Теория экономического анализа
Экономико-математические методы анализа хозяйственной деятельности. Информационное обеспечение и типология видов экономического анализа. Анализ технико-организационного уровня и других условий производства. Международные правила бухгалтерского учета.
Рубрика | Экономика и экономическая теория |
Вид | курс лекций |
Язык | русский |
Дата добавления | 07.04.2014 |
Размер файла | 457,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Материалы единовременного и текущего наблюдений взаимно дополняют друг друга; создается возможность получения данных на любой момент времени или за любой период времени. Сплошное наблюдение - учет всех без исключения единиц в пределах данной совокупности, например перепись всех видов оборудования или материалов в данном предприятии. Материалы сплошного наблюдения позволяют выделить в составе изучаемой массе единицы качественно однородной группы и определить по каждой группе средние величины по наиболее существенным признакам. Единовременное и текущее наблюдения осуществляются в форме сплошного наблюдения, если необходимо получить сведения об объеме изучаемых явлений. Организация сплошного наблюдения не всегда возможна и целесообразна, особенно для контроля за качеством продукции. В этом случае сплошное наблюдение приводит к исключению из сферы практического использования массы продукции предприятий. Поэтому необходимо осуществлять несплошное (частичное) наблюдение - учитывать только часть единиц совокупности, по которой составляют представление о характерных особенностях изучаемого явления в целом. Несплошное наблюдение имеет определенные преимущества по сравнению со сплошным наблюдением:
* требуется значительно меньше затрат труда и средств в связи с уменьшением числа обследуемых единиц;
* данные могут быть собраны в более короткие сроки и по более широкой программе, чтобы в заданных пределах всесторонне раскрыть особенности изучаемой совокупности, провести более глубокое научное исследование;
* данные несплошного наблюдения привлекаются для контроля материалов сплошного наблюдения;
* несплошное наблюдение должно быть репрезентативным (представительным).
Обследуемые единицы отбираются так, чтобы, опираясь на полученные по этим единицам данные, составить правильное представление о явлении в целом. Поэтому одной из существенных особенностей несплошного наблюдения является организация отбора единиц обследуемой совокупности способами: основного массива, монографическим, анкетным и выборочным наблюдением. Способ основного массива предусматривает отбор единиц совокупности, преобладающих по изучаемому признаку. Данный способ не обеспечивает отбора единиц, которые представляли бы все части совокупности. Монографическое наблюдение - детальное описание небольшого числа единиц совокупности. Типическая монография, как один из способов изучения особенностей единиц совокупности, предусматривает отбор из состава всей совокупности качественно однородных единиц одного типа. Собираются сведения по 1-3 единицам с индивидуальными значениями признака, близкими к типичным значениям признака в группе. К числу недостатков типической монографии относится субъективный выбор единиц наблюдения, когда руководствуются только общим представлением об их характерных особенностях. Кроме того, число отобранных единиц невелико, не соответствуют численности самой группы, и полученные данные не позволяют изучить распределение единиц (состав, долю) в пределах отдельной группы. Большая уверенность в репрезентативности данных, полученных типической монографией, достигается, если выбор единиц основан на данных ранее выполненных сплошных наблюдений. Анкетный способ предусматривает раздачу анкет (иногда анкеты публикуют) всем единицам совокупности для специальных обследований, например с целью изучения регулярности доставки почтовой корреспонденции, мнений по отдельным вопросам. Анкеты заполняются добровольно и поэтому не всегда обеспечивается репрезентативность выборки. Программа анкетного обследования содержит узкий круг вопросов, ответы на которые часто дают только заинтересованные лица. Большое распространение получает метод интервью, когда опрос ведется путем личного общения по специально разработанной программе. Такой метод широко применяется в социологических исследованиях. Наиболее совершенным с научной точки зрения видом несплошного наблюдения является выборочное наблюдение. Выборочное наблюдение представляет собой такой вид статистического наблюдения, при котором обследованию подвергается некоторая часть единиц изучаемой совокупности, отобранная в определенном строго научном порядке, с целью последущей характеристики всей совокупности. Сплошное и несплошное статистическое наблюдение осуществляется различными способами: непосредственным наблюдением, опросом и документированной записью. Источником сведений служит опрос. По способу регистрации фактов опрос имеет разновидности: экспедиционный способ, саморегистрация, корреспондентский способ и документированная запись. Экспедиционный способ предусматривает сбор сведений на месте возникновения факта. Специальный регистратор производит опрос и сам записывает ответ. Этот способ обеспечивает точную информацию, но требует значительных затрат времени, труда и средств. Саморегистрация осуществляется с участием специального регистратора на месте сбора сведений. Регистратор только разъясняет порядок ответов на поставленные вопросы в бланке, а ответы даются обычно представителями организаций и предприятий. Этот способ требует значительных затрат времени и средств, а также привлечения высококлалифицированных статистических работников. Корреспондентский способ предполагает рассылку статистическими и другими органами управления специально разработанных бланков и инструкций по их заполнению хозяйствующим субъектам или специально выделенным лицам корреспондентам для изучения определенного вопроса. Сведения поступают в установленные сроки по почте, телеграфом или доставляются нарочным. Способ не требует особых затрат, но качество информации зависит от уровня знаний и степени подготовки корреспондентов. Документированная запись - основная форма статистического наблюдения является основным источником расчета статистических показателей.
Собранные в процессе статистического наблюдения данные о величине признака единиц в изучаемой совокупности должны быть обработаны так, чтобы получился точный и обстоятельный ответ на все вопросы, поставленные с целью исследования. Качество исходного статистического материала предопределяет качество обобщающих показателей, полученных в результате статистической обработки (статистической сводки). Даже при достаточно совершенной организации статистического наблюдения могут встречаться в полученной статистической информации отдельные ошибки или погрешности, которые следует устранить, чтобы получить доброкачественный исходный статистический материал. Ошибки статистического наблюдения - расхождение действительных значений признаков единиц наблюдения с их величиной, зарегистрированной в процессе сбора сведений. Ошибки статистического наблюдения разнообразны по происхождению и характеру. Они могут заключаться в неполном охвате подлежащих регистрации единиц, в пропуске записи или не ясной записи данных по отдельным единицам наблюдения и в неправильной записи отдельных ответов (несоответствие их действительным фактам). Ошибки статистического наблюдения возникают часто в связи с отсутствием твердых знаний и навыков у регистраторов, описками и т.п. В некоторых случаях встречаются и преднамеренные ошибки, которые скрывают или искажают факты; в таких случаях привлекают к ответственности лиц, занятых проведением статистического наблюдения. Ошибки статистического наблюдения разделяются на категории в зависимости от источника происхождения и значения ошибок. По источнику происхождения различают ошибки непреднамеренные и преднамеренные, а по значению - случайные и систематические. Случайными ошибками считаются такие погрешности в записи данных по отдельным единицам, в отношении которых предполагают, что они могут с одинаковой вероятностью исказить результаты статистического наблюдения в противоположные стороны. К ошибкам такого вида относятся непреднамеренные ошибки - как следствие описок или недостаточно ясного понимания регистратором сущности регистрируемых признаков. Случайные ошибки при статистическом наблюдении массы единиц не оказывают существенного влияния на конечные результаты обследования: в процессе статистической сводки собранных данных они обычно взаимопогашаются. Систематические ошибки искажают сведения по отдельным единицам наблюдения в одном направлении (преувеличивают или преуменьшают). К систематическим ошибкам относятся: пропуски единиц наблюдения, ошибки, возникающие в силу неисправности измерительных приборов, а иногда и стремления отдельных лиц округлять величины при устном опросе. Например, при недокументированном сборе сведений возможны округления возраста, стажа работы, заработной платы. Все систематические ошибки являются преднамеренными ошибками и не погашаются в процессе статистической сводки. К ошибкам статистического наблюдения относятся ошибки, возникающие в процессе организации выборочного наблюдения, называемые ошибками представительства, или репрезентативности. Основное значение по недопущению ошибок такого рода имеет правильная организация статистического наблюдения: разработка плана статистического наблюдения, бланков и инструкций по их заполнению, подбор регистраторов и т.п. Чтобы устранить обнаруженные ошибки в материалах статистического наблюдения, производится контроль собранных данных первичного учета. Контроль материалов учета, а также записей в статистической отчетности осуществляется в двух направлениях: Счетный или арифметический контроль - исполняется с целью проверки именно счетной согласованности данных, помещенных в формулярах статистического наблюдения, а также правильности подсчета итогов. Логический контроль ведется для проверки правильности самого содержания сведений, собранных по каждой единице наблюдения. Логический контроль осуществляется различными способами:
1) сравниваются ответы на различные вопросы одного и того же формуляра,
например сопоставляются в бланке переписи населения сведения о профессии, возрасте, семейном положении;
2) сопоставляются записи, относящиеся к отчетному периоду, с аналогичными записями предшествующих периодов или же с плановыми данными отчетного периода;
3) сравниваются фактические данные статистического наблюдения с разработанными нормативами: затрат времени, удельного расхода материалов и др.;
4) сопоставляются данные проведенных статистических наблюдений с результатами специальных наблюдений выборочного характера, в силу своих особенностей, позволяющих получить более полные данные по отобранной массе единиц.
В результате первой стадии статистического исследования - статистического наблюдения получают сведения о каждой единице совокупности. Задача второй стадии статистического исследования состоит в том, чтобы упорядочить и обобщить первичный материал, свести его в группы и на этой основе дать обобщенную характеристику совокупности. Этот этап в статистике называется сводкой. Различают простую сводку (подсчет только общих итогов) и статистическую группировку. Статистическая группировка сводится к расчленению совокупности на группы по существенному для единиц совокупности признаку. Структурные группировки имеют большое практическое значение для изучения структуры однотипных явлений. Значение такого рода группировок заключается в том, что с их помощью могут быть выявлены неиспользованные резервы производства, например в области улучшения использования основных фондов, повышения производительности труда, улучшения качества продукции и т.д. Группировки, которые применяются для исследования взаимосвязи между явлениями, называются аналитическими. Используя аналитические группировки, прежде всего определяют факторные и результативные признаки изучаемых явлений. Факторные - это признаки, оказывающие влияние на другие, связанные с ними признаки. Результативные -признаки, которые изменяются под влиянием факторных. Чтобы исследовать взаимосвязь между отобранными признаками с помощью метода аналитических группировок, необходимо произвести группировку единиц совокупности по факторному признаку и по каждой группе вычислить среднее значение результативного признака, вариация которого от группы к группе под влиянием группировочного признака будет указывать на наличие или отсутствие взаимосвязи. Группировка позволяет получить такие результаты, по которым можно выявить состав совокупности, характерные черты и свойства типичных явлений, обнаружить закономерности и взаимосвязи.
Первым и наиболее простым способом обобщения статистических данных являются ряды распределения. Статистическим рядом распределения называют численное распределение единиц совокупности по изучаемому признаку. В зависимости от признака ряды могут быть вариационные (количественные) и атрибутивные. Вариационные ряды могут быть дискретными или интервальными. Дискретный ряд распределения - это ряд, в котором численное распределение признака выражено одним конечным числом. Интервальный ряд распределения - это ряд, в котором значения признака заданы в виде интервала. При построении интервальных рядов распределения необходимо определить, какое число групп следует образовать и какие взять интервалы (равные, неравные, закрытые, открытые). Эти вопросы решаются на основе экономического анализа сущности изучаемых явлений, поставленной цели и характера изменений признака. Интервалы не должны быть слишком широкими и слишком узкими, т.к. это приведёт к искажению естественной картины данных.
На каждой стадии статистического исследования проводится проверка достоверности статистических данных. В процессе анализа обычно совершается дополнительная обработка материалов (перегруппировка, дополнительное исчисление и т.д.). Проводится сравнение данных для разных периодов времени, для различных объектов, устанавливаются причины явлений, даётся общее описание фактов и объяснение закономерностям, выделяемым, с помощью предшествующих методов. Тем самым, статистический анализ - это завершающее звено статистического исследования. Результаты анализа используются при разработке вопросов экономической теории, прогнозировании и организации работы предприятий. От правильности выводов и прогнозов зависит дальнейший успех фирмы, правильность решений и так далее. Так, например, верно проведённый анализ, дающий точную и достоверную информацию о состоянии рынка услуг
Методы элементарной математики используются в обыч-ных традиционных экономических расчетах при обосновании потребностей в ресурсах, учете затрат на производство, раз-работке планов, проектов, при балансовых расчетах и т. д.
Выделение методов классической высшей математики обусловлено тем, что они применяются не только в рамках других методов, например методов математической статистики и математического программирования, но и отдельно. Так, факторный анализ изменения многих экономических показателей может быть осуществлен с помощью дифференцирования и интегрирования.
Задачи факторного анализа.
Рассмотрим примерную классификацию задач факторного анализа работы предприятий с точки зрения использование математических методов.
При прямом факторном анализе выявляются отдельные факторы, влияющие на изменение результативного показателя процесса, устанавливаются формы детерминированной (функциональной) или стохастической зависимости между результативным показателем и определенным набором факторов и, наконец, выясняется роль отдельных факторов в изменении результативного экономического показателя.
Постановка задачи прямого факторного анализа распространяется на детерминированный и стохастический случай.
Пусть у=f(x) - некоторая функция, характеризующая изменение результативного показателя или процесса; х1, х2, ...,хn, - факторы, от которых зависит функция f(xi). Задана функциональная детерминированная форма связи изучаемого показа-теля у с набором факторов хг х2,,.., хn; у =f(х1, х2,…,хn). Пусть показатель у получил приращение (Дy) за анализируемый период. Требуется определить, какой частью, численное приращение функции у=f(x1,х2, ..., хn) обязано приращению каждого аргумента (фактора). Сформулированная таким образом задача есть постановка задачи прямого, детерминированного факторного анализа.
Примерами прямого, детерминированного, факторного анализа являются; анализ влияния производительности труда и численности работающих на объем произведенной продукции (у - объем продукции; х, z - факторы; задана функциональная форма связи y=хЧz); анализ влияния величины прибыли, стоимости основных производственных фондов и нормируемых оборотных средств на уровень рентабельности (у - уровень рентабельности; х, z, v - соответствующие факторы; заданная функциональная форма связи y=x/(z+v)). Задачи прямого детерминированного факторного анализа - наиболее распространенная группа задач в анализе хозяйственной деятельности.
Рассмотрим особенности постановки задачи прямого стохастического факторного анализа. Если в случае прямого детерминированного факторного анализа исходные данные для анализа имеются в форме конкретных чисел, то в случае прямого стохастического факторного анализа заданы выборкой (временной или поперечной). Решения задач стохастического факторного анализа требуют: глубокого экономического исследования для выявления основных факторов, влияющих на результативный показатель; подбора вида регрессии, который бы наилучшим образом отражал действительную связь изучаемого показателя с набором факторов; разработки метода, позволяющего определить влияние каждого фактора на результативный показатель.
Если результаты прямого детерминированного анализа должны получиться точными и однозначными, то стохастического - с некоторой вероятностью (надежностью), которую следует оценить.
Примером прямого стохастического факторного анализа является регрессионный анализ производительности труда и других экономических показателей.
В экономическом анализе, кроме задач, сводящихся к детализации показателя, к разбивке его на составляющие части существует группа задач, где требуется увязать ряд экономических характеристик в комплексе, т. е, построить функцию содержащую в себе основное качество всех рассматриваемых экономических показателей-аргументов, т. е. задач синтеза. В данном случае ставится обратная задача (относительно задачи прямого факторного анализа) - задача объединения ряда показателей в комплекс.
Пусть имеется набор показателей х1,х2,...,xn характеризующих некоторый экономический процесс (L). Каждый из показателей односторонне характеризует процесс L. Требуется построить функцию f(xi) изменения процесса L, содержащую в ceбe основные характеристики всех показателей х1,х2,…,хn или некоторых из них в комплексе. В зависимости от цели исследования функция f(xi) должна характеризовать процесс в статике или в динамике. Данная постановка задачи называется задачей обратного факторного анализа.
Задачи обратного факторного анализа могут быть детерминированными и стохастическими. Примерами задачи обратного детерминированного факторного анализа являются задачи комплексной оценки производственно-хозяйственной деятельности, а также задачи математического программирования в том числе и линейного. Примером задачи обратного стохастического факторного анализа могут служить производственные функции, которыми устанавливаются зависимости между величиной выпуска продукции и затратами производственных факторов (первичных ресурсов).
Для детального исследования экономических показателей или процессов необходимо проводить не только одноступенчатый, но и цепной факторный анализ: статический (пространственный) и динамический (пространственный и во времени) Пусть исследуется экономический показатель у, х1 х2,…, хn - факторы, влияющие на этот показатель. В зависимости от цели исследования анализируется поведение показателя y одним из методов факторного анализа. Если xl, x2, ..., хn - функции более первичных факторов, то для анализа у надо объяснить поведение х1 х2,…, хn; для этого проводят дальнейшую детализацию:
х1=l1(z1,z2,…zm);
х2=l2(л1, л 2,… л k);
……………………..
хn=ln(p1, p 2,… p e);
Детализация факторов может быть продолжена и дальше. Закончив ее, решают обратную задачу факторного анализа, синтезируя результаты исследования для характеристики результативного показателя у. Такой метод исследования называется цепным статическим методом факторного анализа.
При применении цепного динамического факторного анализа для полного изучения поведения результативного показателя недостаточно его статического значения; факторный анализ показателя проводится на различных интервалах дробления времени, на которых исследуется показатель.
Экономический факторный анализ может быть направлен на выяснение действия факторов, формирующих результаты хозяйственной деятельности, по различным источникам пространственного или временного происхождения.
Анализ динамических (временных) рядов показателей хозяйственной деятельности, расщепление уровня ряда на его составляющие (основную линию развития - тренд, сезонную, или периодическую составляющую, циклическую составляющую, связанную с воспроизводственными явлениями, случайную составляющую) - задача временного факторного анализа.
Классификация задач факторного анализа упорядочивает постановку многих экономических задач, позволяет выявить общие закономерности в их решении» При исследовании сложных экономических процессов возможна комбинация постановки задач, если последние не относятся целиком к какому-либо типу, указанному в классификации.
3. Экономико-математические методы анализа хозяйственной деятельности
Под экономическим факторным анализом понимается постепенный переход от исходной факторной системы к конечной факторной системе, раскрытие полного набора прямых, количественно измеряемых факторов, оказывающих влияние на измерение результативного показателя.
Функционально - детерминированная связь - это связь, при которой каждому значению факторного признака соответствует вполне определённое неслучайное значение результативного признака. Связь, при которой каждому значению факторного признака соответствует множество значений результативного признака (т.е. определённое статистическое распределение) - стохастическая (вероятностная) связь. Соответственно типу связи аналитические приёмы и способы делятся на методы детерминированного факторного анализа и методы стохастического факторного анализа.
Детерминированный факторный анализ
В основе детерминированного моделирования факторной системы лежит возможность построения тождественного преобразования для исходной формулы экономического показателя по теоретически предполагаемым прямым связям переднего с другими показателями-факторами. Детерминированное моделирование факторных систем - это простое и эффективное средство формализации связи экономических показателей; оно служит основой для количественной оценки роли отдельных факторов в динамике изменения обобщающего показателя.
Детерминированное моделирование факторных систем ограничено длиной факторного поля прямых связей. При недостаточном уровне знаний о природе прямых связей того или иного показателя хозяйственной деятельности часто необходим иной подход к познанию объективной действительности. Размах количественных изменений экономических показателей можно выяснить только стохастическим анализом массовых эмпирических данных.
При детерминированном факторном анализе модель изуча-емого явления не изменяется по хозяйственным объектам и периодам (так как соотношения соответствующих основных категорий стабильны). При необходимости сравнения результатов деятельности отдельных хозяйств или одного хозяйства в отдельные периоды может возникать лишь вопрос о сопоставимости выявленных на основе модели количественных аналитических результатов.
3.1 Модели детерминированного факторного анализа
Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т.е. может быть выражен математической зависимостью. Детерминированные модели могут быть разного типа: аддитивные, мультипликативные, кратные, смешанные.
Аддитивные модели.
Аддитивные модели представляют собой алгебраическую сумму показателей и имеют следующую математическую интерпретацию:
В качестве примера можно привести балансовую модель товарного обеспечения:
где Np - общий объём реализации;
Nзап.1 - запасы товара на начало периода;
Nn - объём поступления;
Nвыб - прочее выбытие товаров;
Nзап.2 - запасы товаров на конец анализируемого периода.
Мультипликативная модель.
Мультипликативная модель представляет собой произведение факторов.
Примером мультипликативной модели является двухфакторная модель объёма реализации:
где Ч - среднесписочная численность работников;
В - выработка на одного работника.
Кратные модели
Кратные модели представляют собой отношение факторов и имеют вид:
где Z - совокупный показатель.
Например:
где - срок оборачиваемости товаров (в днях);
- средний запас товаров;
nр - однодневный объём реализации.
Смешанные модели.
Смешанные модели представляют собой комбинацию перечисленных моделей. Примером смешанной модели является формула расчёта интегрального показателя рентабельности
где Rк - рентабельность капитала;
Rnp - рентабельность продаж;
Fe - фондоёмкость основных средств;
Eз - коэффициент закрепления оборотных средств.
Логарифмический способ.
Логарифмический способ применим к кратным и мультипликативным моделям. Он основан на логарифмировании отклонения отчётного и базисного значений результативного признака, равного отношению соответствующих произведений факторов, так как изменение показателей может быть оценено с помощью как абсолютных, так и относительных показателей.
Способ долевого участия.
Способ долевого участия. Этот способ заключается в определении доли каждого фактора в общей сумме их приростов, которая затем умножается на общий прирост совокупного показателя. Этот метод применяется к аддитивным моделям и чаще всего для оценки влияния факторов второго или третьего порядков.
Для примера рассмотрим модель зависимости фонда заработной платы от средней заработной платы и численности персонала.
где ФЗ - фонд заработной платы;
ЗП - средняя заработная плата;
Ч - среднесписочная численность.
В свою очередь средняя заработная плата равна сумме средних выплат по тарифным ставкам, доплат, надбавок (ДН) и дополнительной заработной платы (ДЗ).
Модель примет вид:
Пользуясь способом разниц, рассчитаем влияние средней заработной платы и численности персонала на изменение фонда заработной платы по данным таблицы .
Итого: 68400 руб.
Данные для расчёта
Показатель |
Базисный период |
Отчётный период |
Отклонения |
|
Фонд заработной платы, руб. в том числе по тарифным ставкам доплаты, надбавки дополнительная зарплата |
240000 172000 44000 24000 |
308000 189000 81000 38000 |
+68000 +17000 +37000 14000 |
|
Среднесписочная численность, человек |
15 |
16 |
+1 |
|
Среднегодовая заработная плата, руб. том числе тарифные ставки (ТС) доплаты, надбавки (ДН) дополнительная заработная плата (ДЗ) |
16000 11467 2933 1600 |
19250 11813 5062 2375 |
+3250 +346 +2129 +775 |
Для определения влияния каждого вида выплат на изменение фонда заработной платы рассчитаем долю (D) влияния каждого вида выплат на среднюю заработную плату:
Влияние каждого вида выплат на фонд заработной платы составит:
Итого: 52000 руб.
Сведём полученные результаты в таблицу.
Влияние факторов на фонд заработной платы
Фактор |
Размер влияния, руб. |
Доля влияния на фонд заработной платы, % |
Доля влияния на среднюю заработную плату, % |
|
Среднесписочная численность |
16000 |
23,5 |
||
Средняя заработная плата, В том числе: по тарифным ставкам выплаты, надбавки Дополнительная заработная плата |
52000 5538 34060 12402 |
76,5 |
10,65 65,5 23,85 |
|
Итого |
68000 |
100 |
100 |
|
Проведённый расчёт показывает, что увеличение фонда заработной платы на 23,5% вызвано ростом среднесписочной численности персонала и на 76,5% - изменением средней заработной платы.
Индексный метод.
Индексный метод основан на построении факторных (агрегированных) индексов. Применение агрегированных индексов означает последовательное элиминирование влияния отдельных факторов на совокупный показатель. Преимущество индексного метода заключается в том, что он позволяет произвести «разложение» по факторам не только абсолютное изменение показателя, но и относительное, что особенно важно при изучении факторных динамических моделей.
Так, индекс изменения выпуска продукции можно выразить через произведение индексов численности и выработки:
С помощью индексного метода можно определить влияние факторов, в том числе структурных сдвигов, на абсолютное отклонение результативного показателя.
Индексный метод целесообразно применять в том случае, когда каждый фактор является сложным (совокупным) показателем. Например, численность персонала предприятия представляет собой соотношение численности отдельных категорий работников или рабочих различных разрядов. Изменение объёма выпуска продукции происходит не только под влиянием численности и выработки, но и структурных сдвигов в составе персонала.
Интегральный способ.
Интегральный способ позволяет достичь полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям.
Операция вычисления определённого интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется на ПЭВМ.
Метод цепных подстановок.
Метод цепных подстановок заключается в определении ряда промежуточных значений результативного показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать - значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Предполагается, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т.д.
В общем виде применение способа цепных постановок можно описать следующим образом:
Преимущества данного способа: универсальность применения; простота расчетов.
Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки:
- при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов;
если модель представлена несколькими количественными и качественными показателями, то в первую очередь определяется влияние факторов первого порядка, затем второго и т.д.
Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).
Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).
Метод абсолютных разниц.
Метод абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора определяется как произведение абсолютного прироста исследуемого фактора на базисную величину факторов, которые находятся справа от него и отчетную величину факторов, расположенных слева от него в модели.
Метод относительных разниц.
Метод относительных разниц также является одной из модификаций способа цепной подстановки. Применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных моделях. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.
Для мультипликативных моделей типа у = а. в . с методика анализа следующая:
находят относительное отклонение каждого факторного показателя:
определяют отклонение результативного показателя у за счет каждого фактора:
Способы оценки влияния факторов в детерминированном факторном анализе.
Задача детерминированного факторного анализа заключается в определении или количественной оценке влияния каждого фактора на результативный показатель.
Наиболее часто применяется способ цепных подстановок, основанный, как и ряд других, на элиминировании. Элиминировать - это значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного.
Количество расчётов может быть несколько сокращено, если использовать модификацию способа цепных подстановок - способ разниц.
Изменение результативного показателя за счёт каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчётное значение другого (других) факторов в зависимости от выбранной последовательности подстановки.
3.2 Стохастический факторный анализ
Стохастический анализ направлен на изучение косвенных связей, т. е. опосредованных факторов (в случае невозможности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.
Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей - количественных характеристик факторов и результатов хозяйственной деятельности. Количественные параметры связи выявляются на основе сопоставления значений изучаемых показателей в совокупности хозяйственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является возможность составить совокупность наблюдений, т. е. возможность повторно измерить параметры одного и того же явления в различных условиях.
В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах однозначной определенности качественной стороны явлений, характеристиками которых являются моделируемые экономические показатели (в пределах варьирования не должно происходить качественного скачка в характере отражаемого явления). Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).
Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной к-вариации). Из этого вытекает третья предпосылка стохастического анализа -достаточная размерность (численность) совокупности наблюдений» позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи). Уровень надежности и точности модели определяется практическими целями использования модели в управлении производственно-хозяйственной деятельностью.
Четвертая предпосылка стохастического подхода - наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому мате-риалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности полученных результатов.
Основная особенность стохастического факторного анализа заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретического) анализа, необходим количественный анализ эмпирических данных.
3.2.1 Методы стохастического факторного анализа
Способ парной корреляции.
Метод корреляционного и регрессионного (стохастического) анализа широко используется для определения тесноты связи между показателями, не находящимися в функциональной зависимости, т.е. связь проявляется не в каждом отдельном случае, а в определенной зависимости.
С помощью корреляции решаются две главные задачи:
1) составляется модель действующих факторов (уравнение регрессии);
2) дается количественная оценка тесноты связей (коэффициент корреляции).
Матричные модели.
Матричные модели представляют собой схематическое отражение экономического явления или процесса с помощью научной абстракции. Наибольшее распространение здесь получил метод анализа «затраты-выпуск», строящийся по шахматной схеме и позволяющий в наиболее компактной форме представить взаимосвязь затрат и результатов производства.
Математическое программирование.
Математическое программирование - это основное средство решения задач по оптимизации производственно-хозяйственной деятельности.
Метод исследования операций.
Метод исследования операций направлен на изучение экономических систем, в том числе производственно-хозяйственной деятельности предприятий, с целью определения такого сочетания структурных взаимосвязанных элементов систем, которое в наибольшей степени позволит определить наилучший экономический показатель из ряда возможных.
Теория игр.
Теория игр как раздел исследования операций - это теория математических моделей принятия оптимальных решений в условиях неопределенности или конфликта нескольких сторон, имеющих различные интересы.
Методика факторного анализа
Все явления и процессы хозяйственной деятельности предприятий находятся во взаимосвязи и взаимообусловленности. Одни из них непосредственно связаны между собой, другие косвенно. Отсюда важным методологическим вопросом в экономическом анализе является изучение и измерение влияния факторов на величину исследуемых экономических показателей.
Под экономическим факторным анализом понимается постепенный переход от исходной факторной системы к конечной факторной системе, раскрытие полного набора прямых, количественно измеримых факторов, оказывающих влияние на изменение результативного показателя.
По характеру взаимосвязи между показателями различают методы детерминированного и стохастического факторного анализа.
Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер.
Основные свойства детерминированного подхода к анализу:
· построение детерминированной модели путем логического анализа;
· наличие полной (жесткой) связи между показателями;
· невозможность разделения результатов влияния одновременно действующих факторов, которые не поддаются объединению в одной модели;
· изучение взаимосвязей в краткосрочном периоде.
Различают четыре типа детерминированных моделей:
К таким моделям, например, относятся показатели себестоимости во взаимосвязи с элементами затрат на производство и со статьями затрат; показатель объема производства продукции в его взаимосвязи с объемом выпуска отдельных изделий или объема выпуска в отдельных подразделениях.
Примером мультипликативной модели является двухфакторная модель объема реализации
где Ч - среднесписочная численность работников;
CB - средняя выработка на одного работника.
Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:
где ЗТ - средний запас товаров; ОР - однодневный объем реализации.
Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:
Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.
Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.
Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.
Если исходная факторная модель , а , то модель примет вид .
Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:
Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.
Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы:
· место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя;
· модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие;
· при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.
Построение факторной модели - первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.
Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать - значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.
В общем виде применение способа цепных постановок можно описать следующим образом:
где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;
a1 , b1, c1 - фактические значения факторов;
ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.
Общее изменение Dу=у1-у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:
Рассмотрим пример:
Таблица 2 Исходные данные для факторного анализа
Показатели |
Условные обозначения |
Базисные значения (0) |
Фактические значения (1) |
Изменение |
||
Абсолютное (+,-) |
Относительное (%) |
|||||
Объем товарной продукции, тыс. руб. |
ТП |
2920 |
3400 |
+480 |
116,40 |
|
Количество работников, чел |
Ч |
20 |
25 |
+5 |
125,00 |
|
Выработка на одного работающего, тыс. руб. |
СВ |
146 |
136 |
-10 |
93,15 |
|
Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:
Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:
Далее определим влияние изменения выработки работников на обобщающий показатель
Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.
Преимущества данного способа: универсальность применения, простота расчетов.
Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки:
· при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов;
· если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.
Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).
Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).
Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:
Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида у = (а - в) . с. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.
Для мультипликативных моделей типа у = а . в . с методика анализа следующая:
· находят относительное отклонение каждого факторного показателя:
· определяют отклонение результативного показателя у за счет каждого фактора
Пример. Воспользовавшись данными табл. 2, проведем анализ способом относительных разниц. Относительные отклонения рассматриваемых факторов составят:
Рассчитаем влияние на объем товарной продукции каждого фактора:
Результаты расчетов те же , что и при использовании предыдущего способа.
Интегральный метод позволяет избежать недостатков, присущих методу цепной подстановки, и не требует применения приемов по распределению неразложимого остатка по факторам, т.к. в нем действует логарифмический закон перераспределения факторных нагрузок. Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям. Операция вычисления определенного интеграла решается с помощью ПЭВМ и сводится к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы.
Можно использовать также уже сформированные рабочие формулы, приводимые в специальной литературе [4]:
1. Модель вида:
2. Модель вида:
3. Модель вида:
4. Модель вида:
Рассмотрим возможность использования основных методов детерминированного анализа, обобщив вышеизложенное в виде матрицы (табл.3).
Таблица 3 Матрица применения способов детерминированного факторного анализа
Способы / Модели |
Мультипликативные |
Аддитивные |
Кратные |
Смешанные |
|
Цепной подстановки |
+ |
+ |
+ |
+ |
|
Абсолютных разниц |
+ |
- |
+ |
- |
|
Относительных разниц |
+ |
- |
- |
||
Интегральный |
+ |
- |
+ |
4. Применение экономико-математических методов при решении типовых аналитических задач
Использование математических методов в сфере управления - важнейшее направление совершенствования систем управления. Математические методы ускоряют проведение экономического анализа, способствуют более полному учету влияния факторов на результаты деятельности, повышению точности вычислений. Применение математических методов требует:
...Подобные документы
Предмет и задачи технико-экономического анализа. Содержание и направления технико-экономического анализа. Основные принципы и методы анализа. Анализ производственной программы, трудовых показателей, использования материальных ресурсов.
дипломная работа [405,2 K], добавлен 08.04.2005Характеристика экономического анализа в управлении предприятием. Основные этапы и процедуры экономического анализа. Понятие, задачи и содержание маркетингового анализа. Сметное планирование. Задачи, стоящие перед анализом технико-организационного уровня.
шпаргалка [61,8 K], добавлен 10.02.2011Классификация методов экономического анализа. Применение статистических (формализованных) методов для предварительной и общей оценки хозяйственной деятельности. Метод бухгалтерского и финансового анализа. Экономико-математические и эвристические методы.
лекция [40,1 K], добавлен 27.01.2010Типология видов экономического анализа. Содержание анализа хозяйственной деятельности фирмы. Финансовый анализ как объект работы аудиторов. Схема экономического анализа деятельности предприятий. Основные направления управленческого анализа предприятия.
контрольная работа [24,5 K], добавлен 31.10.2009Экономический анализ, его роль в управлении производством. Предмет и метод экономического анализа. Содержание, принципы анализа хозяйственной деятельности. Связь анализа с другими науками. Информационное обеспечение анализа хозяйственной деятельности.
шпаргалка [48,8 K], добавлен 26.09.2008Анализ технико-организационного уровня и других условий хозяйственной деятельности, использования производственных ресурсов, объема производства и продаж продукции, себестоимости продукции, взаимосвязи себестоимости, актива, объема продаж и прибыли.
реферат [69,6 K], добавлен 30.10.2008Аналитический обзор основ теории экономического анализа. Главные принципы оценки технико-организационного уровня производства, анализа финансовых результатов деятельности предприятия. Этапы оценки финансового состояния и деловой активности предприятия.
методичка [383,2 K], добавлен 18.05.2012Экономический анализ как метод обоснования управленческих решений, его научно аргументированная классификация, типология. Схема экономического анализа деятельности предприятий, выявление взаимосвязи, преемственности и обособленности разных его видов.
реферат [2,2 M], добавлен 15.05.2009Классификация видов экономического анализа, его признаки и сущность. Источники получения информации и основные методы экономического анализа. Современная концепция комплексного подхода к анализу экономической деятельности предприятия и его роль.
контрольная работа [15,4 K], добавлен 22.01.2009Предмет экономического анализа и его научный аппарат, виды и связь со смежными дисциплинами, основные цели, задачи. Система показателей экономического анализа, его методика. Информационное обеспечение и последовательность. Особенности факторного анализа.
контрольная работа [117,1 K], добавлен 23.06.2011Система технико-экономической информации для анализа хозяйственной деятельности. Классификация экономической информации: бухгалтерский учет и финансовая отчетность. Основы компьютерного анализа хозяйственного функционирования управленческих решений.
курсовая работа [241,6 K], добавлен 20.10.2011Экономический анализ, его роль в управлении производством. Цели и задачи экономического анализа, последовательность его проведения. Организация и информационное обеспечение экономического анализа. Сущность методов "мозговой атаки" и "мозгового штурма".
контрольная работа [20,7 K], добавлен 07.06.2012Особенности экономического анализа и теории экономического анализа. Анализ как функция управления. Подготовка информации для принятия управленческих решений. Содержание, цели и задачи экономико-финансового анализа, проводимого органами внутренних дел.
лекция [75,4 K], добавлен 27.01.2010Классификация приемов экономического анализа. Методика анализа деятельности предприятия, внутрихозяйственного и внутриотраслевого экономического анализа. Анализ фондоотдачи, материалоемкости, производительности труда, ритмичности сезонности товарооборота.
реферат [33,0 K], добавлен 18.09.2009Содержание информационного обеспечения экономического анализа. Информационная база анализа. Требования к информации. Основные виды информации и их источники. Контроль достоверности информации. Информационная база отдельных видов экономического анализа.
контрольная работа [31,2 K], добавлен 13.10.2015Общая классификация экономического анализа. Цели экономического анализа, определяемые уровнем анализируемых объектов, особенностью изучаемых явлений и процессов. Основы внутреннего управленческого анализа. Значение проведения финансового анализа.
реферат [133,2 K], добавлен 28.03.2009Классификация видов экономического анализа и их содержание. Разбиение проблемы на составляющие, более доступные для изучения, и решение отдельных задач объединением. Общая характеристика функционально-стоимостного анализа. Тесты по заданной тематике.
курсовая работа [35,9 K], добавлен 16.12.2010Взаимосвязь экономического анализа с другими науками. Классификация методов и приемов, используемых в экономическом анализе хозяйственной деятельности предприятия. Сценарные условия социально-экономического развития Ханты-Мансийского автономного округа.
курсовая работа [64,9 K], добавлен 01.12.2014Содержание, предмет, принципы и задачи экономического анализа. Виды анализа, их классификация и характеристика, метод и методика проведения. Организация и информационное обеспечение анализа. Анализ производственных результатов работы предприятия.
контрольная работа [131,9 K], добавлен 15.07.2011Содержание и предмет экономического анализа. Общая классификация экономического анализа деятельности предприятий. Внутренний управленческий и внешний финансовый виды анализа. Общая оценка финансового состояния предприятия по данным бухгалтерского баланса.
курсовая работа [591,4 K], добавлен 01.04.2011