Определение объемов производства технологической щепы и тарной дощечки по критерию дохода предприятия
Эффективное распределение ресурсов древесного сырья и принятие обоснованных проектных и управленческих решений в условиях изменения внешней и внутренней ситуации. Разработка математической модели и постановка задач оптимизации распределения ресурсов.
Рубрика | Экономика и экономическая теория |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.12.2013 |
Размер файла | 98,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Содержательная формулировка задачи
2. Эвристическое решение задачи
3. Разработка математической модели и постановка задач оптимизации распределения ресурсов сырья
3.1 Определение цели
3.2 Формулировка проблемы
3.3 Построение математической модели
3.4 Математическое представление поставляемой задачи
4. Геометрическое решение поставленной задачи
5. Эффективный выбор технологических и управленческих решений в ситуации изменения ресурсов сырья, спроса и цен (анализ на чувствительность)
5.1 Первая задача анализа на чувствительность
5.2 Вторая задача анализа на чувствительность
5.3 Третья задача анализа на чувствительность
6. Алгебраическое решение поставленной задачи
6.1 Сущность симплекс-метода и его геометрическая иллюстрация
6.2 Стандартная форма линейных оптимизационных моделей
6.3 Решение поставленной задачи на основе симплекс-метода
7. Компьютерное решение поставленной задачи в математических программных средах
Заключение
Список литературы
распределение ресурс управленческое решение
Введение
В деятельности инженера и управляющего определяющими являются задачи выбора более эффективных и менее капиталоемких экологически чистых технологий и повышение качества функционирования существующих. Высокие потребительские свойства и качество продукции обеспечивается при необходимом минимуме затрат посредством развития и повышения эффективности производства на основе предваряющего рационального выбора. Основополагающий принцип процветания предприятия, высокое качество и эффективность производства в условиях рыночной экономики, может быть осуществлен посредством моделирования и оптимизации лесопромышленных производств, обеспечивающих инженерное и научное обоснование эффективного выбора. В условиях действующего производства подобные инженерные задачи включаются в процесс его совершенствования на одном из конечных этапов после постановки учетных, контрольных и организационных задач на соответствующий уровень. Тогда для равно конкурентных предприятий с одинаковыми уровнями организации более конкурентным будет то, где действуют высококвалифицированные инженеры, решающие проблемы лесного предприятия не только посредством инженерной интуиции, но и на основе результатов адекватного моделирования и оптимизации.
В этой курсовой работе рассматривается выбор эффективного распределения ресурсов древесного сырья и принятию обоснованных проектных и управленческих решений в условиях изменения внешней (цены, спрос) и внутренней (объемы производства сырья) ситуации. Эти задачи решаются на основе линейного программирования.
1. Содержательная формулировка задачи
На лесопромышленном складе низкокачественная древесина в виде технологических дров и отходов лесопиления перерабатывается на технологическую щепу и тарную дощечку, которые поставляются потребителям по договорным ценам. Структурная схема процесса производства на складе представлена на рисунке 1, из которого видно, что технологическая щепа и тарная дощечка изготовляются из двух видов сырья: технологических дров и отходов лесопиления.
Рисунок 1 - Структурная схема процесса производства на лесопромышленном складе
Максимально возможные объемы производства технологических дров и отходов лесопиления в смену составляют 80 м3 и 30 м3 соответственно. Традиционно на предприятии сложилось так, что на производство 1 м3 технологической щепы направляется 1 м3 технологических дров и 0, 5 м3 отходов лесопиления, а на производство 1м3 тарной дощечки 3 м3 технологических дров и 0, 5 м3 отходов лесопиления. Сменные объемы реализации технологической щепы обычно больше или в крайнем случае, равняются объемам поставок тарной дощечки. Объем реализации тарной дощечки не превышает 20 м3 в смену. Оптовые или договорные цены составляют: 1 м3 технологической щепы - 500 руб; 1 м3 тарной дощечки - 1000 руб. Исходные данные приводятся в таблице 1.
Таблица 1
Исходные данные для постановки задачи рационального распределения ресурсов сырья
Сырье |
Расход сырья на 1 м3 продукции, м3 |
Средний возможный объем производства сырья в смену, м3 |
||
Технологической щепы |
Тарной дощечки |
|||
Технологические дрова |
1 |
3 |
80 |
|
Отходы лесопиления |
0, 5 |
0, 5 |
30 |
|
Цена реализации, руб. /м3 |
500 |
1000 |
В соответствии с таблицей 1 и изложенным содержанием поставим следующую цель - какое количество технологической щепы и тарной дощечки необходимо производить лесопромышленному складу, чтобы доход от их реализации был максимален?
2. Эвристическое решение задачи
Решим содержательно описанную задачу с привлечением инженерной интуиции на предмет получения эффективного выбора в соответствии с поставленной целью.
Расход сырья на производство 20 м3 тарной дощечки (см. табл. 1) составит: технологических дров - 20*3=60 м3; отходов лесопиления - 20*0, 5=10 м3. Остаток неиспользованного сырья составляет: по технологическим дровам - 80-60=20 м3; по отходам лесопиления - 30-10=20 м3. Остаток сырья используем для производства технологической щепы. Объем производства щепы определяется следующим образом: из остатка технологических дров, равного 20 м3, можно получить 20: 1=20м3 технологической щепы; поскольку щепа производится из смеси двух видов сырья (технологических дров и отходов лесопиления), то проверяем достаточность объема отходов лесопиления на производство 20 м3 щепы - 20*0, 5=10м3 отходов лесопиления будет использовано. Отсюда, на складе остаются не задействованными отходы в объеме 10 м3. Доход от продажи 20м3 технологической щепы (ограничение по спросу на этот объект выполняется) и 20 м3 тарной дощечки составит 500*20+1000*20=30 000 рублей.
3. Разработка математической модели и постановка задачи оптимизации распределения ресурсов сырья
3.1 Определение цели
Цель -найти объемы производства каждого из видов продукции (тарной дощечки и технологической щепы), максимизирующие доход в рублях от реализации продукции с учетом ограничений на поставки и расход технологических дров с отходами лесопиления.
3.2 Формулировка проблемы Конкретные этапы формулировки проблемы включает в себя
1) Определение факторов и переменных управления - объемы производства технологической щепы и тарной дощечки в смену.
2) Определение переменных состояния - максимально возможные объемы производства сырья, объемы расхода сырья на 1мЗ продукции, спрос на продукцию;
3) Определение критерия - доход от реализации продукции, спрос на продукцию;
4) Определение интервала времени моделирования - смены.
3.3 Построение математической модели
1) Введение обозначений переменных:
а) Хщ - сменный объем производства технологической щепы, м3;
б) Хд - сменный объем производства тарной дощечки, м3;
в) Сщ - цена реализации 1 м3 технологической щепы;
г) Сд - цена реализации 1 м3 тарной дощечки;
д) у - функция цели.
2) Разработка и построение функции цели у=500*Хщ+1000*Хд (целевая функция равняется сумме доходов от реализации тарной дощечки и технологической щепы)
3) Разработка ограничений на основе содержательной сущности в которой отражены:
а) Ограничение на расход сырья:
Хщ+ З*Хд ? 80 (2)
0, 5Хщ+ 0, 5Хд ? 30 (3)
б) Ограничения на объем реализации
Хщ ? Хд (4)
Хд < 20 (5)
в) Ограничения на неотрицательность переменных управления Хщ, Хд
Хщ > 0 (6)
Хд > 0 (7)
3.4 Математическое представление поставленной задачи
На основании изложенного, математическая модель сформирована и задача оптимизации ставится следующим образом: определить сменные объемы производства технологической щепы Хщ и тарной дощечки Хд такие, при которых функция цели достигает максимума:
у=500Хщ+1000Хд => max (1)
и удовлетворяются ограничения:
Хщ+ ЗХд ? 80 (2)
0, 5Хщ+ 0, 5Хд ? 30 (3)
Хщ ? Хд (4)
Хд < 20 (5)
Хщ > 0 (6)
Хд > 0 (7)
4. Геометрическое решение поставленной задачи
Графическое представление функции цели строится на основе выражения (1) и является плоскостью Р, уходящей в бесконечность при неограниченном возрастании Хщ и Хд.
При наличии ограничений вида (2) - (7) возможные решения (значения функции цели и объемы производства продукции) могут принадлежать лишь тем точкам плоскости Р, в которых одновременно удовлетворяются все ограничения. Совокупность этих точек определяет область допустимых решений (ОДР). Построение этой области проводится в системе координат Хщ - Хд (см. рис. 2) где ось (у) направлена от нас.
Для построения линий ограничений используется искусственный прием замены знаков неравенств на знаки равенств, а затем посредством постановки координат любых точек, лежащих по ту или иную сторону линий, определяется область, в которой все точки соответствую тому или иному неравенству. Направления действия ограничений на рисунке указаны стрелками.
Здесь многоугольник АВСDE является областью допустимых решений, ибо в каждой точке этой области выполняются все ограничения и любые решения в данной области допустимы. Их количество бесконечно, но среди них находится одно, которое является наилучшим, исходя из заданного критерия (дохода), т. е. оптимальным. Поиск оптимального решения производится посредством определения направления возрастания функции цели. Оно определяется посредством последовательного построения линий ее уравнения для заданных значений у. Оценивая значения у, производится перемещение прямой, в направлении возрастания ее значений до достижения ею границы перехода в область недопустимых решений. Этой границей является т. С, значения Хщ и Хд в которых определяются посредством решения системы уравнений, описывающая прямые (2) и (3) :
Хщ+ ЗХд ? 80
0, 5Хщ+ 0, 5Хд ? 30
Результат решения системы уравнений: Xд = 10 м3; Xщ=50 м3. При таких значениях сменных объемов производства технологической щепы и тарной дощечки доход от их реализации у=500*50+1000*10=35 000 руб.
По результатам эвристического решения у=30 000 рублей. Сопоставляя результаты эвристического и геометрического решения отметим, что наш выбор в первом случае оказался неэффективным по сравнению с геометрическим решением. величина потерь по доходу составила 5 000 рублей в смену, в год эта сумма при 2-х сменном режиме работы и количестве рабочих дней 250 составит 2 500 000 рублей.
5. Эффективный выбор технологических и управленческих решений в ситуации изменения ресурсов сырья, спроса и цен
Анализ на чувствительность позволяет заглянуть в будущее и иметь представление о возможных ситуациях и действиях в них (выработка тактики действия руководителя), в то время как полученное (статическое) решение на основе слепка с определенного момента времени действительно лишь для слепка этого действия.
5.1 Первая задача анализа на чувствительность
Эта задача отвечает на вопрос: на сколько можно сократить или увеличить сменный объем производства технологических дров и отходов лесопиления и ресурсы спроса на технологическую щепу и тарную дощечку? Она подразделяется на две задачи:
а) Определение предельно допустимого увеличения объема дефицитного ресурса при одновременном улучшении оптимального решения;
б) Определение предельно допустимого снижения объема недефицитного ресурса, не ухудшающего оптимального решения.
Дефицитными являются ресурсы сменных объемов производства технологических дров и объема спроса на тарную дощечку, поскольку линии их ограничений образуют оптимальную точку С. Объем спроса на технологическую щепу и отходов лесопиления являются недефицитными.
Решим подзадачу А, определим объем допустимого увеличения ресурса технологических дров и отходов лесопиления для улучшения полученного оптимального значения (у).
Первоначально определяем объем допустимого увеличения ресурса технологических дров. В точке К ограничения (3) и (5) (см. рис 3) становится связывающим и оптимальному решению соответствует точка К, а многоугольник АВКЕ становится ОДР. При этом ограничения (3) и (5) становятся избыточными, и любой дальнейший рост запаса технологических дров не влияет ни на ОДР, ни на оптимальное решение. Поэтому поднимать уровень запаса технологических дров выше точки К не рационально, поскольку возникает проблема утилизации избыточных запасов.
Предельный уровень запасов технологических дров определяется следующим образом: определяются координаты точки К из системы уравнений, описывающих ограничения (3) и (5)
0, 5Хщ+ 0, 5Хд ? 30
Хд < 20
Результат решения системы уравнений: Xд = 20 м3; Xщ = 40 м3. При таких значениях сменных объемов производства технологической щепы и тарной дощечки доход от их реализации у=500*40+1000*20=40 000 рублей, а величина допустимого увеличения объема технологических дров по сравнению с прошлым составит 20 м3.
Аналогично определяется объем допустимого изменения ресурса отходов лесопиления:
0, 5*80+0, 5*0 = 40 м3
у = 500*80 = 40 000 рублей.
Величина допустимого увеличения объема отходов лесопиления по сравнению с прошлым составит 10 м3.
Решение подзадачи Б, определим на сколько можно снизить сменный объем выпуска технологической щепы и тарной дощечки без ухудшения оптимального решения.
Линию (4) переносим параллельно в т. С.
Для удобства поиска величины снижения преобразуем неравенство (4) следующим образом:
Хщ - Хд ? 0
- Хщ + Хд ? 0
-50 + 10 = - 40 м3
То есть 40 м3 может достигать разность между объемами реализации тех нологической щепы и тарной дощечки без ущерба для дохода.
Сведем данные результаты расчетов в таблицу 2.
Таблица 2 - Результаты решения первой задачи анализа на чувствительность
№ |
Ресурс |
Тип ресурса |
Максимальное изменение сменного объема запаса, м3 |
Максимальное изменение сменного дохода от реализации, р |
|
1 |
Тех. дрова |
Деф. |
100-80 = 20 |
40 000 - 35 000 = 5 000 |
|
2 |
Отходы л/п |
Деф. |
40 - 30 = 10 |
40 000 - 35 000 = 5 000 |
|
3 |
Тар. дощечка |
Недеф. |
-10 |
0 |
|
4 |
Тех. щепа |
Недеф. |
-40 |
0 |
5.2 Вторая задача анализа на чувствительность
В процессе решения этой задачи мы получаем ответ на вопрос: увеличение объема какого ресурса наиболее выгодно для предприятия?
Для получения ответа на этот вопрос введем характеристику ценности дополнительной единицы 1-го ресурса и обозначим ее через Zi. Величина Zi равна отношению максимального приращения оптимального значения (у) к максимально допустимому приросту объема 1-го ресурса.
Определим значения ценностей для каждого из ресурсов. Для ресурсов технологических дров ценность Z1 = 5 000 / 20 = 250 руб. /м3,
Для отходов лесопиления Z2 = 5 000 / 10 = 500 руб. /м3,
Для спроса на технологическую щепу Z3=0,
Для спроса на тарную дощечку Z4=0.
На основе полученных данных можно сделать вывод, что для получения наибольшей отдачи от вложения дополнительных средств на развитие производства необходимо их вкладывать в развитие производства отходов лесопиления.
5.3 Третья задача анализа на чувствительность
Решив эту задачу получаем ответ на вопрос: в каких пределах допустимо изменение целевой функции?
Изменение коэффициента целевой функции оказывает влияние на угол наклона прямой, представляющую эту функцию. Изменение угла наклона прямой в рамках анализа модели на чувствительность определяет следующие задачи:
а) Нахождение диапазона изменения коэффициентов целевой функции, при котором не происходит изменение оптимального решения;
б) На сколько следует изменить тот или иной коэффициент функции цели, чтобы сделать некоторый недефицитный ресурс дефицитным или наоборот?
Для решения поставленных вопросов запишем целевую функцию в виде:
у = Сщ*Хщ + Сд*Хд
С - стоимость 1 м3.
Из рисунка видно, что т. С будет являться оптимальной до тех пор, пока наклон линии функции цели не выйдет за её пределы наклонов линий ограничений (2) и (3). Как только наклон линии (у) выйдет за пределы наклона линий ограничений (2) и (3), оптимальное решение будет уже другим - т. D - в первом случае, т. В - во втором случае.
tgб = Cщ/Сд = Хд/Хщ
Для нахождения интервалов изменения цен, при которых т. С останется оптимальной оставим значение CD=1000 неизменяемым. Значение Cщ можно увеличить до тех пор пока линия (у) не совпадет с линией (3) или уменьшить до совпадения с линией (2), то есть углы линий (2) и (3) определяют допустимые углы изменения наклона линии (у), тогда min Cщ определяется из равенства:
Cщ/1000 = 1/3
min Cщ = 333 рубля
Max значение Cщ
Cщ/1000 = 0, 5/0, 5
max Cщ = 1000 рублей
Тарная дощечка:
500/Сд = 0, 5/0, 5
min Cщ = 500 рублей
Max значение Cщ
500/Сд = 1/3
max Cщ = 1500 рублей
Ситуация первая - о поставке технологической щепы. В процессе торга о цене на щепу, может фигурировать любая цифра в пределе от 333 до 1000 рублей, а так же возможно позволить снижение цены от уровня среднерыночной в пределах этого диапазона за счет каких-либо встречных обязательств партнеров.
6. Алгебраическое решение поставленной задачи
Графический способ решения распределительных задач удобен применительно к задачам линейного программирования не более чем с двумя переменными управления. При значительном числе переменных применяется алгебраический аппарат. На основе его разработан общий метод решения задач линейного программирования - симплекс- метод.
6.1 Сущность симплекс-метода и его геометрическая иллюстрация
Процедура поиска по симплекс методу основана на геометрическом представлении ОДР. При этом определяются соответствия между геометрическими и алгебраическими понятиями. К этим соответствия относятся:
- система уравнений в постановке задачи - пространство геометрических решении, определяемое ограничениями в виде уравнений и соответствующих им линий;
- алгебраические решения в виде координат точек - угловая точка, геометрически ф. представляющая собой пересечение образующих линий.
Сущность симплекс-метода геометрически реализуется посредством движения по границам ОДР и перебора угловых точек с оценкой значения функции цели в каждой из них. В ходе поиска по угловым точкам придерживаются двух правил:
- каждая следующая точка должна быть смежной с предыдущей и находиться на одном ребре;
- возврат предыдущей точки не допускается.
6.2 Стандартная форма линейных оптимизационных моделей
Для использования симплекс-метода необходимо привести задачу к стандартной форме. Стандартная форма характеризуется следующими особенностями:
а) все ограничения представляются в виде равенств с неотрицательной правой частью;
б) все переменные в постановке задачи имеют неотрицательные значения;
в) целевая функция подлежит максимизации или минимизации.
Преобразование неравенств в равенства осуществляется посредством введения в ограничения избыточных или остаточных переменных. Избыточные переменные увеличивают левую часть ограничения до величины, позволяющей поставить в ограничении знак «=«, взамен знака «<«. Остаточные переменные уменьшают левую часть ограничения до величины, позволяющей поставить знак «=«, взамен знака «>«. Эти же переменные вводятся в функцию цели (1) но в связи с тем, что они являются искусственными, при этих переменных вводятся нулевые коэффициенты. С учетом изложенного, постановка задачи в стандартной форме имеет вид:
у = 500Хщ+1000Хд+0*S1+0*S2+0*S3+0*S4->max
Хщ, Хд, S1, S2, S3, S4 ? 0
S1…. S4 - избыточные переменные.
При алгебраическом методе определения экстремальных точек считаем, что линейная модель стандартной формы содержит m уравнений и n неизвестных.
Если базисное решение удовлетворяет требованию неотрицательных произвольных частей, то оно называется допустимым базисным решением. Переменные имеющие нулевое значение называются базисными переменными.
Небазисная в данный момент переменная, которая перейдет в базис на следующей интерации называется включаемой переменной.
Базисная переменная, которая подлежит исключению из базиса называется исключаемой.
6.3 Решение поставленной задачи на основе симплекс-метода
Алгоритм симплекс-метода с учетом рассмотренных выше закономерностей представляет следующую последовательность шагов:
а) Определение начального допустимого решения путем приравнивания к нулю или небазисных (нулевых) переменных, где т- число уравнений линейной оптимизационной модели, ап- число неизвестных в этой модели;
б) Выбор из текущих небазисных переменных включаемой в новый базис переменной, увеличение которой обеспечивает улучшение значения функции цели. Если такой переменной нет - конец вычислений, иначе - переход к шагу 3) ;
в) Выбор из переменных текущего базиса исключаемой переменной, которая должна стать небазисной при введении новой включаемой переменной;
г) Определение нового базисного решения соответствующего новому составу переменных, затем переход к шагу 2.
Номер итерации |
Базисные переменные |
y |
Хд |
Хщ |
S1 |
S2 |
S3 |
S4 |
Решение |
Отношение |
|
1 |
y |
1 |
-500 |
-1000 |
0 |
0 |
0 |
0 |
|||
1 |
S1 |
0 |
1 |
3 |
1 |
0 |
0 |
0 |
80 |
80/1 = 80 |
|
S2 |
0 |
0, 5 |
0, 5 |
0 |
1 |
0 |
0 |
30 |
30/0, 5 = 60 |
||
S3 |
0 |
-1 |
1 |
0 |
0 |
1 |
0 |
0 |
|||
S4 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
20 |
|||
2 |
y |
1 |
0 |
-500 |
0 |
1000 |
0 |
0 |
30000 |
||
2 |
S1 |
0 |
0 |
2 |
1 |
-2 |
0 |
0 |
20 |
||
Хщ |
0 |
1 |
1 |
0 |
2 |
0 |
0 |
60 |
|||
S3 |
0 |
0 |
2 |
0 |
2 |
1 |
0 |
60 |
|||
S4 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
20 |
|||
3 |
y |
1 |
0 |
0 |
250 |
500 |
0 |
0 |
35000 |
||
3 |
Хд |
0 |
0 |
1 |
0, 5 |
-1 |
0 |
0 |
10 |
||
Хщ |
0 |
1 |
1 |
0 |
2 |
0 |
0 |
60 |
|||
S3 |
0 |
0 |
1, 5 |
-0, 25 |
2, 5 |
1 |
0 |
55 |
|||
S4 |
0 |
0 |
1, 5 |
0, 25 |
-0, 5 |
0 |
1 |
25 |
Заключение
В процессе выполнения курсовой работы мною были получены навыки решения задач линейного программирования различивши методами: на основе инженерной интуиции (эвристическое решение), графическим методом (геометрическое решение), с применением математического аппарата (алгебраическое решение) и с использованием средств Microsoft Excel, STATISTICA, Марlе (компьютерное решение). Также я научился разрабатывать линейные математические модели, проводить наблюдения и обрабатывать полученные результаты, овладел основами технологии, сбыта и организации производства (т. е. внешней и внутренней средой функционирования предприятия).
Список использованной литературы и источников
1. Основы моделирования и оптимизации процессов лесозаготовок: Задания и методические указания по выполнению расчетно-графических и лабораторных работ с применением ЭВМ для студентов специальности 26. 01 / Сост. С. Б. Якимович. - Йошкар-Ола: МарПИ, 1990. - 60 с.
2. Редькин А. К. Математическое моделирование и оптимизация технологий лесозаготовок: учебник для вузов / АЖ. Редькин, С. Б. Якимович. | М. : ГОУ ВПО МГУЛ, 2005. - 504 с.
Размещено на Allbest.ru
...Подобные документы
Методы разработки экономико-математической модели: постановка задачи, система переменных и ограничений. Виды решения экономико-математической модели оптимизации производственной структуры сельскохозяйственного предприятия, анализ двойственных оценок.
курсовая работа [60,3 K], добавлен 21.02.2010Понятие производственной программы. Определение задачи оптимизации производства как получение максимального дохода при заданных объемах ресурсов и получение заданного объема при наименьших затратах. Математическая постановка задачи и метод её решения.
отчет по практике [170,0 K], добавлен 14.04.2014Анализ финансово-хозяйственной деятельности предприятия; причин, негативно влияющих на его развитие; структуры и динамики доходов. Разработка модели планирования и регулирования прибыли и рентабельности с учетом экономической ценности водных ресурсов.
магистерская работа [1,2 M], добавлен 13.07.2014Теоретические основы принятия управленческих решений в строительстве. Их понятие, классификация и роль в управлении. Последовательность включения объектов в поток, соотношение квартир в застраиваемом микрорайоне. Оптимальное распределение ресурсов.
курсовая работа [268,9 K], добавлен 15.02.2016Расчет показателей ресурсоотдачи и оценка качества использования ресурсов. Анализ влияния изменения ресурсов и ресурсоотдачи на динамику выпуска продукции. Определение типа развития производства и совокупного эффекта интенсификации производства.
курсовая работа [46,1 K], добавлен 20.02.2015Характеристика деятельности ООО "Норд-Строй". Оценка внешней и внутренней среды предприятия с использование методик SNW- и SWOT-анализа. Методы совершенствования производства в современных условиях. Экономическая эффективность проектных мероприятий.
дипломная работа [1,1 M], добавлен 06.02.2015Экономическая сущность инвестиционных ресурсов предприятия. Систематизация существующих методов оценки прибыли организаций. Анализ проблем наличия и формирования инвестиционных ресурсов предприятий Украины. Модель оптимизации инвестиционных ресурсов.
курсовая работа [180,0 K], добавлен 10.02.2012Исследование модели экономического роста Солоу, в которой при заданных упрощенных условиях формируется результативное уравнение, задающее равновесную траекторию роста при полной занятости. Характеристика направлений изменения прироста трудовых ресурсов.
лабораторная работа [43,6 K], добавлен 14.06.2011Сущность управленческого решения. Логика построения и корректировки систем управления. Критерии исследования и причины патологий управленческих систем. Механизм принятия, специфика реализации и показатели оценки эффективности управленческих решений.
реферат [22,3 K], добавлен 19.01.2012Использование трудовых, материальных, финансовых ресурсов. Слабые и сильные стороны в деятельности предприятия. Баланс доходов и расходов. Варианты обеспечения изменения ситуации всеми видами ресурсов. Расчет экономической эффективности мероприятий.
курсовая работа [118,2 K], добавлен 20.11.2014Основные этапы разработки стратегии формирования инвестиционных ресурсов предприятия. Прогнозирование потребности в общем объеме инвестиционных ресурсов. Классификация источников формирования. Определение методов финансирования инвестиционных программ.
контрольная работа [51,4 K], добавлен 05.10.2008Проблема определения оптимальной диверсификации производственных ресурсов, позволяющей максимизировать прибыль агрегатно-сборочного предприятия авиационного профиля вне зависимости от сложившейся конкретной ситуации на рынке авиационной техники.
курсовая работа [264,9 K], добавлен 31.03.2011Понятие дохода и источники его формирования, виды доходов. Неравенство доходов, причины, способы распределения дохода. Важнейшие показатели неравенства. Качество жизни в РФ на современном этапе развития. Регулирование распределения национального дохода.
курсовая работа [1,3 M], добавлен 14.01.2015Особенности формирования и использования трудовых ресурсов машиностроительных предприятий в Орловской области. Общая характеристика деятельности ОАО "ГМС Насосы". Предложения по повышению эффективности использования трудовых ресурсов на предприятии.
курсовая работа [812,0 K], добавлен 28.08.2011Понятие и виды предприятий. Принципы деятельности предприятия в рыночных условиях рыночной. Факторы, влияющие на эффективное функционирование организации. Планирование затрат на производство и реализацию продукции. Формирование и распределение прибыли.
курсовая работа [739,3 K], добавлен 29.07.2013Определение и классификация экономических ресурсов. Суть проблемы выбора в экономике и ресурсное управление в организации. Производственные возможности, альтернативные издержки и предельные величины. Распределение бюджета при рекламной компании ресторана.
курсовая работа [368,9 K], добавлен 11.03.2014Классификация и эффективность использования экономических ресурсов. Определение оптимального соотношения и использования ресурсов предприятия. Издержки производства в краткосрочном и долгосрочном периоде. Минимизация издержек и максимизация прибыли.
курсовая работа [58,7 K], добавлен 13.12.2013Понятие материальных ресурсов. Значение экономии материальных ресурсов. Методика анализа использования материальных ресурсов. Анализ эффективности использования материальных ресурсов на ОАО "Дальдизель". Рекомендации по оптимизации их использования.
курсовая работа [69,7 K], добавлен 13.10.2003Основные теоретические аспекты, эволюция взглядов и понятия экономической эффективности предприятия и справедливого распределения, выявление проблем сочетания повышения эффективности и справедливости. Показатели и методы оценки стабильности предприятия.
курсовая работа [46,8 K], добавлен 18.02.2011Изучение понятия экономических ресурсов предприятия. Влияние изменения постоянных и переменных ресурсов на поведение фирмы. Предельная доходность и издержки ресурса. Особенности использования экономических ресурсов в зависимости от состояния экономики.
дипломная работа [99,1 K], добавлен 07.12.2012