Сахара и их изменения при кулинарной обработке

Значение углеводов в питании. Физико-химические изменения, происходящие с углеводами в процессе технологической обработки продуктов. Кислотный и ферментативный гидролиз дисахаридов. Распад сахаров: при брожении, карамелизации, меланоидинообразовании.

Рубрика Кулинария и продукты питания
Вид лекция
Язык русский
Дата добавления 13.05.2020
Размер файла 28,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сахара и их изменения при кулинарной обработке

План

1. Значение углеводов в питании

2. Кислотный и ферментативный гидролиз дисахаридов

3. Глубокий распад сахаров: при брожении, карамелизации, меланоидинообразовании

1. Значение углеводов в питании

1. Углеводы -- широко распространенные в природе органические вещества. Они составляют значительную часть тканей растительного происхождения (80...90 % сухого вещества). В тканях животного происхождения содержится не более 2 % углеводов.

Зеленые растения обладают способностью синтезировать углеводы из углекислоты и воды при поглощении световой энергии, создавая высокомолекулярные вещества с высоким содержанием химической энергии. Таким образом растения накапливают огромные запасы органической материи на земле.

Углеводы преобладают в пище человека. Они служат основным источником необходимой организму энергии (при окислении в организме 1 г углеводов выделяется 3 75 ккал теплоты).

В качестве источника углеводов выступают главным образом продукты растительного происхождения -- хлеб, крупа, картофель, овощи, фрукты, ягоды.

Углеводы подразделяют на три основных класса: моносахариды, или простые сахара, представляющие собой основные структурные единицы -- мономеры; олигосахариды, содержащие относительно небольшое количество моносахаридных единиц; полисахариды -- высокомолекулярные вещества, состоящие из сотен и тысяч моносахаридов.

Представители наиболее распространенных моносахаридов глюкоза, фруктоза, галактоза; олигосахаридов -- дисахарид сахароза (свекловичный или тростниковый сахар), лактоза (молочный сахар) и трисахарид -- раффиноза. К полисахаридам относятся крахмал, клетчатка, гликоген, пектиновые вещества и др.

Моносахариды сладки на вкус и растворимы в воде. Сладость сахаров различна. Если сладость сахарозы принять за 100, то сладость фруктозы составит 173, инвертного сахара 130, глюкозы 74, галактозы 32, раффинозы 23, лактозы 16. Полисахариды труднорастворимы или нерастворимы в холодной воде и не обладают сладким вкусом.

Глюкоза, фруктоза и сахароза. Эти сахара легко усваиваются организмом. Первые два содержатся в свободном виде в плодах и овощах.

Сахароза под действием ферментов и кислот распадается на равные количества глюкозы и фруктозы.

Гликоген. Из сложных углеводов животного происхождения наибольшее значение имеет гликоген. Он откладывается в основном в печени (2... 10 %) и служит запасным питательным веществом. Из гликогена постепенно освобождается и поступает в кровь глюкоза, которая служит источником углеводов для всех тканей.

Крахмал. В дневном рационе этот наиболее важный для человека углевод обычно составляет 80...85 % общего количества углеводов.

Пектиновые вещества. Среди высокомолекулярных углеводов важная роль принадлежит и таким полисахаридам, как пектиновые вещества. Их свойства имеют существенное значение для образования структуры пищевых продуктов и используются при изготовлении желированныхизделий (студни, фруктовые желе ИТ. д.).

В растительных тканях содержатся нерастворимые в воде протопектины. При гидролизе протопектины образуют высокомолекулярные пектиновые кислоты.

Протопектины обеспечивают связь между клетками в растительной ткани. Основная масса их находится в срединных пластинках, склеивающих клетки в сыром продукте. Пектиновые вещества играют важную роль в создании плотной мякоти.

Физико-химические и биохимические изменения, происходящие с углеводами в процессе технологической обработки продуктов, существенно влияют на качество готовых изделий.

В процессе технологической обработки пищевых продуктов сахара могут подвергаться кислотному и ферментативному гидролизу, а также глубоким изменениям, связанным с образованием окрашенных веществ (карамелей и меланоидинов).

2. Кислотный и ферментативный гидролиз дисахаридов

брожение сахар углевод ферментативный

Гидролиз дисахаридов. Дисахариды гидролизуется под действием как кислот, так и ферментов.

Кислотный гидролиз имеет место в таких технологических процессах, как варка плодов и ягод в растворах сахара различной концентрации (приготовление компотов, киселей, фруктово-ягодных начинок), запекание яблок, уваривание сахара с какой-либо пищевой кислотой (приготовление помадок).

Если готовить сахарные сиропы высокой концентрации (для помад) в присутствии кислоты или фермента инвертазы, то из сахарозы образуются не только глюкоза и фруктоза, но и продукты их преобразования. В сиропе при получении инвертного сахара в присутствии фермента инвертазы обнаруживаются соединения фруктозы с сахарозой (кестоза), которые предохраняют сироп от засахаривания. Сироп, полученный в результате кислотного гидролиза сахарозы, засахаривается быстрее, чем сироп, приготовленный с инвертазой.

Степень инверсии сахарозы зависит от вида кислоты, ее концентрации, продолжительности нагрева. В плодах и ягодах содержатся главным образом лимонная и яблочная кислоты. Первая количественно преобладает в ягодах, вторая- в семечковых и косточковых плодах. Цитрусовые содержат одну лимонную кислоту. Для приготовления кондитерской помадки используется обычно лимонная кислота, а при ее отсутствии - уксусная. Инверсионная способность различных органических кислот при одних и тех же условиях неодинакова. Она зависит от силы кислоты, т.е. константы ее диссоциации; скорость же реакции гидролиза сахарозы пропорциональна концентрации водородных ионов в среде.

Инверсионная способность лимонной, яблочной и уксусной кислот меньше, чем щавелевой соответственно в 11,15 и 50 раз. Степень инверсии сахарозы в различных кулинарных изделиях зависит от продолжительности теплового воздействия, вида и концентрации кислоты. При запекании яблок в жарочном шкафу без добавления сахара инвертируется около половины содержащейся в них сахарозы. Из овощей с более или менее значительным содержанием сахарозы тепловой обработке подвергаются морковь и свекла. Кислотность их значительно меньше, чем у плодов и ягод, pH =6,3-6,7. В свободном состоянии в них имеется только одна яблочная кислота. Благодаря малой кислотности клеточного сока при варке корнеплодов, продолжающейся сравнительно долго ( свекла варится до 80 мин.), инверсии сахарозы не наблюдается. Ферментативному гидролизу подвергаются сахароза и мальтоза при брожении и в начальный период выпечки дрожжевого теста. Сахароза под воздействием фермента сахаразы расщепляется на глюкозу и фруктозу, а мальтоза под действием фермента мальтазы -- до двух молекул глюкозы.

3. Глубокий распад сахаров: при брожении, карамелизации, меланоидинообразовании

Брожение. Глубокому распаду при брожении дрожжевого теста подвергаются моносахариды (глюкоза и фруктоза ), содержащиеся в муке и образующиеся в тесте в результате гидролиза сахарозы и мальтозы. В дрожжевом тесте основную роль играет спиртовое брожение. Под действием ферментов дрожжей сахара превращаются в спирт и углекислый газ, последний разрыхляет тесто. Кроме углекислый газа и этилового алкоголя, при спиртовом брожении в незначительных количествах образуются побочные продукты: янтарная кислота, сивушные масла, уксусный альдегид, глицерин и др. Дисахариды ( сахароза и мальтоза) непосредственно не подвергаются брожению. Они сбраживаются лишь после предварительного гидролиза на составляющие их моносахариды. Глубокий распад гексоз происходит также в процессе молочнокислого брожения, сопутствующего спиртовому. Молочнокислое брожение вызывается попадающими в тесто с мукой гомо- и гетероферментативными молочнокислыми бактериями. Первые из них сбраживают гексозы с образованием молочной кислоты, а вторые кроме молочной кислоты, образуют значительные количества уксусной кислоты, этилового спирта и других продуктов.

Карамелизация. Нагревание сахаров при температурах, превышающих 100 'С, в слабокислой и нейтральной средах приводит к образованию сложной смеси продуктов, свойства и состав которой изменяются в зависимости от степени воздействия среды, вида и концентрации сахара, условий нагревания и т. д.

Наиболее изучен механизм превращения глюкозы. Нагревание глюкозы в слабокислой и нейтральных средах вызывает дегидратацию сахара с выделением одной или двух молекул воды. Ангидриды сахаров могут соединяться друг с другом или с неизменным сахаром и образовывать так называемые продукты реверсии (конденсации). Под продуктами реверсии, образующимися при разложении сахаров, понимают соединения с большим числом глюкозных единиц в молекуле, чем у исходного сахара.

Последующее тепловое воздействие вызывает выделение третьей молекулы воды с образованием оксиметилфурфурола, который при дальнейшем нагревании может распадаться с разрушением углеводного скелета и образованием муравьиной и левулиновой кислот или образовывать конденсированные (окрашенные) соединения.

Промежуточным продуктом при образовании левулиновой кислоты из оксиметилфурфурола может быть 5- оксилевулиновый альдегид.

Вода, присутствующая в растворах сахаров, способствует их необратимым изменениям. Уменьшение количества свободной воды при реакции разложения приводит к появлению значительных количеств продуктов реверсии (конденсации).

По мере нагревания сухой сахарозы отщепляется все больше молекул воды, в результате чего образуется большое количество продуктов разложения, в том числе производных фурфурола, альдегидов, акролеина, углерода диоксида, смеси ангидридов.

При отщепление от молекул сахарозы двух молекул воды образуется карамелан (С12Н18О9) - вещество светло-соломенного цвета, растворяющееся в холодной воде. При отщепление от трех молекул сахарозы восьми молекул воды образуется карамелей (С36Н50О25) ярко-коричневого цвета с рубиновым оттенком. Карамелей растворяется в холодной и кипящей воде. Более сильное обезвоживание нагреваемой массы приводит к образованию темно-коричневого вещества -- карамелина (С24Н30О15), которое растворяется только в кипящей воде. При длительном нагревании образуются гуминовые вещества, растворимые только в щелочах.

Продукты карамелизации сахарозы представляют собой смесь веществ различной степени полимеризации, поэтому деление их на карамелей, карамелан, карамелин условное; все эти вещества можно получить одновременно. На этом основании состав различных продуктов карамелизации сахарозы выражают формулой Ст(Н20)п. Под влиянием пиролиза меняется их отношение т: п -- от 1,09 (у сахарозы) до 3,0. По достижении значения 1,3 продукты карамелизации сахаров приобретают темную окраску. Некоторые продукты распада обладают повышенной люминесценцией, а иногда и горьким вкусом. Свойства красящих веществ, образующихся из сахарозы или гексоз, не зависят от вида сахара, из которого они получены.

Продукты карамелизации сахарозы могут образовывать соли и комплексные соединения с железом и некоторыми другими металлами. Подобно сахарам они реагируют с аминокислотами и обладают редуцирующей способностью.

В процессе производства кулинарных и кондитерских изделий, содержащих сахара, все перечисленные изменения могут протекать одновременно, а конечный продукт -- представлять собой смесь веществ. Состав этой смеси зависит от многих факторов, основной из которых -- термоустойчивость сахаров.

Нагревание 4 -- 0-замешенных производных глюкозы (мальтоза, лактоза) до высокой температуры (карамелизация) приводит к появлению веществ, влияющих на образование аромата. К таким соединениям относится мальтол. При наличии аминокислот это вещество образуется в большом количестве. Мальтол усиливает сладкий вкус, поэтому его используют при производстве кондитерских изделий, а также в составе подслащивающих веществ, заменяющих сахар. Для ароматизации применяют и метилциклопентанолы с преобладающим сладким (лакричным) вкусом. В процессе карамелизации образуются и другие компоненты с подобными свойствами.

Меланоидинообразование. При взаимодействии альдегидных групп альдосахаров с аминогруппами белков, аминокислот образуются различные карбонильные соединения и темно-окрашенные продукты - меланоидины. Реакция впервые была описана в 1912 г. Майером и названа его именем.

Наиболее известен механизм реакций, предложенный Ходжем семь основных типов реакций, которые можно подразделить на три последовательно протекающие стадии.

Начальная стадия -- образование бесцветных соединений, не поглощающих свет: А -- сахароаминная реакция, Б -- перегруппировка Амадори и образование 1-амино-1-дезокси-2-кетозы в 1,2-енольной форме. Эти стадии реакции невозможно обнаружить измерением оптической плотности в видимой и УФ-областях спектра.

Промежуточная реакция -- образование бесцветных и слабо-желтых продуктов. Еще до появления видимой цветности они активно поглощают свет в ультрафиолетовой области спектра: В -- дегидратация сахаров; Г -- разложение сахаров; Д -- разложение аминокислот (по Штекеру).

Конечная стадия характеризуется интенсивным нарастанием цветности: Е -- альдольная конденсация (реакция конденсации альдегидов); Ж -- альдегидаминная полимеризация, образование гетероциклических азотистых соединений.

В результате реакции образуются также ароматические вкусовые вещества, причем по сравнению с реакцией карамелизации в данном случае преобладают летучие компоненты, значительно влияющие на аромат

Общей для структурных соединений, образующихся в результате реакции Майера, является группа СНз-- С = С -- СО --.ОН

Соединения, содержащие эту группу, обнаружены в пищевых продуктах, подвергшихся обжариванию (хлеб, кофе, какао, солод), при котором под воздействием высоких температур происходит неферментативное потемнение.

При термическом воздействии аромат образуется вследствие расщепления аминокислот по Штрекеру -- процесс окислительного дезаминирования и декарбоксилирования аминокислот в альдегид (или кетон), содержащий на один атом углерода меньше, чем исходная аминокислота.

Недостаточно изучены труднолетучие (например, горькие) вещества реакции Майера, а также сложные по структуре вещества с солодовым, карамелеобразным, хлебоподобным, горьким или «пригорелым» ароматом.

Сравнительно простую структуру имеют другие вещества, образующиеся в процессе покоричневения, -- пиразины, среди которых преобладают короткоцепочные соединения.

Пиразины в миллионных долях содержатся в продуктах, которые подвергались обжариванию (жареное мясо, хрустящий картофель, кофе, какао и др.).

На конечной стадии меланоидинообразования наблюдается сложное сочетание различных реакций полимеризации, приводящих к образованию как растворимых, так и нерастворимых (на последних этапах) красящих веществ, являющихся ненасыщенными флюоресцирующими полимерами.

Продукты реакций меланоидинообразования оказывают различное влияние на органолептические свойства готовых изделий: заметно улучшают качество жареного и тушеного мяса, котлет, но ухудшают вкус, цвет и запах бульонных кубиков, мясных экстрактов и других концентратов.

Продукты реакции Майера обусловливают аромат сыра, свежевыпеченного хлеба, обжаренных орехов. Образование тех или иных ароматических веществ зависит от природы аминокислот, вступающих в реакцию с сахарами, а также от стадии реакции. Каждая аминокислота может образовывать несколько веществ, участвующих в формировании аромата пищевых продуктов.

Следствием меланоидинообразования являются нежелательные потемнение и изменение аромата и вкуса в процессе нагревания плодовых сока, джемов, желе, сухих фруктов и овощей, что приводит к увеличению содержания альдегидов и потере некоторых аминокислот и сахаров.

При невысоких температурах реакции протекают медленно, при температурах, близких к 100 'С и выше, -- ускоряются. Чтобы задержать нежелательные изменения, используют соединения, легко связывающиеся с карбонильными группами, такие, как, например, водорода пероксид, сернистая кислота. Блокировка этих реакций может быть осуществлена путем устранения одного из взаимодействующих соединений, например глюкозы, или добавления фермента глюкозооксидазы, что используют при производстве яичного порошка.

Чем выше интенсивность образования коричневой окраски, тем ниже пищевая ценность белковых продуктов. В результате теряется от 20 до 50 % свободных аминокислот, причем с увеличением продолжительности нагревания эти потери возрастают.

В овощах темная окраска различной интенсивности образуется в зависимости от присутствия тех или иных аминокислот и сахаров. С глюкозой наиболее интенсивное потемнение дает лизин, затем триптофан и аргинин и наименьшее -- глютаминовая кислота и пролин.

Процесс обжаривания продуктов сопровождается, с одной стороны, снижением пищевой ценности готового продукта в связи с потерями им ценных пищевых веществ, с другой -- улучшением его органолептических свойств.

Считается весьма перспективным использование меланоидиновых препаратов для имитации цвета, вкуса и запаха жареных продуктов, так как это позволяет исключить процессы жарки.

Изучение реакций меланоидинообразования позволило улучшить технологический процесс изготовления некоторых пищевых продуктов. Так, для улучшения вкусовых свойств пива вместо жженого солода рекомендуется препарат из солодовых ростков. Получен также препарат, напоминающий по цвету и запаху порошок из сушеных грибов.

В настоящее время для приготовления и разогревания готовых блюд используют сверхвысокочастотные печи (СВЧ- печи), что позволяет значительно сокращать потери ценных пищевых веществ в готовых блюдах, но при этом последние имеют вкус, цвет и запах, свойственные изделиям, приготовленным на пару. Отсутствие у этих блюд вкуса, аромата и цвета жареных изделий, возбуждающих аппетит, может быть с успехом восполнено меланоидиновыми препаратами.

Пищевая ценность продуктов, как известно, определяется и такими важными физиологическими свойствами, как усвояемость и способность воздействовать на секреторную деятельность желудка.

Размещено на Allbest.ru

...

Подобные документы

  • Значение ассортиментной группы изделий в питании человека. Товароведная характеристика основных видов сырья. Механическая кулинарная обработка сырья и подготовка полуфабрикатов, изменение углеводов. Контроль качества продукции, подача и оформление.

    курсовая работа [67,5 K], добавлен 11.05.2014

  • Характеристика ассортимента соуса белого основного и его производных. Процесс тепловой обработки получения полуфабрикатов. Технология приготовления соусов. Физико-химические изменения пищевых компонентов происходящих при кулинарной обработке продуктов.

    курсовая работа [5,1 M], добавлен 17.02.2015

  • Составные части блюда и технология приготовления. Физико-химические изменения, происходящие при механической и тепловой кулинарной обработке продуктов. Алгоритм приготовления капустных котлет и молочного соуса. Подбор посуды и инвентаря подачи блюда.

    реферат [12,6 K], добавлен 16.07.2009

  • Значение мясных блюд в питании. Ассортимент и кулинарная характеристика блюд. Оформление и декорирование. Организация работы горячего цеха. Разработка технологических карт. Физико-химические процессы, происходящие при кулинарной тепловой обработке.

    курсовая работа [554,6 K], добавлен 07.02.2017

  • Значение блюд из яиц в питании человека, особенности их химического состава и оценка пищевой ценности. Варианты обработки данного продукта. Требования к качеству и показатели. Анализ значение творожных блюд в питании, технология их приготовления.

    курсовая работа [36,0 K], добавлен 15.01.2015

  • Ассортимент продукции питания. Товароведная характеристика сырья. Кулинарная обработка пищевых продуктов. Физико-химические изменения, происходящие при тепловой обработке. Порядок оформления и отпуска блюд. Их химический состав и питательная ценность.

    курсовая работа [49,9 K], добавлен 27.11.2014

  • Ассортимент горячих фирменных мясных блюд, особенности их приготовления. Строение и состав мышечной ткани мяса. Изменение структуры и цвета мяса при тепловой обработке. Формирование вкуса и аромата мяса, подвергнутого тепловой кулинарной обработке.

    дипломная работа [726,1 K], добавлен 17.06.2013

  • Денатурация белков: сущность процесса, изменение свойств белка, виды денатурации. Углеводов, входящие в состав клеточных стенок растительных продуктов, при воздействии тепловой обработки. Антоцианы, их изменения при кулинарной обработке плодов и овощей.

    контрольная работа [24,2 K], добавлен 21.05.2014

  • Организация процесса подготовки сырья, продуктов, полуфабрикатов для сложной кулинарной продукции из овощей. Физико-химические процессы, происходящие при тепловой обработке продуктов. Требования к качеству горячих овощных блюд. Расчет их пищевой ценности.

    курсовая работа [744,7 K], добавлен 28.01.2016

  • Технолого-товароведная характеристика баранины. Физико-химические изменения при кулинарной механической и тепловой обработке. Определение кондиции сырья, сухих веществ в блюде, его калорийности. Разработка технико-технологической карты на блюдо.

    курсовая работа [66,0 K], добавлен 11.02.2014

  • Состав, строение, пищевая ценность жировой ткани, ее физико-химические и биохимические изменения при технологической обработке (при охлаждении). Прогоркание и осаливание жира. Способы и методы обработки сырья, требования к качеству готовой продукции.

    курсовая работа [188,2 K], добавлен 28.05.2012

  • Общая кулинарная характеристика сложных горячих блюд из рыбы. Отварные, припущенные фаршированные, тушеные, запеченные блюда. Условия и сроки хранение сырья. Физико-химические изменения пищевых компонентов при кулинарной обработке пищевых продуктов.

    курсовая работа [5,0 M], добавлен 29.12.2014

  • История развития русской кухни. Пищевая ценность продуктов, используемых для приготовления пищи. Особенности приготовления, оформления и подачи блюд. Физико-химические процессы, происходящие с пищевыми веществами при технологической обработке продуктов.

    курсовая работа [278,4 K], добавлен 10.03.2013

  • Товароведная характеристика кураги и творога. Физико-химические изменения при механической и тепловой обработке продуктов. Расчет пищевой энергетической ценности, сухих веществ и жира в десерте. Технология приготовления, оформление и подача блюда.

    курсовая работа [49,6 K], добавлен 17.02.2015

  • Пищевая ценность и роль молока в питании человека. Классификация и ассортимент молока. Технологический процесс производства некоторых видов молока. Физико-химические изменения молока при его хранении и обработке. Сертификация молока и молочных продуктов.

    курсовая работа [40,1 K], добавлен 16.12.2011

  • Ассортимент продукции общественного питания, вырабатываемой предприятием. Изменения, происходящие с пищевыми веществами при механической и тепловой обработке сырья. Порядок разработки, оформление и утверждение технико–технологических карт на новые блюда.

    курсовая работа [1,4 M], добавлен 24.09.2011

  • Правильный подбор необходимых продуктов и выбор способа их кулинарной обработки. Рекомендованные сорта овощей, фруктов, грибов и бобовых, признаки их спелости и свежести. Особенности обработки мяса, домашней птицы и дичи, рыбы. Вспомогательные материалы.

    реферат [47,7 K], добавлен 02.06.2009

  • Понятие, виды и способы тепловой обработки продуктов. Изменение пищевой ценности продуктов животного и растительного происхождения в процессе тепловой обработки. Соотношение белков, жиров, углеводов и витаминов в питании детей, подростков и студентов.

    реферат [19,8 K], добавлен 24.07.2010

  • Характеристика мяса птицы. Общий химический состав птицы. Теплофизические свойства сырья. Структурно-механические свойства мяса птицы. Технологическая схема. Изменения, происходящие в процессе охлаждения. Физико-химические изменения.

    курсовая работа [59,5 K], добавлен 12.01.2005

  • Значение рыбы в питании; ассортимент продукции, классификация сырья. Технология производства консервов и полуфабрикатов: стадии, физико-химические процессы, происходящие при обработке. Контроль качества продукции, разработка технико-технологических карт.

    курсовая работа [596,1 K], добавлен 18.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.