, выявляется в продуктах переработки фруктов -- в соках, фруктовых пюре и джемах, что связано с нарушениями технологий и использованием нестандартного сырья.

2. Токсические элементы (тяжелые металлы). Основной источник загрязнения -- угольная, металлургическая и химическая промышленность.

3. Антибиотики -- получили распространение в результате нарушений их применения в ветеринарной практике. Остаточные количества антибиотиков обнаруживаются в 15 -- 26 % продукции животноводства и птицеводства. Проблема усугубляется тем, что методы контроля и нормативы разработаны только для немногих из нескольких десятков применяемых препаратов. Обращает внимание большой уровень загрязнения левомицетином -- одним из наиболее опасных антибиотиков.

4. Пестициды -- накапливаются в продовольственном сырье и пищевых продуктах вследствие бесконтрольного использования химических средств защиты растений. Особую опасность вызывает одновременное наличие нескольких пестицидов, уровень которых превышает ПДК.

5. Нитраты, нитриты, нитрозоамины. Проблема нитратов и нитритов связана с нерациональным применением азотистых удобрений и пестицидов, что приводит к накоплению указанных контаминантов, а также аминов и амидов, усилению процессов нитрозирования в объектах окружающей среды и организме человека и, как следствие этого, образованию высокотоксичных соединений -- N-нитрозаминов. По данным Института питания РАМН, в настоящий момент N-нитрозамины встречаются практически во всех мясных, молочных и рыбных продуктах, при этом 36% мясных и 51% рыбных продуктов содержат их в концентрациях, превышающих гигиенические нормативы.

6. Диоксины и диоксиноподобные соединения -- хлорорганические, особо опасные контаминанты, основными источниками которых являются предприятия, производящие хлорную продукцию.

7. Полициклические ароматические углеводороды (ПАУ) - образуются в результате природных и техногенных процессов.

8. Радионуклиды -- причиной загрязнения может быть небрежное обращение с природными и искусственными источниками.

9.Пищевые добавки -- подсластители, ароматизаторы, красители, антиоксиданты, стабилизаторы и т. д. Их применение должно регламентироваться нормативной документацией с наличием разрешения органов здравоохранения.

Существует проблема загрязнения продовольствия фузариотоксинами -- дезоксиниваленолом (ДОН) и зеараленоном, которая обусловлена вспышками фузариоза зерна. По результатам мониторинга, проводимого Институтом питания РАМН, за последние пять лет определен перечень приоритетных загрязнителей, подлежащих контролю в различных группах продовольственного сырья и пищевых продуктов. Вполне вероятно, что в дальнейшем этот перечень может быть дополнен.[3.653-679]

6. Безопасность

Ключевым моментом является детальное изучение химического состава новой пищевой продукции, которое должно включать как показатели пищевой ценности, так и санитарно-химические показатели безопасности. Поскольку продукты, полученные из новых нетрадиционных источников или с использованием новых технологий, могут содержать неизвестные компоненты, возникает необходимость проведения токсикологических исследований на лабораторных животных -- с включением в их рацион нового продукта в максимально возможном количестве, с изучением интегральных показателей состояния животных, биохимических показателей крови, мочи и внутренних органов, гематологических показателей периферической крови, морфологических исследований органов, а также с изучением иммунного статуса организма.

При необходимости проводят специальные исследования:

* изучение аплергенных свойств;

* выявление возможных мутагенных и канцерогенных эффектов;

* оценка возможных отдаленных последствий, включая эмбриотоксическое, гонадотоксическое и тератогенное. Завершающий этап -- испытания новой продукции на добровольцах.

На основании результатов всех проведенных исследований может рассматриваться вопрос о регистрации и разрешении широкого применения нового продукта или компонента пищи.

Во всех странах регистрация ГМИ преследует одну цель -- достоверно оценить безопасность и полноценность новых аналогов традиционных продуктов. Начиная с 1991 г., ученые приступили к разработке специальных рекомендаций для всесторонней и надежной оценки новой пищи. На первом этапе проводится анализ композиционной эквивалентности, т. е. сравниваются молекулярные и фенотипические характеристики ГМИ и их традиционных аналогов, определяется содержание ключевых нутриентов, антиалиментарных, токсических веществ и аллергенов (характерных для данного вида продовольствия или определяемых свойствами переносимых генов).

Если при изучении композиционной эквивалентности не обнаруживают отличий ГМИ от традиционных продуктов, то ГМИ причисляют к первому классу безопасности, т. е. считают его полностью безвредным для здоровья потребителей. При наличии каких-либо отличий (второй класс безопасности) или полного несоответствия (третий класс) сравниваемых продуктов (компонентов) переходят к следующим этапам оценки, предусматривающим изучение пищевых и токсикологических характеристик ГМИ.

Ряд исследователей считают, что методика сравнения композиционной эквивалентности и анализируемые характеристики не гарантируют надежности данных безопасности ГМИ, так как сложно (или даже невозможно) выявить незаданное действие рекомбинантных генов или кодируемых ими белков лишь аналитическими методами, без специальных лабораторных исследований. Для оценки безопасности любого нового ГМИ необходимо проведение полного комплекса исследований, знание которых подтверждено теоретически и экспериментально.

В последние годы особое внимание исследователей привлекает проблема идентификации ГМИ среди новых продуктов, полученных с использованием методов генной биотехнологии. Что же должен содержать пищевой продукт или компонент, чтобы было основание причислить его к ГМИ и подвергнуть соответствующим испытаниям на безопасность? Ряд экспертов предлагают ориентироваться на содержание в новом продукте рекомбинантной ДНК и (или) детерминированного ею белка. При отсутствии ДНК или протеина в силу особенностей композиционного состава либо разрушения этих веществ в технологическом процессе, а также при малых их количествах в конечном продукте, сравнимых с погрешностью используемых методик, предлагается не подвергать ГМИ оценке на безопасность. К таким (не содержащим ДНК и белок) продуктам относят пищевые и ароматические добавки, рафинированные масла, модифицированные крахмалы, мальтодекстрин, сиропы глюкозы, декстрозы, изоглюкозы и др. Очевидно , что для оценки качества именно этих продуктов может быть рекомендована методика композиционной эквивалентности. Аналитические и экспериментальные исследования указывают на возможные нежелательные последствия генно-инженерной биотехнологии: аллергенные, токсические и антиапиментарные проявления, а также влияние на технологические и внешние потребительские свойства готового продукта на основе ГМИ. Первопричина таких последствий -- рекомбинантная ДНК и возможность на ее основе экспрессии новых, не присущих данному виду растениеводческой продукции белков. Именно новые белки могут самостоятельно проявлять или индуцировать аллергенные свойства и токсичность ГМИ. Однако подавляющее большинство новых ГМИ не обладают аллергенностью и токсичностью.

Нежелательным эффектом ГМИ является возможность трансформации переносимого генетического материала. При этом могут отмечаться проявления нескольких генетических элементов: генов-промоторов, сигнальных пептидных генов, структурных генов и терминаторов, которые комплексно используются в генно-инженерной практике. Нет единого мнения о целесообразности и безопасности применения так называемых маркерных генов. По замыслу биотехнологов, они необходимы для точной идентификации переносимого структурного гена и представляют собой бактериальные гены резистентности к известным антибиотикам (канамицин, стрептомицин). Большинство авторов едины в оценке безопасности маркерных генов для человека и считают, что их количества, высвобождаемые в желудочно-кишечном тракте, ничтожно малы (0,33 -- 1 пг) по сравнению с общей массой разнообразных эукариотических ДНК (200-500 мг) в кишечнике, и в силу этого они не способны отрицательно повлиять на здоровье человека. Установлено, что маркерные гены не обладают прямой токсичностью, не участвуют в горизонтальном переносе генетического материала, не оказывают многочисленных побочных эффектов, а кодируемый ими белок не проявляет аллергенных и токсических свойств и не влияет на клеточные обменные процессы.[6]

С 1 июля 1999 г. введен в действие особый порядок медико-биологической оценки и регистрации пищевой продукции, полученной из ГМИ, предусматривающий обязательную государственную регистрацию пищевых продуктов и продовольственного сырья, а также компонентов для их производства, полученных из ГМИ. Отдельные направления экспертизы распределяются между ведущими научными учреждениями страны. Объем и программа экспериментов по оценке безопасности ГМИ определяются результатами экспертизы сопроводительных документов, включающих разрешение на торговый оборот и использование в питании населения в стране-производителе, официальные данные об отсутствии отрицательного воздействия на здоровье человека и окружающую среду, результаты исследований химического состава.

Метод композиционной эквивалентности необходимо использовать в качестве первого этапа оценки безопасности ГМИ независимо от полученных результатов сравнения. Разработана технология оценки безопасности ГМИ, которая включает в качестве важнейшего анализируемого компонента неспецифические характеристики основных обменных и защитно-адаптационных клеточных механизмов, а также устанавливает сроки экспериментального наблюдения за животными не 90 дней, а не менее 5-6 мес.

В число основных метаболических показателей, требующих обязательного изучения в рамках гигиенической экспертизы, необходимо включать: активность ряда ферментов, позволяющих оценить общее органоспецифическое действие ГМИ; общую и неседиментируемую активность ферментов лизосом, отражающих состояние структур мембран клетки; активность ферментов микросомального окисления и других ферментов метаболизма ксенобиотиков и антиоксидантной ферментной системы, определяющих функциональное состояние основных клеточных защитно-адаптационных механизмов. Необходимость использования при оценке ГМИ параметров, отражающих характер адаптации организма к внешним условиям, обусловлена высокой неспецифической чувствительностью анализируемых систем к любому ксенобиотическому воздействию. При этом индукция ферментов может служить критерием воздействия на организм средового фактора (его роль в данном случае играет ГМИ). Отсутствие достоверной динамики изученных систем может рассматриваться как косвенное подтверждение полной эквивалентности генетически модифицированной пищи ее традиционному аналогу.[5]

Заключение

Безопасность пищевых продуктов в первую очередь является объектом санитарно-гигиенического контроля, но вместе с этим вопросы безопасности не должны выпадать из поля зрения специалиста при товароведной оценке. Санитарные нормы и правила характеризуют безопасность пищевой продукции, как отсутствие опасности для жизни и здоровья людей нынешнего и будущих поколений, определяемое соответствием пищевой продукции требованиям санитарных правил, норм и гигиенических нормативов.

Более широко безопасность пищевых продуктов можно трактовать как отсутствие токсического, канцерогенного, тератогенного, мутагенного или иного неблагоприятного действия продуктов на организм человека при употреблении их в общепринятых количествах. Безопасность гарантируется установлением и соблюдением регламентируемого уровня содержания (т. е. отсутствия или ограничения допустимой концентрации) загрязнителей химической и биологической природы, а также природных токсических веществ, характерных для данного продукта и представляющих опасность для здоровья.

В настоящее время непрерывно расширяется ассортимент пищевых продуктов, изменяется характер питания. В производство, хранение и распределение продуктов питания внедряются новые технологические процессы, применяются все возрастающие количества различных химических соединений и т. п. Опасность с точки зрения по­падания токсических веществ в пищевые продукты представляет загрязнение окружающей среды промышленными отходами, а также расширение использования химикатов в сельском хозяйстве.

Используемая литература

1.Введение в технологии продуктов питания./Витол И.С., Горбатюк В.И., Горенков Э.С. и др.;под ред. Нечаева А.П.-М.:ДеЛи плюс,2013.-720с.

2.Химические опасности и токсиканты. Принципы безопасности в химической лаборатории./Евсеева Л.В., Журавель И.А., Датхаев У.М., Абдуллабекова Р.М., по ред. Овсянниковой Д.М.-М.:ЛитТерра,2015.

3.Токсикологическая химия. Метаболизм и анализ токсикантов./Афанасьева Е.Ю., Борисова Е.Я., Верстакова О.Л., Калетина Н.И., под ред. Калетина Н.И.-М.:ГЭОТАР-Медиа, 2012.-1016 с.

4.Журнал «Успехи химии». Статья:Физико-химический анализ органических токсикантов./Лебедев А.Т., Богдашкина В.И., Демьянов П.И., Хименес М.П., Яшина Н.С., Петросян В.С.

5. Журнал «Вестник ВГУИТ № 2». Статья: Особенности определения токсикантов./ Ассистент А.А. Шуба, доцент А.В. Никулина, студент В.В.Глушенкова, студент Е.А.Швенк (Воронеж. гос. ун-т. инж. технол.) кафедра физической и аналитической химии.

6.Здоровое питание./ Шилов В.Н., Мицьо В.П.-2015.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика пищевой и биологической ценности основных пищевых продуктов. Биологические опасности, связанные с пищей, генно-модифицированные продукты. Уровни воздействия техногенных факторов на организм человека в процессе поглощения продуктов питания.

    контрольная работа [32,6 K], добавлен 17.06.2010

  • Классификация пищевых продуктов и добавок. Этапы контроля продуктов питания: отбор пробы, приготовление смеси, выделение целевого компонента, анализ. Методы анализа пищевых продуктов: титриметрические, оптические, электрохимические и хроматометрические.

    курсовая работа [60,0 K], добавлен 21.12.2014

  • Проблемы безопасности пищевых продуктов. Модификация, денатурализация продуктов питания. Нитраты в сырье для пищевых продуктов. Характеристика токсичных элементов в сырье и готовых продуктах. Требования к санитарному состоянию сырья и пищевых производств.

    курсовая работа [87,0 K], добавлен 17.10.2014

  • Организация контроля за обеспечением безопасности пищевой продукции в России. Классификация показателей качества продуктов питания, проблема их радиоактивного загрязнения. Понятие антиалиментарных факторов питания, механизм действия и виды ингибиторов.

    контрольная работа [27,9 K], добавлен 20.11.2012

  • Нормативно-законодательная база безопасности пищевой продукции в России. Принципы системы НАССР. Биологические и микробиологические, химические и физически опасные факторы. Факторы риска при производстве пищевых продуктов. Технология производства кефира.

    реферат [604,6 K], добавлен 13.07.2011

  • Правовое регулирование отношений в области обеспечения качества и безопасности сырья и пищевых продуктов. Нитрозоамины, полициклические ароматические углеводороды: источники их поступления и влияние на организм человека, яды пептидной формы (а-амантин).

    контрольная работа [21,5 K], добавлен 24.07.2010

  • Роль консервантов в сохранении пищевого сырья и готовых продуктов, действие антиокислителей. Использование пряностей в пищевой промышленности и кулинарии. Причины слеживания и комкования порошкообразных продуктов. Безопасность применения пищевых добавок.

    реферат [461,7 K], добавлен 01.02.2011

  • Источники антиалиментарных соединений, условия их действия на ингибируемое вещество, пути устранения их вредного влияния. Ингибиторы пищеварительных ферментов. Факторы, снижающие усвоение минеральных веществ. Токсичные компоненты пищевых продуктов.

    курсовая работа [32,8 K], добавлен 29.10.2014

  • Характеристика составляющих качество сырья и факторы его формирующие. Технохимическая характеристика гидробионта. Понятие и критерии пищевой ценности. Химический состав непищевых и пищевых продуктов из гидробионтов. Классификация непищевых продуктов.

    курсовая работа [135,2 K], добавлен 06.08.2015

  • Характеристика основных требований к безопасности пищевых продуктов: консервов, молочных, мучных, зерновых, мясных, рыбных, яичных продуктов. Санитарные и гигиенические требования к кулинарной обработке пищевых продуктов. Болезни пищевого происхождения.

    курсовая работа [193,6 K], добавлен 20.12.2010

  • Понятие о микробиологических показателях безопасности пищевых продуктов. Микрофлора продуктов, воды, почвы и тела человека. Cроки и условия хранения сырья, готовых блюд и кондитерских изделий. Санитарный контроль на предприятиях общественного питания.

    контрольная работа [329,1 K], добавлен 14.05.2014

  • Органолептические характеристики качества и безопасности продуктов: консервы, молоко, мясо, рыба, яйца, мука, хлеб. Санитарные требования к кулинарной обработке и хранению пищевых продуктов. Болезни пищевого происхождения, вызываемые микроорганизмами.

    реферат [39,6 K], добавлен 21.03.2010

  • Методы получения, положительные и отрицательные стороны ГМО и пищевых добавок. Их маркировка, штрих-код. Характеристика воздействия данных компонентов на здоровье человека. Практические рекомендации по использованию продуктов питания, содержащих ГМО и ПД.

    курсовая работа [452,1 K], добавлен 28.04.2014

  • Проблема безопасности продуктов питания. Политика в области качества. Методологические принципы создания биологически безопасных продуктов питания, основанные на выявлении критических контрольных точек. Оценка доброкачественности муки, хлеба, зерновых.

    презентация [993,8 K], добавлен 11.12.2013

  • Обеспечение производства продуктов питания в ассортименте. Рациональное использование пищевых продуктов каждым человеком. Физиологическая потребность организма во всех пищевых веществах и энергии. Соотношение белков, жиров и углеводов в рационе человека.

    реферат [26,4 K], добавлен 18.12.2010

  • Свойства и пищевая ценность продуктов питания. Энергетические, биологические, физиологические и органолептические показатели, усвояемость и доброкачественность. Виды, классификация и ассортимент сахара, его химический состав, условия и сроки хранения.

    контрольная работа [23,9 K], добавлен 05.10.2010

  • Функции процесса питания. Основные питательные вещества: белки, жиры, углеводы, витамины, вода. Значение рационального питания для развития школьников. Вред для здоровья от современных продуктов питания. Характеристика сыроедения и вегетарианства.

    реферат [45,4 K], добавлен 13.01.2012

  • Квалификационная характеристика повара 3-го разряда. Требования к приемке и хранению сырья, поступающего на предприятие. Способы кулинарной обработки пищевых продуктов. Схема механической обработки овощей и грибов и приготовление полуфабрикатов из них.

    отчет по практике [63,9 K], добавлен 25.05.2013

  • Определения и классификация пищевых добавок и их безопасность. Характеристика натуральных, синтетических и минеральных красителей. Вещества, изменяющие структуру и физико-химические свойства продукции. Добавки, влияющие на вкус, аромат пищевых продуктов.

    реферат [28,2 K], добавлен 16.12.2011

  • Факторы, влияющие на изменение цвета каротиноидов при кулинарной обработке продуктов. Ассортимент горячих закусок из мяса и мясных продуктов. Оформление и правила подачи, требования к качеству. Основные приемы приготовления блюд лечебного питания.

    контрольная работа [27,0 K], добавлен 23.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.