Индексы, их значение в статистике и классификация
Основные задачи и функции индексов в статистике, их роль в экономике и порядок расчета. Возможные методы соизмерения разнородных продуктов. Характеристика способов построения индексов. Сущность, основные задачи и функции символического обозначения.
Рубрика | Экономика и экономическая теория |
Вид | реферат |
Язык | русский |
Дата добавления | 15.08.2013 |
Размер файла | 23,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Индексы, их значение в статистике и классификация
В практике статистики индексы наряду со средними величинами являются наиболее распространенными статистическими показателями. С их помощью характеризуется развитие национальной экономики в целом и ее отдельных отраслей, анализируются результаты производственно-хозяйственной деятельности предприятий и организаций, исследуется роль отдельных факторов в формировании важнейших экономических показателей, выявляются резервы производства, индексы используются также в международных сопоставлениях экономических показателей, определении уровня жизни, мониторинге деловой активности в экономике и т.д.
Индекс представляет собой относительную величину, получаемую в результате сопоставления уровней сложных социально-экономических показателей во времени, в пространстве или с планом.
Обычно сопоставляемые показатели характеризуют явления, состоящие из разнородных элементов, непосредственное суммирование которых невозможно в силу их несоизмеримости. Например, промышленные предприятия выпускают, как правило, разнообразные виды продукции. Получить общий объем продукции предприятия в таком случае нельзя суммированием количества различных видов продукции в натуральном выражении. Здесь возникает проблема соизмерения разнородных элементов.
В качестве меры соизмерения разнородных продуктов можно использовать цену, себестоимость или трудоемкость единицы продукции.
С помощью индексных показателей решаются следующие основные задачи:
1) характеристика общего изменения сложного экономического показателя (например, затрат на производство продукции, стоимости произведенной продукции и т.д.) или формирующих его отдельных показателей-факторов;
2) выделение в изменении сложного показателя влияния одного из факторов путем элиминирования влияния других факторов (например, увеличение выручки от реализации продукции, связанное с ростом цен или выпуска продукции в натуральном выражении). В качестве самостоятельной можно выделить задачу обособления влияния изменения структуры явления на индексируемую величину (например, при изучении динамики среднеотраслевой себестоимости продукции исследуется влияние изменения в распределении объемов выпуска продукции по предприятиям отрасли).
Способы построения индексов зависят от содержания изучаемых показателей, методологии расчета исходных статистических показателей, имеющихся в распоряжении исследователя статистических данных и целей исследования.
Для удобства восприятия индексов в теории статистики разработана определенная символика. Каждая индексируемая величина имеет свое символическое обозначение. Например, количество единиц данного вида продукции обозначается qi, цена единицы изделия - рi, себестоимость единицы изделия - zi, трудоемкость единицы изделия - fi и т.д.
По степени охвата элементов совокупности различают индивидуальные и сводные (общие) индексы. Индивидуальными называются индексы, характеризующие изменение только одного элемента совокупности (например, изменение выпуска легковых автомобилей определенной марки). Индивидуальный индекс обозначается i. Сводный индекс отражает изменение по всей совокупности элементов сложного явления. Если индексы охватывают не все элементы сложного явления, а лишь часть, то их называют групповыми, или субиндексами. Например, общий индекс характеризует динамику объема промышленной продукции. К субиндексам в этом случае могут быть отнесены индексы продукции по отдельным отраслям промышленности. Обозначают сводный (общий) индекс символом I.
Индексные показатели в статистике вычисляются на высшей ступени статистического обобщения и опираются на результаты сводки и обработки данных статистического наблюдения. Итоги по группам элементов в условиях их несоизмеримости получаются расчетным путем, являются производными. Например, объем продукции предприятия может быть представлен в стоимостном или трудовом выражении. В любом из этих случаев показатель объема продукции представляет собой сложный производный показатель, изменение которого синтезирует различный характер изменения отдельных элементов этого показателя и тех факторов, которые его формируют. В зависимости от содержания и характера индексируемой величины различают индексы количественных (объемных) показателей (например, индекс физического объема продукции) и индексы качественных показателей (например, индексы цен, себестоимости).
При вычислении индексов различают сравниваемый уровень и уровень, с которым производится сравнение, называемый базисным. Выбор базы сравнения определяется целью исследования. В индексах, характеризующих изменение индексируемой величины во времени, за базисную величину принимают размер показателя в каком-либо периоде, предшествующем отчетному. При этом возможны два способа расчета индексов - цепной и базисный. Цепные индексы получают сопоставлением текущих уровней с предшествующим. Таким образом, база сравнения непрерывно меняется. Базисные индексы получают сопоставлением с уровнем периода, принятого за базу сравнения.
При территориальных сравнениях за базу принимают данные по какой-либо одной части территории, например, при региональных сопоставлениях внутри России, или итоговый показатель по всей изучаемой территории в целом, как это имеет место в международных сопоставлениях.
При использовании индексов как показателей выполнения плана за базу сравнения принимаются плановые показатели.
В зависимости от методологии расчета различают агрегатные индексы и средние из индивидуальных индексов. Последние, в свою очередь, делятся на средние арифметические и средние гармонические индексы.
Агрегатные индексы качественных показателей могут быть рассчитаны как индексы переменного состава и индексы фиксированного (постоянного) состава. В индексах переменного состава сопоставляются показатели, рассчитанные на базе изменяющихся структур явлений, а в индексах фиксированного состава - на базе неизменной структуры явлений.
Многообразие индексов определяется именно тем обстоятельством, что каждый из них имеет очевидные преимущества перед другими и не менее очевидные недостатки. В каждом конкретном случае оптимальным является какой-либо один индекс из всего множества возможных.
Индексы могут рассматриваться в качестве инструментов для измерения в общем случае двух объектов -- цен того или иного рынка и состояния рынка в целом. Если в первом случае еще можно говорить о более или менее успешном применении, то во втором случае об успехах говорить сложно. Практика показывает, что корреляция между конкретными значениями индексов и реальной ситуацией на рынке очень не велика. Тем более индексы оказываются непригодными в задаче предугадывания ситуации -- они, в лучшем случае, способны подтвердить уже произошедшие изменения на рынке. Именно поэтому на фондовых рынках и происходят различного рода "черные" дни недели, когда происходят резкие обвалы. К тому же сами значения подобных индексов сложно интерпретируются, поэтому, как правило, о ситуации судят не по их абсолютным величинам, а по их относительной динамике ("упал" на столько-то пунктов, или "поднялся").
В течение уже многих лет индексами пользуются для аналитических целей. Так, допустим, с помощью индексов устанавливают, в какой мере общее изменение среднего заработка работников промышленности зависит от изменения уровня заработка в каждой отрасли промышленности, а в какой мере -- от изменения соотношения численности работников отдельных отраслей (более подробно мы рассмотрим это в дальнейшем).
Такое применение индексов приводит к рассмотрению их как аналитических показателей. Обычно вычисляемый по формуле Пааше индекс цен рассматривается также как показатель аналитический, выражающий влияние изменения цен на изменение общей стоимости продукции; вторым, связанным с ним индексом, является индекс объема реализованных товаров. Общее изменение стоимости реализованных товаров можно представить формулой
,
из которой видно, что это изменение обусловлено и динамикой цен, и динамикой объема товаров.
Можно записать следующее равенство:
.
В чем же особенность статистических индексов, позволяющая говорить о наличии индексного метода? Эта особенность состоит в том, что всякий индекс в статистике есть относительный показатель, характеризующий изменение социально-экономического явления во взаимосвязи с другим (или другими) явлением, абсолютная величина которого предполагается при этом неизменной.
Следовательно:
1) индекс -- величина относительная, вследствие чего мы абстрагируемся от абсолютного размера явления;
2) индекс выражает изменение одного явления во взаимосвязи с другим (другими), от изменений которого мы при этом абстрагируемся, предполагая его величину неизменной; в индексе всегда есть элемент условности.
С помощью индексов в анализе финансово-хозяйственной деятельности решаются следующие основные задачи:
оценка изменения уровня явления (или относительного изменения показателя);
выявление роли отдельных факторов в изменении результативного признака;
оценка влияния изменения структуры совокупности на динамику.
Основная проблема при построении аналитических индексов - проблема взвешивания. Решая ее, аналитику необходимо сначала выбрать сам весовой признак, а затем - период, на уровне которого берется признак - вес.
Признак, непосредственно относящийся к изучаемому явлению и характеризующий его количественную сторону, называется первичным или количественным. Первичные признаки объемные, их можно суммировать. Примерами таких признаков являются численность работающих на предприятии (Ч), величина основных средств (ОС) и т.д.
Признаки, относящиеся к изучаемому явлению не непосредственно, а через один или несколько других признаков и характеризующие качественную сторону изучаемого явления, называются вторичными или качественными. Отличительными признаками вторичных признаков является то, что это всегда относительные показатели, их нельзя непосредственно суммировать в пространстве. В качестве примера можно привести показатели средней заработной платы, рентабельности и т.д.
Существует следующее правило определения периода для признака-веса: при построении аналитических индексов по вторичным признакам рекомендуется брать веса на уровне отчетного периода, а по первичным - базисного, т.е.
Ip = ? p1*q1 / ? p0*q1, если р - вторичный признак,
Iq = ? p0*q1 / ? p0*q0, если р - первичный признак.
Это обусловлено приоритетностью качественных показателей перед количественными: практический интерес представляет определение экономического эффекта от изменения качественного показателя, полученного в отчетном, а не базисном периоде. Именно этот подход закладывается при реализации метода цепных подстановок в двухфакторных мультипликативных моделях (в многофакторных моделях привлекается еще и понятие вторичности n-го порядка). Рассмотрим основные моменты, используемые при решении разного рода задач с помощью индексного метода. Анализ изменения уровня явлений
а) по сравнению с планом:
I=Рф / Рп,
индекс выполнения плана;
б) во времени:
It=Pt1/Pt0,
индекс изменения в динамике; именно в этом виде анализа необходимо уделять особое внимание выбору базы сравнения;
в) в пространственных сравнениях:
It= P/Рэт,
по сравнению с эталонным предприятием.
При анализе динамики вводятся понятия цепного и базисного индексов. Базисный индекс - индекс, рассчитанный по отношению к предыдущему периоду:
Ijb=Pj/p0,
где Pj - значение признака в j-ый момент времени.
Цепной индекс - индекс, рассчитанный по отношению к предыдущему периоду:
Ijц=Pj/Pj-1,
Нетрудно заметить, что
Iб=П Iц.
J=1
Индексный анализ по факторам
Цель данного анализа - оценить изолированное влияние отдельных факторов на результат.
Пусть
Т=а*b,
a - качественный признак, b - количественный, тогда
It=Ia*Ib,
так как a1*b1 = a1*b1• a0*b1
индекс статистика символический
a0*b0 a0*b1 a0*b0
Индекс It характеризует совместное изменение факторов a и b, тогда как Ia показывает изменение лишь фактора a (действительно, из представленной дроби видно, что в ней меняется лишь фактор а, тогда как фактор b не меняет своего значения).
В многофакторных моделях следует сначала упорядочить факторы по принципу первичности и вторичности, а затем последовательно заменять их.
Анализ структуры совокупности
Понятие структуры совокупности и необходимости ее оценки возникает в двух случаях:
при анализе объемных показателей или явлений, имеющих сложную
структуру (например, в товарообороте - структура товарооборота; в численности сотрудников - структура работников по категориям и т.д.).
Очевидно, что в этом случае на динамику изучаемого показателя оказывают влияние структурные сдвиги;
при изучении средних уровней изучаемых явлений (изменение доли работников с более высокой производительностью труда приводит к изменению средней производительности труда).
При решении этой задачи вводятся понятия индексов постоянного и переменного состава.
Индексом переменного состава называется отношение средних уровней анализируемых показателей:
Iпер= p1/ р0=? р1*q1 ?p0*q0
?q1 ? q0
Iпер=?p1*q1
?q1
Полученные на основе индексного метода показатели используются для характеристики развития анализируемых показателей во времени, по территории, изучения структуры и взаимосвязей, выявления роли факторов в изменении сложных явлений.
Индексы широко применяются в экономических разработках государственной и ведомственной статистики.
Статистический индекс - это относительная величина сравнения сложных совокупностей и отдельных их единиц. При этом под сложной понимается такая статистическая совокупность, отдельные элементы которой непосредственно не подлежат суммированию.
Например, ассортимент продовольственных товаров состоит из товарных разновидностей, первичный учет которых на производстве и в оптовой торговле ведется в натуральных единицах измерения: молоко - в литрах, мясо - в центнерах, яйцо - в штуках, консервы - в условных банках и т. д. Для определения общего объема производства и реализации продовольственных товаров суммировать данные учета разнородных товарных масс в натуральных измерителях нельзя. Не подлежат непосредственному суммированию и данные о количестве произведенных и реализованных различных видов непродовольственных товаров. Было бы, например, бессмысленно для получения общего объема реализации суммировать данные о продаже тканей (в метрах), костюмов (в штуках), обуви (в парах) и т. д.
В этих сложных статистических совокупностях единицами наблюдения являются товары с различными потребительскими свойствами. Данные о натурально - вещественной форме реализации отдельных товарных разновидностей непосредственному суммированию не подлежат. Для получения в сложных статистических совокупностях обобщающих (суммарных) величин прибегают к индексному методу.
Основой индексного метода при определении изменений в производстве и обращении товаров является переход от натурально - вещественной формы выражения товарных масс к стоимостным (денежным) измерителям. Именно посредством денежного выражения стоимости отдельных товаров устраняется их несравнимость как потребительских стоимостей и достигается единство.
В зависимости от степени охвата подвергнутых обобщению единиц изучаемой совокупности индексы подразделяются на индивидуальные (элементарные) и общие.
Индивидуальные индексы характеризуют изменения отдельных единиц статистической совокупности. Так, например, если при изучении оптовой реализации продовольственных товаров определяются изменения в продаже отдельных товарных разновидностей, то получают индивидуальные (однотоварные) индексы.
Общие индексы выражают сводные (обобщающие) результаты совместного изменения всех единиц, образующих статистическую совокупность. Пример: показатель изменения объема реализации товарной массы продуктов питания по отдельным периодам будет общим индексом физического объема товарооборота.
Важной особенностью общих индексов является то, что они обладают синтетическими и аналитическими свойствами.
Синтетические свойства индексов состоят в том, что посредством индексного метода производится соединение (агрегирование) в целом разнородных единиц статистической совокупности.
Аналитические свойства индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя.
Для определения индекса надо произвести сопоставление не менее двух величин. При изучении динамики социально-экономических явлений сравниваемая величина (числитель индексного отношения) принимается за текущий (или отчетный) период, а величина, с которой производится сравнение - за базисный период.
Основной формой общих индексов являются агрегатные индексы.
Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.
В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.
Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.
При определении по данным таблицы статистических индексов первый период принимается за базисный. Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается, а количество -.
При определении общего индекса цен в агрегатной форме в качестве соизмерителя индексируемых величин и могут приниматься данные о количестве реализации товаров в текущем периоде. При умножении на индексируемые величины в числителе индексного отношения образуется значение, сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение, т. е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода. Это упоминавшийся выше индекс Пааше
При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин и могут применяться данные о количестве реализации товаров в базисном периоде. При этом умножение на индексируемые величины в числителе индексного отношения образует значение, т. е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.
В знаменателе индексного отношения образуется значение, т. е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода. Это индекс Лайсперса.
Как правило, выполненные расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен. Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются агрегатные индексы физического объёма товарной массы.
При определении агрегатного индекса физического объёма товарной массы в качестве соизмерителей индексируемых величин и могут применяться неизменные цены базисного периода. При умножении на индексируемые величины в числителе индексного отношения образуются значение, т. е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе - сумма стоимости товарной массы базисного периода в ценах того же базисного периода.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин и цен текущего периода.
Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (- знаменатель).
При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются базисные индексы. Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются цепные индексы. Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III - cо II и IV - с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами - соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т. е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода. Важным направлением статистических исследований является сопоставление макроэкономических показателей различных стран. Проблемы, возникающие при международных сопоставлениях, обусловлены тем, что сравниваемые объекты могут иметь свою структуру показателей и свою систему соизмерителей.
Список использованной литературы
1. Виноградова Н.М., Евдокимов В.Т., Хитарова Е.М., Яковлева Н.И. Общая теория статистики. - М.: Статистика, 1998. - 312 с.
2. Дружинин Н.К. Математическая статистика в экономике. Введ. в мат.-стат. методологию. - М.: Статистика, 2002. - 312 с.
3. Елисеева И.И., Юзбашев М.М. Общая теория статистики. - М.: Финансы и статистика, 2003. - 400 с.
4. Ефимова М.Р. Статистические методы в управлении производством.- М.: Финансы и статистика. 1998. - 336 с.
5. Ефимова М.Р., Рябцев В.М. Общая теория статистики.- М.: Финансы и статистика, 2001.- 272 с.
6. Плошко Б.Г., Елисеева И.И. История статистики. - М.: Финансы и статистика, 2000. - 432 с.
7. Рябушкин Т.В., Ефимова М.Р., Ипатова И.М., Яковлева Н.И. Общая теория статистики. - М.: Финансы и статистика, 2001. - 464 с.
8. Статистический анализ в экономике /Под ред. Г.Л. Громыко. - М.: Изд-во МГУ, 2002. - 434 с.
Размещено на Allbest
...Подобные документы
Задачи и система показателей статистики цен. Сравнительная характеристика индекса потребительских цен в статистике России согласно международному стандарту. Особенности индексов цен производства. Специфика индексов цен в статистике внешней торговли.
курсовая работа [266,2 K], добавлен 17.01.2011Индексы и их классификация, субиндексы. Индивидуальные и общие индексы, индексный метод. Общие индексы количественных и качественных показателей, средние арифметические и средние гармонические. Применение средневзвешенных индексов в статистике.
курсовая работа [1,1 M], добавлен 24.07.2008Понятия об индексах, их значение и применение в статистических исследованиях. Задачи, решаемые посредством использования индексов. Особенности индексов выполнения плана и территориальных индексов. Агрегатные и средние, базисные и цепные формы индексов.
реферат [40,8 K], добавлен 04.06.2010Определение индексов и их классификация. Что такое индивидуальные индексы, принципы их расчета. Особенности базисных и цепных индексов, взаимосвязь между ними. Общие индексы, агрегатный индекс цен. Количество и цены проданных товаров, факторный анализ.
лабораторная работа [69,6 K], добавлен 21.04.2011Определение графического метода, его роль и значение в статистике. Изображение экономических показателей в определенном масштабе на основе использования геометрических способов. Основные элементы и виды графиков. Статистические карты и картограммы.
презентация [103,1 K], добавлен 13.12.2015Сущность индексов и задачи, решаемые индексным методом. Характеристика видов индексов. Принципы построения индексов, применяемых для оценки среднего уровня. Статистическое изучение рождаемости в Республике Беларусь с использованием индексного метода.
курсовая работа [649,1 K], добавлен 18.05.2012Экономическое содержание индекса, методы его расчета. Индексы с постоянными и переменными весами. Общие индексы и их применение в экономическом анализе. Способы расчёта индивидуальных базисных и цепных индексов. Методика построения агрегатного индекса.
курсовая работа [62,3 K], добавлен 26.04.2015Исследование статистического индексного метода и его положения в статистике. Определение влияния отдельных факторов на общую динамику сложного явления. Анализ особенностей агрегатных, средневзвешенных и индексов с постоянными и переменными величинами.
реферат [60,8 K], добавлен 23.06.2012Понятие индексов, правила их построения и классификация, их взаимосвязь и применение. Примеры использования индексов в статистическом анализе деятельности различных предприятий. Расчет суммы экономии или перерасхода в результате изменения себестоимости.
курсовая работа [192,9 K], добавлен 25.09.2014Определение и классификация индексов, применение индексного метода в статистических исследованиях. Виды индексов количественных и качественных показателей, выбор базы и весов индексов. Индекс-дефлятор и методология расчёта индекса потребительских цен.
презентация [203,3 K], добавлен 27.04.2013Практические правила построения индексов, индивидуальных и общих. Схема агрегатных индексов и их преобразование в средние. Определение общего абсолютного прироста товарооборота. Индексируемые показатели средних величин. Средняя себестоимость продукции.
реферат [214,1 K], добавлен 03.11.2011- Статистические индексы и их применение в анализе динамики производственных показателей и их факторов
Понятие об индексах и их значение, характеристика изменений во времени для различных показателей. Классификация индексов, изучение роли факторов, оказывающих влияние на изменение изучаемого явления. Система взаимосвязанных индексов, факторный анализ.
курсовая работа [90,4 K], добавлен 01.07.2010 Индивидуальные и общие индексы. Агрегатные индексы. Средневзвешенные индексы. Базисные и цепные индексы. Индекс инновационной способности экономики (GCI). Использование общих индексов в экономическом анализе.
курсовая работа [173,3 K], добавлен 03.01.2006Основные задачи и определения статистики туризма. Понятие, классификация и значение индексов. Статистический анализ использования индексов в изучении социально-экономических явлений. Сравнительный анализ основных экономических показателей в туризме.
курсовая работа [145,6 K], добавлен 13.11.2014Понятие и сущность цен и инфляции, их значение. Задачи статистики цен. Характеристика системы показателей статистики цен. Принципы и методы регистрации цен. Особенности методов расчета и анализа их индексов. Методы оценки уровня и динамики инфляции.
курсовая работа [70,9 K], добавлен 01.12.2010Классификация признаков в статистике. Основные требования к организации сбора первичной информации об исследованиях социально-экономических явлений. Формы и виды статистических наблюдений. Методы контроля за соблюдением достоверности полученных сведений.
презентация [226,3 K], добавлен 20.12.2014Теоретические основы среднеарифметического и среднегармонического индексов, понятия средней величины и индексов, среднеарифметического и среднегармонического индексов. Построение статистических рядов распределения предприятий по различным признакам.
курсовая работа [1,5 M], добавлен 19.03.2010Сущность и разновидности средних величин в статистике. Определение и особенности однородной статистической совокупности. Расчет показателей математической статистики. Что такое мода и медиана. Основные показатели вариации и их значение в статистике.
реферат [162,6 K], добавлен 04.06.2010Понятие и сущность цен и инфляции, задачи и принципы статистики данной экономической категории. Система соответствующих показателей и порядок их расчетов. Методы расчета и анализа индексов цен. Механизм и этапы оценки уровня и динамики инфляции.
контрольная работа [44,7 K], добавлен 20.09.2014Роль, значение и сущность цен. Функции цены. Основные ценовые стратегии и методы. Виды цен в зависимости от сфер торговли. Виды цен, различающиеся степенью и способами регулирования. Рыночный механизм ценообразования. Порядок установления свободных цен.
курсовая работа [43,7 K], добавлен 23.02.2009