Основы статистики

Анализ абсолютных статистических величин. Статистика как общественная наука, изучающая количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной. Знакомство с основными источниками статистической информации.

Рубрика Экономика и экономическая теория
Вид шпаргалка
Язык русский
Дата добавления 28.01.2014
Размер файла 224,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Предмет и метод статистики

1.1 История, пути и направления статистической науки

Термин "статистика" появился в середине 18 века. Означал "государствоведение". Получил распространение в монастырях. Постепенно приобрел собирательное значение.

С одной стороны, статистика - это совокупность числовых показателей, характеризующих общественные явления и процессы (статистика труда, статистика транспорта).

С другой - под статистикой понимается практическая деятельность по сбору, обработке, анализу данных по различным направлениям общественной жизни.

С третьей стороны, статистика - это итоги массового учета, опубликованные в различных сборниках.

Наконец, в естественных науках статистикой называются методы и способы оценки соответствия данных массового наблюдения математическим формулам.

Таким образом, статистика - это общественная наука, изучающая количественную сторону массовых общественных явлений в неразрывной связи с их качественной стороной.

Ученые, внесшие вклад в развитие статистики

Уильям Петти - основатель статистики. Его заслуга в том, что он впервые применил числовой метод для анализа закономерностей общественной жизни. Работа - "Политическая арифметика".

Адольф Кетле - бельгийский статистик. Доказал, что даже кажущиеся случайности общественной жизни обладают внутренней закомерностью и необходимостью.

К.Ф. Герман - русский статистик ("Всеобщая теория статистики").

В.И. Ленин - теория группировок, теория статистического наблюдения.

Целый ряд других ученых.

Предмет статистики

Статистика изучает количественно определенные качества массовых социально-экономических явлений.

Существует несколько точек зрения на статистику как на науку:

Статистика - это универсальная наука, изучающая массовые явления природы и общества.

Статистика - это методологическая наука, разрабатывающая методы исследования для других наук.

Статистика - это общественная наука.

Явления общественной жизни - это сложное сочетание различных элементов.

Общественные явления обладают вполне конкретными размерами.

Общественным явлениям присущи определенные количественные соотношения, и существуют они независимо от того, изучает ли их статистика или нет.

Размеры и соотношения количества и качества отдельных явлений статистика выражает при помощи определенных понятий, статистических показателей. Числовое значение показателя, относящееся к определенному месту и времени, называют величиной показателя.

Отрасли статистики

Общая теория статистики - это лишь фундамент. В любой своей части она связана с другими науками.

Таблица

Общая теория статистики

Демографическая статистика

Экономическая статистика

Статистика образования

Медицинская статистика

Спортивная статистика

Статистика труда

Статистика заработной платы

Статистика мат.-техн. снабжения

Статистика транспорта

Статистика связи

Статистика финансового кредита

Высшие финансовые вычисления

Статистика денежного обращения

Статистика валютных курсов

Прочие

Статистика также разрабатывает теорию наблюдения

Метод статистики

Метод статистики предполагает следующую последовательность действий:

разработка статистической гипотезы,

статистическое наблюдение,

сводка и группировка статистических данных,

анализ данных,

интерпретация данных.

Прохождение каждой стадии связано с использованием специальных методов, объясняемых содержанием выполняемой работы.

Закон больших чисел

Массовый характер общественных законов и своеобразие их действий предопределяет необходимость исследования совокупных данных.

Закон больших чисел порожден особыми свойствами массовых явлений. Последние в силу своей индивидуальности, с одной стороны, отличаются друг от друга, а с другой - имеют нечто общее, обусловленное их принадлежностью к определенному классу, виду. Причем единичные явления в большей степени подвержены воздействию случайных факторов, ежели их совокупность.

Закон больших чисел в наиболее простой форме гласит, что количественные закономерности массовых явлений отчетливо проявляются лишь в достаточно большом их числе.

Таким образом, сущность его заключается в том, что в числах, получающихся в результате массового наблюдения, выступают определенные правильности, которые не могут быть обнаружены в небольшом числе фактов.

Закон больших чисел выражает диалектику случайного и необходимого. В результате взаимопогашения случайных отклонений средние величины, исчисленные для величины одного и того же вида, становятся типичными, отражающими действия постоянных и существенных фактов в данных условиях места и времени.

Тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного случая.

Статистическая закономерность

Статистические закономерности изучают распределение единиц статистического множества по отдельным признакам под воздействием всей совокупности факторов.

Статистическая закономерность выступает как объективная закономерность сложного массового процесса и является формой причинной связи. Она обнаруживается в итоге массового статистического наблюдения. Этим обуславливается ее связь с законом больших чисел.

Статистическая закономерность с определенной вероятностью гарантирует устойчивость средних величин при сохранении постоянного комплекса условий, порождающих данное явление.

Задачи статистики

Разработка системы гипотез, характеризующих развитие, динамику, состояние социально-экономических явлений.

Организация статистической деятельности.

Разработка методологии анализа.

Разработка системы показателей для управления хозяйством на макро- и микроуровне.

Популяризовать данные статистического наблюдения.

Организация государственной статистики в РФ

Принципы:

централизованное руководство,

единое организационное строение и методология,

неразрывная связь с органами государственного управления.

Система государственной статистики имеет иерархическую структуру. Эта структура имеет федеральный, республиканский, краевой, областной, окружной, городской и районный уровни.

Госкомстат имеет управления, отделы, вычислительный центр.

Программа перехода России на принятую в международной практике систему учета и статистики рассчитана на 1995- 1997 годы. В этом документе прослеживаются два основных направления:

замена показателей плановой экономики показателями развитой рыночной экономики;

новые формы сбора информации.

Другим документом является концепция реформы национальной статистики до 2000 года. Предусматривает:

систематизация наблюдения,

методология наблюдения разных типов предприятий,

изменение форм сбора информации,

формирование оптимальной системы показателей.

2. Источники статистической информации

2.1 Статистическая информация и ее распространение

2.1.1 Статистическое наблюдение

Для исследования социально-экономических явлений и процессов общественной жизни следует прежде всего собрать о них необходимые сведения - статистические данные. Под статистическими данными (информацией) понимают совокупность количественных характеристик социально-экономических явлений и процессов, полученных в результате статистического наблюдения, их обработки или соответствующих расчетов.

Статистическая информация необходима и государственным органам управления, и частным предпринимателям. Так, данные об экономическом положении в стране, о существующей покупательной способности населения, его составе и численности, рентабельности предприятий различных отраслей народного хозяйства, динамике безработицы, об изменении индексов цен на отдельные товары нужны государственным службам для совершенствования системы налогообложения предприятий и частных лиц, внесения изменений в таможенную и инвестиционную политику, разработки мер по социальной защите различных слоев населения. Эти же сведения требуются и частным предпринимателям для планирования и организации производства.

Основными свойствами статистической информации являются ее массовость и стабильность. Первая черта связана с особенностями предмета исследования статистики как науки, а вторая - говорит о том, что однажды собранная информация остается неизменной и, следовательно, имеет способность устаревать. Поэтому и выводы о состоянии и развитии явления, сделанные на основе анализа информации, полученной несколько лет назад, могут быть неполными и даже неверными.

Важной частью любого статистического исследования является статистическое наблюдение.

Понятие статистического наблюдения

Статистическое наблюдение - это сбор необходимых данных по явлениям, процессам общественной жизни. Но это не всякий сбор данных, а лишь планомерный, научно организованный, систематический и направленный на регистрацию признаков, характерных для исследуемых явлений и процессов. От качества данных, полученных на первом этапе, зависят конечные результаты исследования.

Формы статистического наблюдения

Различают две основные формы статистического наблюдения - отчетность и специально организованное наблюдение.

Отчетность - это такая форма наблюдения, при которой предприятия, организации представляют в статистические и вышестоящие органы постоянные сведения, характеризующие их деятельность. Отчетность предоставляется по заранее определенной программе в строго определенные сроки и содержит важнейшие показатели, необходимые в процессе ежедневной работы.

Специально организованное наблюдение - такое наблюдение, которое организуется со специальной целью на определенную дату для получения данных, которые в силу различных причин не собираются статистической отчетности, а также с целью проверки данных статистической отчетности.

2.2 Виды статистического наблюдения

По времени регистрации фактов статистическое наблюдение может быть непрерывным, периодическим и единовременным.

Непрерывное (текущее) наблюдение - ведется систематически (т.е. регистрация фактов производится по мере их свершения). Пример - ЗАГС.

Периодическое наблюдение - повторяется через определенные равные промежутки времени. Пример - перепись населения.

Единовременное наблюдение - производится по мере надобности без соблюдения определенной периодичности. Пример - оценка и переоценка основных фондов.

По охвату единиц совокупности выделяют сплошное и несплошное наблюдение.

Сплошным называется наблюдение, при котором исследованию подвергаются все единицы изучаемой совокупности.

Несплошным называется такое наблюдение, при котором исследованию подвергается только часть единиц изучаемой совокупности, отобранная определенным образом.

Виды несплошного наблюдения

Анкетный способ «Исследуются какие-то осредненные показатели и распространяются на всю совокупность».

Метод основного массива «Исследуются наиболее крупные единицы изучаемого явления».

Метод направленного долевого отбора

Выборочный метод. Его основой является случайный отбор. Результат гарантируется с определенной вероятностью р.

Монографический метод. Подвергаются тщательному исследованию отдельные единицы совокупности, обычно представители новых типов, либо самые лучшие (худшие) единицы. Результаты переносятся на всю совокупность. Позволяет выявить тенденции.

Способы статистического наблюдения

Основанием для регистрации фактов могут служить либо документы, либо высказанное мнение, либо хронометражные данные. В связи с этим различают наблюдение:

непосредственное (сами измеряют),

документально (из документов),

опрос (со слов кого-либо).

В статистике применяются следующие способы сбора информации:

корреспондентский (штат добровольных корреспондентов),

экспедиционный (устный, специально подготовленные работники)

анкетный (в виде анкет),

саморегистрация (заполнение формуляров самими респондентами),

явочный (браки, дети, разводы) и т.д.

Программно-методологические вопросы статистического наблюдения

Каждое наблюдение проводится с конкретной целью. При его проведении необходимо установить, что подлежит обследованию. Надо решить следующие вопросы:

Объект наблюдения - совокупность предметов, явлений, у которых должны быть собраны сведения. При определении объекта указываются его основные отличительные черты (признаки). Всякий объект массовых наблюдений состоит их отдельных единиц, поэтому надо решить вопрос о том, каков тот элемент совокупности, который послужит единицей наблюдения.

Единица наблюдения - это составной элемент объекта, который является носителем признаков, подлежащих регистрации и основой счета.

Ценз - это определенные количественные ограничения для объекта наблюдения.

Признак - это свойство, которое характеризует определенные черты и особенности, присущие единицам изучаемой совокупности.

Программа наблюдения - это перечень признаков, подлежащих регистрации. Программа находит отражение в формуляре наблюдения. Выделяются организационные вопросы: перечень мероприятий, обеспечивающих правильность наблюдения, а также оргплан, где учитываются органы наблюдения, время наблюдения, порядок приема и сдачи материала, порядок получения информации.

Период наблюдения - время, в течение которого должна быть осуществлена регистрация.

Критическая дата наблюдения - дата, по состоянию на которую сообщаются сведения.

Критический момент - момент времени, по состоянию на который производится регистрация наблюденных фактов.

3. Сводка и группировка

3.1 Статистическая сводка

Статистическая сводка - это операция по обработке собранных данных, которые выражаются в виде показателей, относящихся к каждой единице объекта статистического наблюдения. В результате сводки эти данные превращаются в систему статистических таблиц и промежуточных итогов. По результатам сводки можно выявить наиболее типичные черты и закономерности изучаемых явлений.

Предварительно составляется программа и план сводки.

В программе определяется подлежащее и сказуемое сводки. Подлежащее составляет вся совокупность группы или части, на которые разбивается совокупность. Сказуемое - это те показатели, которые характеризуют каждую группу, часть или всю совокупность в целом.

План сводки - содержит организационные вопросы.

Статистическая группировка

Статистическая группировка - это метод исследования массовых общественных явлений путем выделения и ограничения однородных групп, через которые раскрываются существенные черты и особенности состояния и развития всей совокупности.

Основные задачи, которые решаются с помощью группировок:

выделение социально-экономических типов,

изучение структуры социально-экономических явлений,

выявление связи между явлениями.

Важнейшие проблемы:

Группировочный признак - это признак, по которому происходит определение единиц в группе. Его выбор зависит от цели группировки и существа данного явления.

Выделение числа групп.

Число групп определяется с таким расчетом, чтобы в каждую группу попало достаточно большое число единиц.

Интервалы

Интервалы могут быть равными и неравными. Последние в свою очередь делятся на равномерно возрастающие и равномерно убывающие.

Виды группировок

Типологические группировки

Их задача - выявление социально-экономических типов или однородных в существенном отношении групп.

Таблица

№ п/п

Социально-экономические типы

Мужчины

Женщины

1980

1992

1980

1992

1.

Работники

-

-

-

-

2.

Крестьяне

-

-

-

-

3.

Служащие

-

-

-

-

Структурные группировки

Их задача - изучение состава отдельных типических групп при помощи объединения единиц совокупности, близких друг к другу по величине группировочного признака.

Таблица

№ п/п

Количество посадочных мест

Кол. столов

Число занятых

Товарооборот на 1 место

1.

до 25

-

-

-

2.

16 - 50

-

-

-

3.

51 - 70

-

-

-

4.

71 - 100

-

-

-

Аналитические группировки

Их задача - выявления влияния одних признаков на другие ( выявить связь между социально-экономическими явлениями).

Таблица

№ п/п

Группы магазинов по

числу рабочих мест

Число магазинов

Товарооборот

на 1 работника

на 1 раб. место

1.

до 5

100

12,0

13,0

2.

6 - 10

50

14,0

16,0

3.

11 - 15

10

15,0

17,0

4.

16 - 20

4

30,0

39,0

5.

21 - 25

2

31,0

42,0

Комбинационные группировки

В них производится разделение совокупности на группы по двум или более признакам. При этом группы, образованные по одному признаку, разбиваются на подгруппы по другому признаку.

Такие группировки дают возможность изучить структуру совокупности по нескольким признакам одновременно.

Таблица

№ п/п

Группы предприятий по объему основных фондов

Оплата труда в рублях

Пол

Количество единиц

1.

до 200

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

2.

200 - 400

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

3.

400 - 600

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

4.

600 - 800

100 - 120

М

-

Ж

-

120 - 140

М

-

Ж

-

140 - 160

М

-

Ж

-

Система группировок

Социально-экономический анализ предполагает использование системы простых и комбинационных группировок.

Также очень часто прибегают к вторичной группировке - перегруппировка уже сгруппированных данных. Вторичная группировка может быть проведена методом простого укрупнения интервала.

Часто также используется процентная перегруппировка.

Ряды распределения

Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге.

Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Ряд распределения может быть построен по непрерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения). Непрерывно варьирующий признак изображается графически при помощи гистограммы. Дискретный же ряд распределения графически представляется в виде полигона распределения.

4.Абсолютные и относительные величины

4.1 Абсолютные статистические величины

общественный статистический информация

Абсолютные статистические величины показывают объем, размеры, уровни различных социально-экономических явлений и процессов. Они отражают уровни в физических мерах объема, веса и т.п. В общем, абсолютные статистические величины - это именованные числа. Они всегда имеют определенную размерность и единицы измерения. Последние определяют сущность абсолютной величины.

Типы абсолютных величин

Натуральные - такие единицы, которые отражают величину предметов, вещей в физических мерах (вес, объем, площадь и т.д.).

Денежные (стоимостные) - используются для характеристики многих экономических показателей в стоимостном выражении.

Трудовые - используются для определения затрат труда (человеко-час, человеко-день)

Условно-натуральные -единицы, которые используются для сведения воедино нескольких разновидностей потребительных стоимостей (т.у.т = 29,3 МДж/кг; мыло 40 % жирности).

Виды абсолютных величин

Индивидуальные - отражают размеры количественных признаков у отдельных единиц изучаемой совокупности.

Общие - выражают размеры, величину количественных признаков у всей изучаемой совокупности в целом.

Абсолютные величины отражают наличие тех или иных ресурсов, это основа материального учета. Они наиболее объективно отражают развитие экономики.

Абсолютные величины являются основой для расчета разных относительных статистических показателей.

Относительные статистические величины

Относительные статистические величины выражают количественные соотношения между явлениями общественной жизни, они получаются в результате деления одной абсолютной величины на другую.

Знаменатель (основание сравнения, база) - это величина, с которой производится сравнение.

Сравниваемая (отчетная, текущая) величина - это величина, которая сравнивается.

Относительная величина показывает, во сколько раз сравниваемая величина больше или меньше базисной или какую долю первая составляет по отношению ко второй. В ряде случае относительная величина показывает, сколько единиц одной величины приходится на единицу другой.

Важное свойство - относительная величина абстрагирует различия абсолютных величин и позволяет сравнивать такие явления, абсолютные размеры которых непосредственно несопоставимы.

Форма выражения относительных величин

В результате сопоставления одноименных абсолютных величин получают неименованные относительные величины. Они могут выражаться в виде долей, кратных соотношений, процентных соотношений, в виде промилле и т.д.

Результатом сопоставления разноименных величин являются именованные относительные величины. Их название образуется сочетанием сравниваемой и базисной абсолютных величин.

Выбор формы зависит от характера аналитической задачи, которая состоит в том, чтобы с наибольшей ясностью выразить соотношение.

Виды относительных величин

Все применяемые на практике относительные статистические величины подразделяются на следующие виды.

Относительная величина динамики

Достигнутый показатель / базисный показатель.

Относительная величина планового задания

Плановый показатель / базисный показатель.

Относительная величина выполнения плана

Достигнутый показатель / плановый показатель.

Относительная величина структуры

Отношение частей и целого.

Относительная величина координации

Соотношение частей целого между собой.

Относительная величина интенсивности

Характеризует распределение явления в определенной среде (насыщенность каким-либо явлением). Это всегда соотношение разноименных величин.

Относительная величина уровня социально-экономического явления

Характеризует размеры производства различных видов продукции на душу населения.

Относительная величина сравнения

Представляет собой отношение одноименных величин, относящихся к различным объектам.

5. Средние величины и показатели вариации

5.1 Понятие о средних величинах

Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в кооперативах и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.

При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.

Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д.

Средняя выработка отражает общее свойство всей совокупности.

Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Существуют различные средние:

средняя арифметическая;

средняя геометрическая;

средняя гармоническая;

средняя квадратическая;

средняя хронологическая.

Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.

Средняя арифметическая

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через . Следовательно, средняя арифметическая простая равна:

По данным дискретного ряда распределения видно, что одни и те же значения признака (варианты) повторяются несколько раз. Так, варианта х встречается в совокупности 2 раза, а варианта х-16 раз и т.д.

Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается символом n.

Вычислим среднюю заработную плату одного рабочего в руб.:

Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

Полученная формула называется средней арифметической взвешенной.

Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:

В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.

Пример 5.

Основные свойства средней арифметической.

Средняя арифметическая обладает рядом свойств:

1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

4. Если х = с, где с - постоянная величина, то .

5. Сумма отклонений значений признака Х от средней арифметической х равна нулю:

Средняя гармоническая

Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Мода

Характеристиками вариационных рядов, наряду со средними, являются мода и медиана.

Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.

Для интервальных рядов распределения с равными интервалами мода определяется по формуле:

где - начальное значение интервала, содержащего моду;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

Медиана

Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).

Показатели вариации

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака.

Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае.

Средняя величина -- это абстрактная, обобщающая характеристика признака изучаемой совокупности, но она не показывает строения совокупности, которое весьма существенно для ее познания. Средняя величина не дает представления о том, как отдельные значения изучаемого признака группируются вокруг средней, сосредоточены ли они вблизи или значительно отклоняются от нее. В некоторых случаях отдельные значения признака близко примыкают к средней арифметической и мало от нее отличаются. В таких случаях средняя хорошо представляет всю совокупность.

В других, наоборот, отдельные значения совокупности далеко отстают от средней, и средняя плохо представляет всю совокупность.

Колеблемость отдельных значений характеризуют показатели вариации.

Термин "вариация" произошел от латинского variatio -»изменение, колеблемость, различие». Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.

Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.

Абсолютные и средние показатели вариации и способы их расчета.

Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним.

Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.

Размах вариации - это разность между наибольшим () и наименьшим () значениями вариантов.

Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности.

Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:

.

Порядок расчета среднего линейного отклонения следующий:

1) по значениям признака исчисляется средняя арифметическая:

;

2) определяются отклонения каждой варианты от средней ;

3) рассчитывается сумма абсолютных величин отклонений: ;

4) сумма абсолютных величин отклонений делится на число значений:

.

Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:

Порядок расчета среднего линейного отклонения взвешенного следующий:

1) вычисляется средняя арифметическая взвешенная:

;

2) определяются абсолютные отклонения вариант от средней //;

3) полученные отклонения умножаются на частоты ;

4) находится сумма взвешенных отклонений без учета знака:

;

5) сумма взвешенных отклонений делится на сумму частот:

.

Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.

Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.

Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:

-- дисперсия невзвешенная (простая);

-- дисперсия взвешенная.

Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:

-- среднее квадратическое отклонение невзвешенное;

-- среднее квадратическое отклонение взвешенное.

Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.). Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность. Вычислению среднего квадратического отклонения предшествует расчет дисперсии.

Порядок расчета дисперсии взвешенную:

1) определяют среднюю арифметическую взвешенную

;

2) определяются отклонения вариант от средней ;

3) возводят в квадрат отклонение каждой варианты от средней ;

4) умножают квадраты отклонений на веса (частоты) ;

5) суммируют полученные произведения

;

6) Полученную сумму делят на сумму весов

.

Свойства дисперсии.

Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.

Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в раз, а среднее квадратическое отклонение - в к раз.

Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной: . Если А равна нулю, то приходим к следующему равенству: , т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.

Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.

Порядок расчета дисперсии простой:

1) определяют среднюю арифметическую ;

2) возводят в квадрат среднюю арифметическую;

3) возводят в квадрат каждую варианту ряда ;

4) находим сумму квадратов вариант ;

5) делят сумму квадратов вариант на их число, т.е. определяют средний квадрат ;

6) определяют разность между средним квадратом признака и квадратом средней .

Рассмотрим расчет дисперсии в интервальном ряду распределения.

Порядок расчета дисперсии взвешенной (по формуле ):

определяют среднюю арифметическую ;

возводят в квадрат полученную среднюю ;

возводят в квадрат каждую варианту ряда ;

умножают квадраты вариант на частоты ;

суммируют полученные произведения ;

делят полученную сумму на сумму весов и получают средний квадрат признака ;

определяют разность между средним значением квадратов и квадратом средней арифметической, т.е. дисперсию .

Показатели относительного рассеивания

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей).

Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

(1)

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.

(2)

3. Коэффициент вариации.

(3)

Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

6. Выборочный метод в статистике

6.1 Понятие о выборочном методе

Основы выборочного метода

Выборочное наблюдение - одно из наиболее современных видов статистического наблюдения. Выборочное наблюдение - это такое наблюдение, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных, для того чтобы охарактеризовать всю совокупность в целом. Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить или репрезентатировать соответствующие показатели совокупности в целом.

Логика выборочного наблюдения

определение объекта и целей выборочного наблюдения;

выбор схема отбора единиц для наблюдения;

расчет объема выборки;

проведение случайного отбора установленного числа единиц из генеральной совокупности;

наблюдение отобранных единиц по установленной программе;

расчет выборочных характеристик в соответствии с программой выборочного наблюдения;

определение ошибки, ее размера;

распространение выборочных данных на генеральную совокупность;

Основные преимущества

Выборочное наблюдение можно осуществить по более широкой программе.

Выборочное наблюдение более дешевое с точки зрения затрат на его проведение.

Выборочное наблюдение можно организовать тогда и в тех случаях, когда отчетностью мы воспользоваться не можем.

Основные недостатки

Полученные данные всегда содержат в себе ошибку, о результатах наблюдения можно судить лишь с определенной степенью достоверности. Но по сравнению с другими видами наблюдения это достоинство выборочного метода.

Для его проведения требуются квалифицированные кадры.

Вся совокупность единиц, из которых производится отбор, называется генеральной. Совокупность единиц отобранных называется выборочной.

Ошибки выборки

Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.

Схема

Основное внимание уделяется случайным ошибкам репрезентативности.

Выборочное наблюдение

Статистическое исследование может осуществляться по данным несплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих несплошное наблюдение, является выборочный метод.

Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора. При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5 -- 10%, реже до 15 -- 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или просто выборкой.

Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.

В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции (товара), если проверка сопровождается уничтожением или разложением на составные части обследуемых образцов (определение сахаристости фруктов, клейковины печеного хлеба, установление носкости обуви, прочности тканей на разрыв и т.д.).

Проведение исследования социально -- экономических явлений выборочным методом складывается из ряда последовательных этапов:

1) обоснование (в соответствии с задачами исследования) целесообразности применения выборочного метода;

2) составление программы проведения статистического исследования выборочным методом;

3) решение организационных вопросов сбора и обработки исходной информации;

4) установление доли выборки, т.е. части подлежащих обследованию единиц генеральной совокупности;

5) обоснование способов формирования выборочной совокупности;

6) осуществление отбора единиц из генеральной совокупности для их обследования;

7) фиксация в отобранных единицах (пробах) изучаемых признаков;

8) статистическая обработка полученной в выборке информации с определением обобщающих характеристик изучаемых признаков;

9) определение количественной оценки ошибки выборки;

10) распространение обобщающих выборочных характеристик на генеральную совокупность.

В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака -- генеральной средней (обозначается ).

В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю величину в выборке -- выборочной средней (обозначается ).

Пример

При контрольной проверке качества хлебобулочных изделий проведено 5%-ное выборочное обследование партии нарезных батонов из муки высшего сорта. При этом из 100 отобранных в выборку батонов 90 шт. соответствовали требованиям стандарта. Средний вес одного батона в выборке составлял 500,5 г при среднем квадратическом отклонении г.

На основе полученных в выборке данных нужно установить возможные значения доли стандартных изделий и среднего веса одного изделия во всей партии.

Прежде всего устанавливаются характеристики выборочной совокупности. Выборочная доля, или частость, определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:

Поскольку из 100 изделий, попавших в выборку n, 90 ед. оказались стандартными m, то показатель частости равен: = 90:100=0,9.

Средний вес изделия в выборке х = 500,5 г определен взвешиванием. Но полученные показатели частости (0,9) и средней величины (500,5 г) характеризуют долю стандартной продукции и средний вес одного изделия лишь в выборке. Дляопределения соответствующих показателей для всей партии товара надо установить возможные при этом значения ошибки выборки.

Ошибка выборки -- это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.

Определение ошибки выборочной средней.

При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:

,

где -- средняя ошибка выборочной средней;

-- дисперсия выборочной совокупности;

n -- численность выборки.

При бесповторном отборе она рассчитывается по формуле:

,

где N -- численность генеральной совокупности.

Определение ошибки выборочной доли.

При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:

,

где -- выборочная доля единиц, обладающих изучаемым признаком;

-- число единиц, обладающих изучаемым признаком;

-- численность выборки.

При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:

Предельная ошибка выборки связана со средней ошибкой выборки отношением:

При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.

Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:

,

.

Предельная ошибка выборки при повторном отборе определяется по формуле:

,

.

Малая выборка

При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.

Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Объем малой выборки обычно не превышает 30 единиц и может доходить до 4 -- 5 единиц.

Средняя ошибка малой выборки вычисляется по формуле:

,

где -- дисперсия малой выборки.

При определении дисперсии число степеней свободы равно n-1:

.

Предельная ошибка малой выборки определяется по формуле

При этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента (Табл. 9.1.), в которых даны распределения стандартизированных отклонений:

.

Поскольку при проведении малой выборки в качестве доверительной вероятности практически принимается значение 0,59 или 0,99, то для определения предельной ошибки малой выборки используются следующие показания распределения Стьюдента:

Таблица

n

0,95

0,99

4

3,183

5,841

5

2,777

4,604

6

2,571

4,032

7

2,447

3,707

8

2,364

3,500

9

2,307

3,356

10

2,263

3,250

15

2,119

2,921

20

2,078

2,832

Способы распространения характеристик выборки на генеральную совокупность.

Выборочный метод чаще всего применяется для получения характеристик генеральной совокупности по соответствующим показателям выборки. В зависимости от целей исследований это осуществляется или прямым пересчётом показателей выборки для генеральной совокупности, или посредством расчёта поправочных коэффициентов.

Способ прямого пересчёта. Он состоит в том, что показатели выборочной доли или средней распространяется на генеральную совокупность с учётом ошибки выборки.

Так, в торговле определяется количество поступивших в партии товара нестандартных изделий. Для этого (с учётом принятой степени вероятности) показатели доли нестандартных изделий в выборке умножаются на численность изделий во всей партии товара.

Способ поправочных коэффициентов. Применяется в случаях, когда целью выборочного метода является уточнение результатов сплошного учета. В статистической практике этот способ используется при уточнении данных ежегодных переписей скота, находящегося у населения. Для этого после обобщения данных сплошного учета практикуется 10%-ное выборочное обследование с определением так называемого «процента недоучета».

Способы отбора единиц из генеральной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

Существуют следующие способы отбора единиц из генеральной совокупности:

1) индивидуальный отбор -- в выборку отбираются отдельные единицы;

2) групповой отбор -- в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор -- это комбинация индивидуального и группового отбора.

Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

-- собственно-случайная;

-- механическая;

-- типическая;

-- серийная;

-- комбинированная.

Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

.

Так, при 5%-ной выборке из партии товара в 2 000 ед. численность выборки n составляет 100 ед. (5*2000:100), а при 20%-ной выборке она составит 400 ед. (20*2000:100) и т.д.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.

Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке -- каждая 20-я единица (1:0,05) и т.д.

Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.

Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д.

Типическая выборка. При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор...


Подобные документы

  • Статистика как общественная наука, изучающая количественную сторону массовых общественных явлений с целью выявления их особенностей и закономерностей развития. Понятия, предмет, задачи, система статистических показателей. Организация статистики в России.

    реферат [16,8 K], добавлен 04.06.2010

  • Предмет, метод и организация статистики - науки, изучающей количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороной. Причинность, регрессия, корреляция, как основные статистические методы выявления взаимосвязи.

    учебное пособие [3,8 M], добавлен 05.02.2011

  • Изучение с количественной стороны массовых явлении и их закономерностей (статистика). Понятия статистической совокупности, наблюдения, группировки, абсолютных и относительных величин, средней арифметической, отклонения, индексов, тренда рядов динамики.

    шпаргалка [36,8 K], добавлен 15.12.2009

  • Понятие статистики, ее назначение, уровни, предмет и система. Теоретические основы статистики как отрасли экономической науки, ее категории. Особенности статистической методологии. Современная организация статистики в Российской Федерации и её задачи.

    реферат [33,2 K], добавлен 27.01.2011

  • Понятие и уровни статистики, связь с другими науками. Ее категории: единица, показатель, совокупность варьирующих явлений, атрибутивные и количественные признаки, закономерность изменения массовых явлений и процессов. Стадии статистических исследований.

    презентация [104,5 K], добавлен 16.03.2014

  • Понятие статистики, пути ее развития, отличительные черты массовых явлений и признаки единиц совокупности. Формы, виды и способы статистического наблюдения. Задачи и виды статистической сводки. Метод группировки, абсолютные и относительные показатели.

    реферат [33,9 K], добавлен 20.01.2010

  • Понятие и предмет статистики, теоретические основы и категории, взаимосвязь с другими науками. Объект и метод изучения статистики. Основные задачи, принципы организации и функции государственной статистики в РФ. Примеры статистической закономерности.

    лекция [17,3 K], добавлен 02.03.2012

  • Характеристика предмета статистики как общественной науки, статистическое изучение массовых явлений. Понятие статистической совокупности, проведение анкетного опроса покупателей для изучения контингента. Статистические показатели коммерческих банков.

    контрольная работа [24,9 K], добавлен 11.08.2015

  • Анализ обобщающих показателей и закономерностей социально-экономических явлений и процессов в конкретных условиях места и времени. Описание количественной стороны массовых социально-экономических явлений, отражаемых посредством показателей статистики.

    контрольная работа [761,6 K], добавлен 22.01.2015

  • Развитие статистической науки. Предмет статистики, задачи и методология. Структура статистической науки. Организация статистики в Российской Федерации. Общегосударственная и ведомственная статистика. Информационный фонд.

    реферат [23,4 K], добавлен 09.10.2006

  • Основные категории и понятия теории статистики. Ряды динамики и их применение в анализе социально-экономических явлений. Сводка и группировка статистических данных. Общая характеристика системы национальных счетов. Статистика рынка товаров и услуг.

    курс лекций [68,4 K], добавлен 08.08.2009

  • История возникновения и развития статистики. Предмет, основные понятия и категории статистики. Методы сбора, обобщения и анализа статистических данных. Экономическая статистика и ее отрасли. Современная организация статистики в Российской Федерации.

    лекция [16,5 K], добавлен 02.05.2012

  • Социально-экономическая статистика как общественная наука. Ее сущность и основные методы, применяемые в ней. Проблемы интеграции отечественной статистики в международную статистику. Задачи социально-экономической статистики в условиях рыночной экономики.

    лекция [17,4 K], добавлен 14.03.2010

  • Понятие статистики как науки, предмет и методы ее изучения, основные цели и задачи. Категории статистики и ее показатели, способы представления результатов. Сущность и классификация относительных и средних величин. Понятие ряда динамики и его анализ.

    реферат [192,6 K], добавлен 15.05.2009

  • Схемы решений практических заданий по разделам "Теория статистики" и "Статистика предприятия". Правила и требования к составлению статистических таблиц. Критерии оценки контрольной работы. Относительные величины плановой и фактической динамики.

    методичка [417,0 K], добавлен 08.02.2011

  • Статистика как одна из древнейших отраслей знаний, возникшая на базе хозяйственного учета. Развитие статистики как науки. Определение предмета статистики. Статистическое наблюдение как этап статистического исследования. Методы и показатели статистики.

    контрольная работа [38,9 K], добавлен 20.01.2010

  • Краткая история зарождения и развития статистики как науки. Предмет изучения и характеристика основных задач статистики. Статистические методы сбора и обработки данных для получения достоверных оценок и результатов. Источники статистических данных.

    лекция [23,7 K], добавлен 13.02.2011

  • Предмет и метод статистики, сводка и группировка, абсолютные и относительные величины. Определение показателей вариации и дисперсии. Понятие о выборочном наблюдении и его задачи. Классификация экономических индексов. Основы корреляционного анализа.

    контрольная работа [80,0 K], добавлен 05.06.2012

  • История развития статистики в России. Деятельность видных ученых в развитии статистики как науки. Основные задачи статистики. Общая теория статистики, экономическая статистика, социальная статистика. Отраслевая статистика.

    реферат [23,9 K], добавлен 12.12.2006

  • Проведение статистических наблюдений в биологии. Методы изучения массовых явлений. Графическое изображение рядов распределения. Показатели вариации признаков. Ошибки и надежность статистических показателей. Основные характеристики интервальных рядов.

    отчет по практике [199,4 K], добавлен 23.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.