Совершенствование оперативного управления загруженностью должностных лиц таможенных постов
Стохастические колебания интенсивности товаропотока через таможенную границу и неравномерность рабочей нагрузки на должностных лиц. Статистический анализ входного потока деклараций на товары. Двухфазная имитационная модель процесса таможенного контроля.
Рубрика | Таможенная система |
Вид | статья |
Язык | русский |
Дата добавления | 05.06.2018 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Интернет-журнал «НАУКОВЕДЕНИЕ» Институт Государственного управления,
Выпуск 3, май - июнь 2014 права и инновационных технологий (ИГУПИТ)
Опубликовать статью в журнале - http://publ.naukovedenie.ru Связаться с редакцией: publishing@naukovedenie.ru
Размещено на http://www.allbest.ru/
10
http://naukovedenie.ru 105EVN314
Интернет-журнал «НАУКОВЕДЕНИЕ» Институт Государственного управления,
Выпуск 3, май - июнь 2014 права и инновационных технологий (ИГУПИТ)
Опубликовать статью в журнале - http://publ.naukovedenie.ru
10
http://naukovedenie.ru 105EVN314
Совершенствование оперативного управления загруженностью должностных лиц таможенных постов
Костина Анастасия Олеговна
Аннотация. Таможенные посты, осуществляющие выпуск товаров, во многом определяют скорость товарооборота. Первостепенную роль играют отделы таможенного оформления и таможенного контроля. Связанная с переменной интенсивностью товаропотока, неравномерность рабочей нагрузки с одной стороны может снизить качество и скорость проводимого таможенного контроля, с другой - вызвать потери рабочего времени. Решение данной проблемы невозможно без разработки методического подхода к организации работы должностных лиц с постоянной интенсивностью. При этом в научной литературе недостаточно исследований, посвященных анализу вероятностных характеристик процесса таможенного контроля товаров. В статье исследованы условия применения теории массового обслуживания и метода Монте-Карло с целью использования при моделировании функционирования отделов таможенного оформления и таможенного контроля. Для этого потребовалось проверить статистические гипотезы о распределении временных интервалов между последовательными поступлениями деклараций на товары и длительности времени выпуска товаров. Получены законы распределения эмпирических данных для расчета рационального количества должностных лиц в смене на заданном временном интервале. В целом результаты исследования направлены на совершенствование оперативного управления загруженностью должностных лиц отделов таможенного оформления и таможенного контроля.
Ключевые слова: отдел таможенного оформления и таможенного контроля; оперативное управление загруженностью должностных лиц; распределение временных интервалов между поступлениями деклараций на товары; распределение длительности выпуска товаров; проверка статистических гипотез; теория массового обслуживания, метод МонтеКарло.
Введение
Стохастические колебания интенсивности товаропотока через таможенную границу неизбежно влекут неравномерность рабочей нагрузки на должностных лиц таможенных органов Российской Федерации. При этом основная нагрузка, связанная с проверкой документов и сведений, представляемых при таможенном декларировании товаров, приходится на должностных лиц отделов таможенного оформления и таможенного контроля таможенных постов, правомочных регистрировать декларации на товары и осуществлять выпуск товаров в соответствии с заявленной таможенной процедурой (далее - отделы оформления).
Пиковые нагрузки на государственных таможенных инспекторов отделов оформления (далее - ГТИ) сопровождаются сокращением времени, затрачиваемого на проверку сведений, заявленных в одной декларации на товары (далее - ДТ), и соответственно увеличивают вероятность допущения ошибки. Напротив, при снижении интенсивности товаропотока, неизбежно возникают потери рабочего времени. Таким образом, существует объективная проблема неравномерной загруженности должностных лиц отделов оформления. В то же время согласно стратегии ФТС России до 2020 г. обеспечение оптимальной нагрузки на должностных лиц является неотъемлемой частью комплекса мер по совершенствованию организационно-управленческой деятельности таможенной службы Российской Федерации. В связи с этим оптимизация загруженности должностных лиц таможенных постов является одной из приоритетных задач таможенной службы.
Управление загруженностью должностных лиц отделов оформления таможенных постов направлено на сглаживание пиковых нагрузок и сокращение периодов простоя ресурсов таможенного поста, что в конечном счете повысит эффективность таможенного контроля и скорость товарооборота.
Один из способов управления загруженностью должностных лиц отделов оформления - разработка методического подхода организации равномерной рабочей нагрузки, при которой потребность в должностных лицах как можно меньше отличается от фактической численности и состава смены. Такой подход предполагает разработку адекватной модели функционирования отдела оформления, учитывающей такие ключевые параметры процесса совершения таможенных операций и проведения таможенного контроля, как интервалы времени между последовательными поступлениями ДТ и времени, необходимого на выпуск товаров или принятия иного решения по задекларированным товарам. Исследование, изложенное в данной статье, посвящено повышению точности моделирования процесса осуществления таможенного контроля, направленного на совершенствование оперативного управления загруженностью должностных лиц отделов оформления.
Разработка модели функционирования отдела оформления требует теоретического и практического обоснования ее типа. При аргументации предложений, направленных на совершенствование различных аспектов функционирования таможенных органов зачастую применяются методы теории массового обслуживания [3, 5, 9], подразумевающие простейший (стационарный пуассоновский) поток заявок, в данном случае в качестве заявок рассматриваются ДТ, и экспоненциальное распределение времени обработки заявки, в этом контексте времени выпуска товаров. Однако во многих случаях такой подход при моделировании может дать приближенный к реальной действительности результат.
Поток ДТ может быть рассмотрен как простейший, если он одновременно стационарен, ординарен и не имеет последействия. Вероятностные характеристики стационарного потока не зависят от времени, в частности, его интенсивность - величина постоянная: л(t) = л [4, с. 337]. В случае анализа входящего потока ДТ условия ординарности и отсутствия последствия соблюдаются, при этом условие стационарности потока ДТ может быть выполнено только на интервалах относительной стабильности, на которые должен быть разделен рабочий день.
1. Постановка задачи
В связи с вышесказанным рассмотрение функционирования таможенных постов (отделов оформления) как системы массового обслуживания возможно только на коротких интервалах времени при условии экспоненциального распределения времени поступления и обработки ДТ. В то же время, закон распределения может изменяться в зависимости от месяца, дня недели, времени суток, ситуации в регионе деятельности таможенного поста и пр. Поэтому для повышения точности моделирования в данной статье решается задача определения законов распределений интервалов поступления и выпуска ДТ в зависимости от перечисленных факторов, и приводится расчет рационального количества должностных лиц на заданном временном интервале.
2. Статистический анализ входного потока деклараций на товары
В качестве примера, проанализируем распределение времени между последовательными поступлениями ДТ в сентябре 2013 г. на Турухтанном таможенном посту Балтийской таможни8. Турухтанный таможенный пост выбран для анализа в связи с тем, что это один из самых крупных постов Северо-западного региона. Сентябрь 2013 г. для этого поста характеризуется средней рабочей нагрузкой на должностных лиц по сравнению с другими месяцами года, т.е. это самый типичный по количеству ДТ месяц в году. Для проведения статистических расчетов использован пакет прикладных программ (далее - ППП) Statistica 10.
В соответствии с общепринятой методикой [7, с. 345] проверки статистических гипотез о распределении случайной величины сформулируем нулевую гипотезу H0, согласно которой временные интервалы между поступлениями ДТ имеют экспоненциальное распределение, и альтернативную H1 - временные интервалы имеют распределение, отличное от экспоненциального. В данном случае это ситуация принять-поддержать - accept-support (далее - AS). В AS исследовании ошибка первого рода представляет собой отвержение проверяемой гипотезы, когда она верна, a ошибка второго рода - принятие проверяемой гипотезы при справедливости альтернативной [13].
С использованием ППП Statistica 10 на рис. 1 получена гистограмма распределения временных интервалов между последовательными поступлениями ДТ в сентябре 2013 на Турухтанном таможенном посту, при этом временные интервалы измерены в секундах. Количество зарегистрированных ДТ данным постом за анализируемый период 9458 шт., т.е. выборка достаточно репрезентативна.
Рис. 1. Гистограмма распределения временных интервалов между поступлениями ДТ в сентябре 2013 г. на Турухтанном таможенном посту (от 1 до 1500 секунд) (построена автором с помощью ППП Statistica 10)
На рис. 1 помимо гистограммы эмпирического распределения данных показана кривая плотности ожидаемого экспоненциального распределения. По оси ординат автором указано количество ДТ в штуках, по оси абсцисс - временные интервалы между последовательными поступлениями ДТ в секундах. На рис. 1 показано 9373 декларации на товары, поступивших с интервалами, не превышающими 25 минут (1500 секунд), более длинные интервалы (от 1500 до 7884 секунд) между появлениями ДТ на рис. 1 не представлены в связи с их малочисленностью. Параметры ожидаемого экспоненциального распределения на рис. 1: л=0,08 ДТ/с - интенсивность потока ДТ. Среднее время ожидания новой ДТ - величина 1/л=124 с.
Рассмотрим подробнее информацию, обозначенную на рис. 1. Точность аппроксимации теоретического распределения поступления ДТ на Турухтанном таможенном посту оценена с помощью статистических критериев X2 (хи-квадрат) К. Пирсона (Chi-square test) и Колмогорова-Смирнова (Kolmogorov-Smirnov test), значения которых указаны в заголовке графика на рис. 1. Приведенные критерии согласия являются непараметрическими критериями, т.е. не требуется, чтобы анализируемые переменные были нормально распределены. В связи с этим выбранные критерии универсальны и подходят для исследования закона распределения входящего потока деклараций на товары, кроме того их применение предусмотрено ППП Statistica и рассмотрено в [1] и [13] для решения схожих задач. Данные критерии согласия используют различные меры близости распределений, по-разному улавливают различные отклонения в эмпирических данных от предполагаемых теоретических законов распределений, поэтому обладают достаточной статистической мощностью13 при использовании в совокупности.
Следует пояснить суть выбранных статистических критериев и их интерпретацию в рамках анализа потоков деклараций на товары. Критерий Колмогорова-Смирнова основан на максимуме разности между кумулятивным распределением выборки и предполагаемым кумулятивным распределением. Чем меньше полученное значение критерия КолмогороваСмирнова, тем ближе распределение случайной величины к теоретическому, и меньше оснований отвергнуть проверяемую гипотезу. [13]
В критерии согласия X2 Пирсона мерой расхождения теоретического и эмпирического распределений является взвешенная сумма квадратов отклонений [2, с. 330]. При использовании данного критерия интервалы группировки, в которых ожидаемые при гипотезе частоты меньше пяти, объединяют, т.к. ухудшается качество аппроксимации распределения критериальной статистики распределением ч2. В ППП Statistica все необходимые вычисления и поправки на число степеней свободы производятся автоматически, если для критерия X2 отмечено условие - составные интервалы (Combine Categories) [1, с. 186]. Поэтому на рис. 1 в заголовке графика указано «adjusted», это означает, что количество степеней свободы скорректировано. Статистика X2 принимает значения от нуля до бесконечности. Чем меньше значение статистики, тем более вероятно, что гипотеза не противоречит эмпирическим данным.
Больше информации о степени согласия наблюдаемого распределения интервалов между поступлениями ДТ на Турухтанном таможенном посту с теоретическим распределением можно получить из уровня статистической значимости. В ППП Statistica уровень значимости обозначается буквой «p» и означает вероятность допустить ошибку первого рода, т.е. отвергнуть нулевую гипотезу, когда она верна. Вероятность ошибки второго рода тем меньше, чем больше вероятность р. Как указано в [10, с. 96] эта вероятность позволяет судить о том, насколько хорошо выборка временных интервалов между поступлениями ДТ за сентябрь 2013 г. согласуется с теоретическим распределением, т.к. по существу представляет собой вероятность истинности нулевой гипотезы. Гипотезу о согласии не отвергают, если р> б. Величина б задает вероятность ошибки первого рода.
Как правило, если р?0,05, то нулевая гипотеза принимается, если р<0,05 - отвергается, однако величину 0,05 можно изменять исходя из целей исследования. Стоит отметить, что величина p еще не может считаться доказательством справедливости гипотезы, а говорит лишь о том, что гипотеза не противоречит экспериментальным данным и об отсутствии оснований ее отвергнуть.
На рис. 1 статистика Колмогорова-Смирнова оказалась равной 0,15167 с уровнем значимости р <0,01. В этом случае ошибка первого рода очень значима. Вероятность справедливости нулевой гипотезы менее 1%. Статистика X2 приближенно равна 3585 с вероятностью р=0,00000, из чего следует, что риск ошибиться, отвергнув гипотезу об экспоненциальном распределении времени между поступлениями ДТ практически равен нулю. Таким образом, входящий поток ДТ за сентябрь 2013 на Турухтанном таможенном посту не является простейшим, и применение методов теории массового обслуживания для моделирования входящего потока ДТ на данном периоде не обосновано.
Проверим возможность аппроксимации полученных автором наблюдений о входящем потоке ДТ другими распределениями, реализованными в ППП Statistica. Результаты обработки данных программным средством представлены в табл. 1, в которой предполагаемые распределения упорядочены по убыванию р-значения для критерия Колмогорова-Смирнова (K - S d). Указана также статистика хи-квадрат Пирсона (Chi-square) с вероятностью р. Оценивая результаты обработки данных, можно сделать вывод, что наблюдаемое распределение времени между поступлениями ДТ не принадлежит ни к одному из классов распределений, имеющихся в ППП Statistica. В табл. 1 указаны также параметры всех рассмотренных распределений.
Таблица 1 Статистики распределений временных интервалов между поступлениями ДТ в сентябре 2013 г. на Турухтанном таможенном посту
Distribution summary (Spreadsheet3.sta) Variable: 09_2013 Ranked by: Kolmogorov-Smirnov |
|||||||||
Distribution |
K-S d |
K-S - p-value |
Chi-square |
Chi-square p-value |
Chisquare df |
Param 1 |
Param 2 |
Param 3 |
|
General Pareto (scale, shape) |
0,047242 |
0,000000 |
240,3 |
0,00 |
17 |
61,4821 |
-0,532 |
- |
|
Log Normal(scale, shape) |
0,050997 |
0,000000 |
511,4 |
0,00 |
17 |
3,8096 |
1,526 |
- |
|
Weibull (scale, shape) |
0,054592 |
0,000000 |
678,5 |
0,00 |
17 |
94,7027 |
0,707 |
- |
|
General ExtremeValue (location, scale, shape) |
0,064146 |
0,000000 |
1040,9 |
0,00 |
16 |
27,4885 |
36,093 |
1,02489 |
Стоит отметить, что указанные в табл. 1 законы: обобщённое распределение Парето, логнормальное распределение, распределение Вейбулла, обобщенное распределение экстремальных значений - часто используются для моделирования признаков с незначительным количеством больших значений и с сильной асимметрией в сторону малых значений, что характерно и для анализируемой выборки ДТ. В то же время и обобщенное распределение Парето, и распределение Вейбулла в частном случае содержат менее гибкое экспоненциальное распределение.
Таким образом, можно сделать вывод о том, что анализируемые данные о временных интервалах меду моментами последовательных поступлений ДТ на Турухтанном таможенном посту за сентябрь 2013 г. представляют собой суперпозицию различных законов распределения. С целью моделирования входящего потока ДТ следует разбить весь период на несколько интервалов и затем определить законы распределения на каждом из них.
Для того чтобы определиться, на сколько интервалов следует разбить рабочий день, рассмотрим статистику регистрации ДТ. На рис. 2 в виде графика приведены суммарные данные о количестве зарегистрированных отделом оформления Турухтанного таможенного поста деклараций на товары за каждый час рабочего дня в сентябре 2013 г. Следует отметить, что данный пост работает ежедневно с 9.00 до 21.00 с перерывом на обед с 13.00 до 14.00. Как видно из рис. 2, существует два пика активности и один провал (обед). Такое «распределение» ДТ по часам рабочего дня свойственно для большинства таможенных постов. В связи с этим рабочий день может быть разбит на три равных интервала в соответствии с колебаниями рабочей нагрузки:
1-й интервал - первая половина рабочего дня с 9.00 до 13.00, количество поступающих ДТ растет, устанавливая к 12 часам максимум этого интервала;
2-й интервал - середина рабочего дня с 13.00 до 17.00, количество ДТ резко увеличивается после провала в обед, достигая к 14-15 часам своего максимума;
3-й интервал - конец рабочего дня с 17.00 до 21.00, количество ДТ заметно снижается, достигая своего минимума за рабочий день.
Рис. 2. Суммарное количество деклараций на товары, зарегистрированных за каждый час рабочего дня в сентябре 2013 г.
Помимо дифференцирования рабочего дня на интервалы необходимо разделять будние, выходные и праздничные дни, т.к. они могут сильно отличаться интенсивностью входящего потока. Автором в работе [6] выявлены существенные различия между количеством поступающих ДТ в понедельник, субботу, воскресенье и вторник, среду, четверг, пятницу. В связи с этим рассмотрим полученные интервалы применительно к двум упомянутым группам дней недели.
Понедельник, суббота, воскресенье
1-й интервал (с 9.00 до 13.00)
Для каждого интервала сначала следует проверить гипотезу об экспоненциальном распределении времени между поступлениями ДТ. На рис. 3 показано распределение временных интервалов между появлениями ДТ, измеренными в секундах с 9.00 до 13.00 во все понедельники, субботы и воскресенья сентября 2013 г. По оси ординат отмечены относительные частоты поступления ДТ с определенным интервалом в процентах. Количество наблюдений этой выборки 1043 ДТ. Исходя из информации, указанной в заголовке графика на рис. 3, ошибка первого рода очень значима, и данные о входящем потоке ДТ не согласуются с экспоненциальным распределением.
Рис. 3. Гистограмма распределения временных интервалов между поступлениями ДТ с 9.00 до 13. 00 (понедельник, суббота, воскресенье)
На следующем этапе проверим гипотезы о других распределениях значений интервалов времени между поступлениями ДТ, результаты аппроксимации представлены в табл. 2. В списке распределений в табл. 2 распределения так же упорядочены по убыванию р-значения для критерия Колмогорова-Смирнова. Таким образом, наиболее подходящее распределение Вейбулла указано в начале списка и выделено серым цветом. По уровню значимости р=0,060120 критерия Колмогорова-Смирнова и р=0,255526 критерия хи-квадрат Пирсона можно заключить, что риск допустить ошибку первого рода составляет примерно 6% и 25% соответственно, поэтому нет достаточных оснований отвергать гипотезу о согласии данных об интервалах между поступлениями ДТ с распределением Вейбулла. В табл. 2 указаны также параметры всех подобранных распределений, которые могут понадобиться при моделировании входящего потока ДТ.
Таблица 2 Статистики распределений временных интервалов между поступлениями ДТ с 9.00 до 13. 00 (понедельник, суббота, воскресенье)
Distribution summary (Spreadsheet3.sta) Variable: с 9.00 до 13.00 Ranked by: Kolmogorov- Smirnov |
|||||||||
Distribution |
K-S d |
K-S - p-value |
Chisquare |
Chi-square p-value |
Chi- square df |
Param 1 |
Param 2 |
Param 3 |
|
Weibull (scale, shape) |
0,040825 |
0,060120 |
18,137 |
0,255526 |
15 |
135,3216 |
0,717 |
- |
|
General Pareto (scale, shape) |
0,047608 |
0,017112 |
43,196 |
0,000147 |
15 |
87,7351 |
-0,548 |
- |
|
Log Normal(scale, shape) |
0,056248 |
0,002613 |
63,008 |
0,000000 |
15 |
4,1479 |
1,580 |
- |
|
General ExtremeValue (location, scale, shape) |
0,069946 |
0,000070 |
95,763 |
0,000000 |
14 |
38,4471 |
51,802 |
1,05600 |
На рис. 4 представлена аппроксимация данных о входящем потоке ДТ распределением Вейбулла. Кривая плотности вероятности распределения Вейбулла, показанная на рис. 4 красной линией, хорошо описывает только «тело» и «хвост» эмпирической гистограммы, что объясняет невысокие р-значения. Однако, этот закон распределения вполне подойдет для моделирования входящего потока ДТ.
Рис. 4. Аппроксимация распределения временных интервалов между поступлениями ДТ с 9.00 до 13. 00 распределением Вейбулла
На рис. 5 показан график Вероятность-Вероятность (Probability- Probability plot), который полезен для определения, насколько хорошо теоретическое распределение подходит для наблюдаемых интервалов между поступлениями ДТ. Графики вероятность-вероятность показывают связь функций наблюдаемого и теоретического кумулятивных распределений. Интервалу с номером i соответствует значение i/n на оси Y (т.е. функция наблюдаемого кумулятивного распределения) и значение F(x(i)) на оси X, где F(x(i)) есть значение функции теоретического кумулятивного распределения для соответствующего интервала x(i). В случае, если модель абсолютно точно описывает наблюдаемые данные о входящем потоке ДТ, то синие кружочки на графике должны оказаться на красной прямой. [13] На рис. 5 наблюдаются небольшие отклонения от диагональной линии, поэтому можно заключить, что выравнивающая функция распределения интервалов между поступлениями ДТ подобрана верно.
Рис. 5. График Вероятность-Вероятность для временных интервалов между поступлениями ДТ и распределения Вейбулла
2-й интервал (с 13.00 до 17.00)
Используя аналогичный подход, сначала проверим согласие наблюдаемых данных о входящем потоке ДТ с экспоненциальным распределением. Количество наблюдений - 1297 ДТ. Гистограмма и теоретическая кривая показаны на рис. 6. Основываясь на статистиках критериев согласия и уровне р, можно заключить то, что наблюдаемое распределение интервалов не согласуются с экспоненциальным распределением.
Рис. 6. Гистограмма распределения временных интервалов между поступлениями ДТ с 13.00 до 17. 00 (понедельник, суббота, воскресенье) (построена автором с помощью ППП Statistica 10)
Результаты проверки согласия с другими распределениями показаны в табл. 3.
Таблица 3 Статистики распределений временных интервалов между поступлениями ДТ с 13.00 до 17. 00 (понедельник, суббота, воскресенье)
Distribution summary (Spreadsheet3.sta) Variable: с 13.00 до 17.00 Ranked by: Kolmogorov-Smirnov |
|||||||||
Distribution |
K-S d |
K-S - p-value |
Chi- square |
Chi-square p-value |
Chi- square df |
Param 1 |
Param2 |
Param 3 |
|
General Pareto (scale, shape) |
0,043380 |
0,014720 |
9,886 |
0,05041 |
6 |
76,4606 |
-0,547 |
- |
|
Log Normal(scale, shape) |
0,050433 |
0,002629 |
43,278 |
0,000000 |
6 |
4,0385 |
1,533 |
- |
|
General ExtremeValue (location, scale, shape) |
0,052293 |
0,001599 |
85,232 |
0,000000 |
5 |
35,2602 |
45,974 |
0,99633 |
|
Weibull (scale, shape) |
0,052057 |
0,001705 |
24,126 |
0,000495 |
6 |
119,3731 |
0,716 |
- |
В данном случае наиболее подходящим распределением оказалось обобщенное распределение Парето. Статистики р-значений невысокие, что говорит о том, что реальные интервалы между поступлениями ДТ неточно описываются теоретическим законом, это ожидаемые трудности, т.к. модель не может учитывать все параметры реального процесса совершения таможенных операций.
3-й интервал (с 17.00 до 21.00)
Из рис. 7 очевидно, что время между последовательными поступлениями ДТ в конце рабочего дня по понедельникам, субботам и воскресеньям довольно точно аппроксимируется экспоненциальным распределением. Уровень статистической значимости критерия Колмогорова-Смирнова p=n.s сообщает о незначимой ошибке первого рода (от англ. «non significant» - незначим). Стоит заметить, что количество наблюдений здесь 407 ДТ, меньше чем в остальных выборках, в связи с тем, что ниже интенсивность поступления ДТ в этот период. В данном случае экспоненциальное распределение интервалов между поступающими на регистрацию ДТ можно объяснить тем, что в относительном выражении перевес в сторону очень коротких интервалов меньше, чем в другие периоды.
Рис. 7. Гистограмма распределения временных интервалов между поступлениями ДТ с 17.00 до 21. 00 (понедельник, суббота, воскресенье)
Вторник, среда, четверг, пятница
1-й интервал (с 9.00 до 13.00)
Для данного интервала экспоненциальное распределение времени между поступлениями ДТ оказалось неподходящим. Результаты аппроксимации другими распределениями представлены в табл. 4. Количество ДТ заметно больше, чем в выходные дни и понедельник - 2225 ДТ. В данном случае наиболее подходящим является обобщённое распределение Парето, примечательно, что с помощью обобщенного распределения Парето часто описывают распределение признаков с «тяжёлыми хвостами». В данном исследовании «хвосты» распределений нельзя назвать «тяжелыми» поскольку при моделировании можно ими пренебречь.
Таблица 4 Статистики распределений временных интервалов между поступлениями ДТ с 9.00 до 13.00 (вторник, среда, четверг, пятница)
Distribution summary (Spreadsheet1.sta) Variable: с 09.00 до 13.00 Ranked by: Kolmogorov-Smirnov |
|||||||||
Distribution |
K-S d |
K-S - p-value |
Chisquare |
Chi-square p-value |
Chisquare df |
Param 1 |
Param 2 |
Param 3 |
|
General Pareto (scale, shape) |
0,020022 |
0,330008 |
16,33 |
0,293436 |
14 |
71,0337 |
-0,262 |
- |
|
Weibull (scale, shape) |
0,032782 |
0,016381 |
27,24 |
0,017894 |
14 |
87,7968 |
0,843 |
- |
|
General ExtremeValue(location,scale, shape) |
0,053070 |
0,000007 |
137,98 |
0,000000 |
13 |
33,2958 |
37,310 |
0,70679 |
|
Log Normal(scale, shape) |
0,060184 |
0,000000 |
133,60 |
0,000000 |
14 |
3,8405 |
1,333 |
- |
2-й интервал (с 13.00 до 17.00)
На рис. 8 показано, что время поступления ДТ в интервал времени с 13.00 до 17.00 по будним дням (кроме понедельника) распределено по логнормальному закону с параметрами у=4,67, µ=1,67.
Рис. 8 Гистограмма распределения временных интервалов между поступлениями ДТ с 13.00 до 17. 00 (вторник, среда, четверг, пятница) (построена автором с помощью ППП Statistica 10)
3-й интервал (с 17.00 до 21.00)
Результаты в табл. 5, полученные с помощью пакета Statistica 10, свидетельствуют о том, что интервалы между последовательными поступлениями ДТ на Турухтанном таможенном посту в интервале с 17.00 до 21.00 в будние дни достаточно хорошо подчиняются обобщенному распределению Парето. Для критериев Колмогорова-Смирнова и хи-квадрат Пирсона рзначение оказывается намного больше, чем 0.05. Подгонку теоретического распределения к наблюдаемым интервалам можно зрительно оценить на графике вероятность-вероятность на рис. 9. Почти все точки попали на диагональную прямую.
Таблица 5 Статистики распределений временных интервалов между поступлениями ДТ с 17.00 до 21. 00 (вторник, среда, четверг, пятница)
Distribution summary (Spreadsheet2.sta Variable: с 17.00 до 21.00 Ranked by: Kolmogorov-Smirnov |
|||||||||
Distribution |
K-S d |
K-S - pvalue |
Chi- square |
Chi-square p-value |
Chi-square df |
Param 1 |
Param 2 |
Param 3 |
|
General Pareto (scale, shape) |
0,035097 |
0,127719 |
21,15 |
0,219734 |
17 |
90,1613 |
-0,514 |
||
Weibull (scale, shape) |
0,048064 |
0,011619 |
41,42 |
0,000813 |
17 |
137,0319 |
0,709 |
||
Log Normal(scale, shape) |
0,058765 |
0,000916 |
76,54 |
0,000000 |
17 |
4,1829 |
1,531 |
||
GeneralExtreme Value(location, scale, shape) |
0,061756 |
0,000410 |
84,06 |
0,000000 |
16 |
42,5229 |
54,200 |
0,93417 |
Рис. 9. График Вероятность-Вероятность для временных интервалов между поступлениями ДТ и обобщённого распределения Парето (построен автором с помощью ППП Statistica 10)
Статистический анализ времени выпуска (обслуживания) ДТ
Перейдем к анализу длительности выпуска товаров (или принятия иного решения в отношении ДТ) на Турухтанном таможенном посту. Под длительностью выпуска в данном случае подразумевается время непосредственной работы должностного лица в программном средстве с одной ДТ, без учета времени, затрачиваемого на проведение форм таможенного контроля, например, таможенного досмотра или на ожидание подтверждающих документов от декларанта. Количество выпущенных ДТ Турухтанным постом за сентябрь 2013 г. 9450 шт., т.е. немного меньше, чем зарегистрированных, однако разница несущественная и можно заключить, что интенсивность входящего потока равна интенсивности выходящего.
Как и при анализе входящего потока ДТ для аппроксимации эмпирического распределения длительности выпуска товаров целесообразно разделить весь изучаемый период на интервалы. В данном случае выходные (суббота, воскресенье) отделены от будних дней вследствие различий не только в количестве выпущенных ДТ, но и в законе распределения времени выпуска товаров.
На рис. 10 показана гистограмма распределения времени выпуска ДТ по выходным дням в секундах. Количество выпущенных ДТ отделом оформления Турухтанного таможенного поста в субботы и воскресенья в сентябре 2013 г. - 1554 шт. По рис. 10 можно заключить, что нет оснований отвергать гипотезу об экспоненциальном распределении времени выпуска товаров, при этом среднее время работы с одной ДТ равно 42 минутам.
Рис. 10. Гистограмма распределения времени выпуска ДТ по субботам и воскресеньям в сентябре 2013 г. на Турухтанном таможенном посту (в секундах)
Гистограмма распределения времени выпуска ДТ по будним дням (понедельник - пятница) в секундах показана на рис. 11, при этом количество выпущенных ДТ - 7896 шт. Эмпирические данные довольно хорошо согласуются с логнормальным распределением с параметрами µ= 6,5, у= 0,49. Среднее время работы с одной ДТ равно 14 минутам.
Рис. 11. Гистограмма распределения времени выпуска ДТ в будние дни сентября 2013 г. На Турухтанном таможенном посту (в секундах)
Из рис. 10 и 11 очевидна более значительная загруженность должностных лиц отделов оформления Турухтанного таможенного поста в будние дни, которая связана с высокой интенсивностью входящего потока ДТ и более динамичным характером работы.
Моделирование законов распределения входящего потока ДТ
Статистический анализ с использованием пакета прикладных программ Statistica Application 10 показал, что входящий поток ДТ не всегда простейший, временные интервалы между моментами последовательных поступлений ДТ помимо экспоненциального могут иметь распределения, используемые для моделирования признаков с сильной асимметрией в сторону малых значений. Из табл. 6 очевидно, что наиболее часто встречающимся оказалось обобщенное распределение Парето. Также целесообразно для упрощения подбора аппроксимирующей функции не рассматривать «длинный хвост» распределений. Выходной поток ДТ (время обслуживания), как показал анализ, может иметь экспоненциальное и логнормальное распределения.
Таблица 6 Законы распределений интервалов времени между последовательными поступлениями деклараций на товары
Пользуясь результатами анализа, можно сделать вывод о том, что для генерирования в модели интервалов между поступлениями ДТ в случае экспоненциального распределения входящего потока на моделируемом отрезке времени оправдано применение методов теории массового обслуживания. При этом следует выбрать многоканальную систему массового обслуживания с ограниченной по времени очередью. В связи с тем, что статьей 190 ТК ТС отведено 2 часа на принятие решения о регистрации либо об отказе в регистрации ДТ, можно считать, что очередь состоит из так называемых на языке теории массового обслуживания «нетерпеливых» заявок.
В случае неэкспоненциального распределения входящего потока требуется применение метода Монте-Карло и специальных программных средств, например, среды GPSS, в которой есть генераторы многих распределений. В целях определения степени влияния различных законов распределения входящего потока ДТ на функционирование отдела оформления сравним результаты моделирования, полученные с помощью GPSS World.
Для этого процесс осуществления таможенного контроля представлен в виде однофазной модели с входящим потоком, подчиняющимся выявленным в данной работе законам распределений, при этом количество должностных лиц, проверяющих заявленные в ДТ сведения, остается неизменным, распределение времени выпуска ДТ - экспоненциальным. Время моделирования системы равно четырем часам (14400 секунд), за единицу времени моделирования выбраны секунды.
Далее на рис. 12-15 приведены отчеты о работе модели с разным распределением интервалов времени между последовательными поступлениями ДТ в отдел оформления. Стоит отметить, что на рис. 12-15 приводится сокращенный программный код в связи с тем, что они носят иллюстрационный характер.
Программа процесса осуществления таможенного контроля представлена в виде трех секторов. В первом секторе (до отметки BEGIN) собственно задается функция, моделирующая входящий поток ДТ и проводится моделирование ограниченного по времени ожидания в очереди ДТ на регистрацию с помощью операторов GATE, ASSIGN, LOOP. Во втором (от отметки BEGIN до отметки OUT) - реализовано совершение таможенных операций и проведение таможенного контроля должностными лицами отдела оформления. В третьем секторе (после отметки OUT) моделируется осуществление выпуска ДТ и время функционирования отдела оформления.
Колонка «ENTRY COUNT» показывает количество ДТ, прошедших через каждый блок модели [8]. По отчетам на рис. 12-15 очевидна разница в количестве сгенерированных ДТ и частоте (интенсивности) их появления. Кроме того, в отчетах отображается информация о средней, максимальной длине очереди и времени ожидания в очереди ДТ на регистрацию MAX, AVE.CONT. и AVE. соответственно [8]. Подробную информацию о содержании статистик моделирования можно найти в [8].
На рис. 12 представлены результаты моделирования входящего потока с обобщенным Парето распределением времени между поступлениями ДТ.
Рис. 12. Статистика моделирования входящего потока ДТ с обобщенным
На рис. 12 на заданном четырехчасовом интервале рабочего дня должностных лиц отдела таможенного оформления сгенерирован поток из 147 ДТ, при этом через оператор цикла LOOP прошло 304672 ДТ, 10 ДТ не были зарегистрированы в течение 2 часов.
На рис. 13 показаны результаты моделирования пуассоновского входящего потока ДТ.
Рис. 13. Статистика моделирования входящего потока с экспоненциальным распределением с параметром л=0,01 ДТ/с
На рис. 13 по сравнению с рис. 12 при примерно том же количестве сгенерированных ДТ число «зарегистрированных» ДТ больше (118 шт. против 101 шт. при обобщенном Парето распределении), средняя и максимальная длина очереди ДТ на регистрацию ниже, что также свидетельствует о том, что обобщенное распределение Парето (рис. 12) генерирует более интенсивный поток ДТ.
Отчеты о моделировании распределений Вейбулла и логнормального распределений показаны на рис. 14 и 15.
Рис. 14. Статистика моделирования входящего потока с распределением Вейбулла с параметрами л=135,3216; k=0,717
Результаты моделирования распределений Вейбулла и логнормального распределений (рис. 14 и 15) также свидетельствуют о различной интенсивности поступления ДТ в систему.
При меньшем количестве ДТ на рис. 14 очевидно, что они поступали чаще.
Рис. 15. Статистика моделирования входящего потока с логнормальным распределением с параметрами у=4,67, µ=1,67 (получена автором)
Следовательно, статистический анализ и определение законов распределения поступления и выпуска ДТ имеют существенное значение и позволяют разработать адекватную модель функционирования отдела таможенного оформления и таможенного контроля таможенного поста.
Двухфазная имитационная модель процесса таможенного контроля
На основании результатов статистического анализа в системе GPSS World проведен расчет параметров функционирования отдела оформления для четырехчасового интервала работы с использованием двухфазной модели процесса таможенного контроля при различном количестве должностных лиц. Входящий поток генерируется обобщенным Парето распределением. Первая фаза обработки ДТ предполагает регистрацию ДТ, проверку выявления рисков системой управления рисками, применение мер по минимизации рисков (например, принятие решения о проведении таможенного досмотра (осмотра)), запрос подтверждающих документов, вторая фаза - проверку документов и сведений и результатов применения других форм таможенного контроля. Между двумя фазами присутствует очередь из ДТ. Распределение времени обработки ДТ по фазам подобрано путем проведения статистического анализа аналогично осуществленному в п. 2.3, и подчиняется экспоненциальному закону.
В то же время нельзя забывать о том, что отдел оформления представляет собой сочетание должностных лиц с различной квалификацией, так же ДТ могут быть различной сложности, учету данных факторов будут посвящены дальнейшие исследования.
Результаты экспериментов с использованием двухфазной имитационной модели представлены в табл. 7. При этом для выбора рационального числа ГТИ в качестве показателей эффективности таможенного контроля можно использовать указанные в табл. 7 параметры, например, среднее время ожидания ДТ в очереди на регистрацию, количество выпущенных ДТ, коэффициент загруженности должностных лиц и др. Так если в результате расчета с применением разработанной модели среднее время ожидания ДТ в очереди на регистрацию превышает выбранный критерий, то требуется изменить исходные данные модели и выполнить новый расчет.
Таблица 7 Результаты расчета параметров функционирования отдела оформления при использовании двухфазной имитационной модели
товаропоток таможенный декларация товар
Из табл. 7 видно, что в данном примере при соответствующих распределениях входящего и исходящего потоков ДТ рациональное количество должностных лиц отдела оформления - 22 ГТИ. Стоит обратить внимание, что при увеличении количества должностных лиц изменение параметров функционирования отдела оформления носит нелинейный характер, Один из вероятных вариантов объяснения подобной нелинейности заключается в том, что генерация ДТ и распределение времени ожидания в очереди на межфазовых переходах является случайной величиной, хотя и распределенной по определенным законам. Применение такого рода модели обоснованно, т.к. случайность характерна и для реальных процессов.
Заключение
Таким образом, автором впервые проведен подробный статистический анализ потока ДТ, поступающего в отдел таможенного оформления и таможенного контроля, и времени выпуска товаров должностными лицами этого подразделения, ограничивающий возможность применения методов теории массового обслуживания, а также приведены результаты имитационного моделирования с использованием метода Монте-Карло найденных законов распределений и их применение при расчете параметров функционирования отдела оформления, в итоге решена поставленная в данной статье научная задача. В ходе дальнейших исследований полученные результаты будут использованы при формировании оптимального графика работы должностных лиц отдела оформления таможенного поста с учетом интенсивности товаропотока и предпочтений должностных лиц.
Литература
1. Боровиков В. П. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов. - СПб.: Питер. - 2003. - 688 с.
2. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов. - 9-е изд., стер. - М.: Высш. шк., 2003 - 479 с.
3. Дмитриева О. А. Развитие научно-методического аппарата анализа и оценки деятельности международных автомобильных пунктов пропуска в условиях Всемирной торговой организации: Автореф. дис. канд. эк. наук. - М., 2013. - 29 с.
4. Исследование операций в экономике: Учеб. пособие для вузов / Кремер Н.Ш. [и др.] ; Под ред. Кремера Н.Ш. - М.: ЮНИТИ, 2002. - 402 с.
5. Калинина О. В. Организационно-экономический механизм совершенствования таможенного сервиса внешней торговли в условиях риска: дис. канд. эк. наук. - СПб., 2006. - 198 с.
6. Костина А.О. Анализ управления загруженностью должностных лиц таможенных постов // Управление экономическими системами. - 2014. - №1. URL: http://uecs.ru/teoriya-upravleniya/item/2704-2014-01-15-08-56-46 (дата обращения:
10.05.2014).
7. Кремер Н.Ш. Теория вероятностей и математическая статистика / Учебник для вузов. - М.: ЮНИТИ- ДАНА, 2004. - 573 с.
8. Кудрявцев Е. М. GPSS World. Основы имитационного моделирования различных систем. - М.: ДМК Пресс, 2004. - 320 с.
9. Семенов С.С. Моделирование процесса таможенного оформления и таможенного контроля судов загранплавания (применительно к деятельности Балтийской таможни): дис. канд. эк. наук. - СПб., 2009. - 145 с.
10. Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход / Лемешко Б.Ю., Лемешко С.Б., С.Н. Постовалов, Чимитова Е.В. - Новосибирск.: НГТУ, 2011. - 888 с. 11. Таха Х.А. Введение в исследование операций.: Пер. с англ. - М.: Вильямс. - 2005. - 912 с.
12. Тюрин Ю.Н., Шмерлинг Д.С. Непараметрические методы статистики // Социология: М. - 2004. - №18.
13. Stat Soft. Электронный учебник по статистике. URL: http://www.statsoft.ru/home/textbook/default.htm (дата обращения: 10.04.2014).
Размещено на Allbest.ru
...Подобные документы
Изучение основных задач таможенных органов в отношении товаров. Раскрытие способов осуществления контроля; характеристика деятельности должностных лиц. Проведение анализа видов обслуживания физических лиц и товаров, проходящих через таможенную границу.
курсовая работа [40,8 K], добавлен 09.06.2014Характеристика деятельности должностных лиц в таможенных органах. Понятие и нормы, виды и принципы таможенного права. Права и обязанности должностных лиц таможенных органов. Функции, методы и основные способы осуществления таможенного контроля.
курсовая работа [30,7 K], добавлен 15.03.2011Принципы перемещения товаров через таможенную границу. Административные правонарушения и виды взысканий, производство и рассмотрение дел, ответственность должностных лиц. Сущность экономической контрабанды, уклонение от уплаты таможенных платежей.
дипломная работа [113,6 K], добавлен 10.11.2010Понятие и виды таможенного контроля, содержание и принципы данного процесса, история возникновения и развития. Товары, перемещаемые физическими лицами через таможенную границу Российской Федерации, и ответственность за нарушение правил контроля.
дипломная работа [440,4 K], добавлен 06.11.2014Перемещение транспортных средств личного пользования и международных перевозок через границу Таможенного союза. Порядок контроля транспортных средств при перемещении через таможенную границу Белгородской области. Правонарушения в области таможенного дела.
курсовая работа [45,5 K], добавлен 22.12.2014Рассмотрение понятия таможенного декларирования, а также процедуры юридического оформления перемещения товаров через таможенную границу. Изучение способов заявления сведений о товарах. Исследование формы и порядка заполнения таможенных деклараций.
презентация [9,0 M], добавлен 04.06.2015Основные понятия, используемые в таможенном законодательстве. Порядок обжалования действий таможенных органов. Правовое положение их должностных лиц. Порядок рассмотрения жалобы таможенными органами. Товары как объекты перемещаемые через границу.
контрольная работа [238,0 K], добавлен 14.02.2015Знакомство с основными требованиями таможенных органов. Особенности таможенного контроля при перемещении через границу спортивного инвентаря для проведения международных игр. Анализ полномочий таможенных органов, статистика основных правонарушений.
курсовая работа [493,3 K], добавлен 26.06.2012Нормативно-правовые аспекты осуществления операций с товарами, перемещаемыми через таможенную границу Евразийского экономического союза автомобилем. Технологии контроля за перевозками товаров в соответствии с таможенной процедурой таможенного транзита.
дипломная работа [174,0 K], добавлен 28.12.2016Таможенное оформление товаров, перемещаемых через таможенную границу, правоотношения лиц и органов. Операции и процедуры: декларирование и оформление транспортных средств и товаров, перемещаемых физическими лицами в международно-почтовых отправлениях.
дипломная работа [82,6 K], добавлен 30.09.2011Общие положения таможенного контроля. Порядок создания и обозначения зон таможенного контроля, их виды. Порядок перемещения товаров через таможенную границу физическими лицами. Некоммерческие и коммерческие товары, перемещаемые физическими лицами.
курсовая работа [32,8 K], добавлен 28.04.2012Правовые основы перемещения товаров и транспортных средств через таможенную границу физическими и юридическими лицами. Анализ деятельности Оренбургской таможни по осуществлению таможенного оформления и таможенного контроля товаров и транспортных средств.
курсовая работа [254,7 K], добавлен 03.05.2009Организационно-правовые основы таможенного декларирования товаров. Совершенствование технической оснащенности пунктов пропуска через границу. Регулирование правоотношений, возникающих в процессе перемещения транспортных средств через таможенную границу.
курсовая работа [117,8 K], добавлен 07.05.2015Таможенное декларирование товаров. Права, обязанность и ответственность декларанта. Основные виды таможенных деклараций. Анализ применения декларации на товары на примере Иркутской таможни. Особенности декларирования товаров и транспортных средств.
дипломная работа [1,1 M], добавлен 12.05.2016Порядок перемещения подкарантинных товаров через границу таможенного союза. Контроль в области обеспечения соблюдения таможенного законодательства РФ по карантинному фитосанитарному надзору. Особенности таможенного декларирования цветочной продукции.
курсовая работа [136,1 K], добавлен 27.05.2013Виды драгоценных металлов, драгоценных камней и изделий из них. Рынок драгоценных металлов и драгоценных камней в Российской Федерации, анализ порядка совершения таможенных операций и таможенного контроля в их отношении. Формы таможенного контроля.
дипломная работа [1,2 M], добавлен 17.08.2016Значение нетарифного регулирования. Запрет и ограничения товаров при перемещении через таможенную границу. Особенности осуществления таможенного контроля при перемещении через таможенную границу гражданского и служебного оружия и боеприпасов к нему.
курсовая работа [31,1 K], добавлен 11.10.2015Анализ статистической деятельности Департамента таможенного контроля по г. Астана по таможенному оформлению. Пути совершенствования основного таможенного контроля товаров и транспортных средств, перемещаемых через таможенную границу Республики Казахстан.
дипломная работа [284,6 K], добавлен 06.05.2012Новации таможенного контроля по сравнению с таможенным законодательством России отраженные в Таможенном кодексе таможенного союза. Лица, осуществляющие деятельность в таможенной сфере. Принципы перемещения товаров через границу Таможенного союза.
курсовая работа [37,4 K], добавлен 31.10.2013Структура и содержание таможенного контроля. Организация таможенного контроля при перемещении товаров через таможенную границу Таможенного союза различными видами транспорта. Анализ динамики показателей деятельности Железногорского таможенного поста.
дипломная работа [152,5 K], добавлен 15.06.2015