Модели сезонных колебаний

Анализ структуры временных рядов, содержащих сезонные колебания. Статистическое изучение связи между явлениями и их признаками. Варианты зависимостей между случайными величинами. Количественные критерии оценки тесноты связи. Виды и формы регрессии.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 21.05.2014
Размер файла 122,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Модели сезонных колебаний

Сезонные колебания - повышение или понижение уровня экономической активности, масштабов экономической деятельности вследствие смены сезонов.

При анализе многих рядов динамики можно заметить определённую повторяемость (цикличность, закономерность в колебаниях), изменениях их уровней. Например, в большинстве отраслей экономики это проявляется в виде внутритрудовых чередований, подъёмов и спадов выпуска продукции, неодинаковым потреблением сырья и энергии, колебания уровней себестоимости, прибыли и других показателей. Ярко выраженный сезонный характер имеет сельское хозяйство, рыболовство, лесозаготовка, охота, туризм и так далее.

Значительной колеблемости во внутренней динамике подвержены денежные обращения и товарооборот. Наибольшие денежные доходы образуются у населения в III и IV кварталах, особенно у селян. Максимальный объём товарооборота (различного) приходится на конец каждого года. Продажа молочных продуктов увеличивается обычно во II и III кварталах, а фруктов и овощей - во втором полугодии. Потребление пищи связано со временем суток, днями недели, временами года.

Также закономерности в изменении уровней ряда динамики принято называть сезонными колебаниями.

Под сезонными колебаниями понимается более или менее устойчивые внутригодовые колебания уровней динамического рода, обусловленные спецификами развития данного явления.

Цель изучения сезонных колебаний состоит как в разработке мер его ликвидации или смягчению сезонных колебаний (нередко этим и ограничивается статистическое исследование), так и для оптимального исследования условий, благоприятствующих развитию массовых явлений и процессов. При статистическом исследовании в рядах динамики сезонных колебаний решаются следующие две взаимосвязанные задачи:

1) выявление специфики развития изучаемого явления во внутренне годовой динамике;

2) измерение сезонных колебаний изучаемого явления с построением модели сезонной волны.

Особое внимание отражается на обеспечение сопоставимости уровней ряда. При наличии в исходном материале разновесных по продолжительности периодов времени объёмные величины пересчитываются в средние величины, характеризующие интенсивность развития изучаемого явления в единицу времени. Для выявления сезонных колебаний обычно берутся данные за несколько последних лет, распределённые по определённым внутригодовым периодам. Для измерения сезонных колебаний исчисляются специальные статистические показатели, которые называются индексами сезонности (Is) и совокупность которых отражает сезонную волну. Для вычисления индексов сезонности применяются различные методы. В общем виде индексы сезонности определяются отношением исходных (фактических) уровней первоначального ряда (y) к расчётным (теоретическим) уровням, выступающим в качестве базы сравнения

Тем самым ликвидируется (устраняется) влияние основной тенденции (тренда). Затем усреднением индивидуальных индексов сезонных одноимённых внутригодовых периодов анализируемого ряда динамики устраняется влияние на сезонные колебания случайных отклонений. Поэтому для каждого периода сумма определяется обобщением показателей в виде средних индексов сезонности.

Для большей надёжности индексы сезонности обычно рассчитываются по данным за 3-5 лет. При этом для каждого месяца рассчитывается средняя величина уровня за эти 3-5 лет, которая сопоставляется с общим ежемесячным уровнем за 3-5 лет. Можно, таким образом, сначала для каждого из этих 3-5 лет рассчитать ежемесячный индекс сезонности, из которых рассчитывается затем средний индекс сезонности для каждого месяца. Результаты будут совпадать. Поэтому для всех фактических уровней анализируемого ряда динамики общий средний уровень является постоянной величиной, то этот подход называется способом постоянной средней.

В этом случае сначала выполняется предварительное аналитическое выравнивание фактических уровней и после этого исчисляется сезонная величина, но не от постоянной средней (как в предыдущем случае), а от выровненных данных. Измерение сезонных колебаний на базе переменных уровней тренда (расчётных уровней ряда) в статистике получило название способы переменной средней. Есть и другие, более сложные методы расчета индексов сезонности. Например, если все колебания членов первоначального ряда объясняются только (или в основном) сезонными причинами, то уравнение тренда выражает только сезонные колебания. Следовательно, изучение сезонного колебания сводится к проблеме выбора адекватной математической функции. Однако наилучшее с точки зрения отражения, сезонных колебаний нагрузки уравнения выбирают по минимуму среднего квадратичного индексов сезонности 100 %

Следует еще раз указать, что не всякие различия в месячных или квартальных уровнях являются сезонными колебаниями, а только регулярно повторяющиеся год за годом. Если же различия месячных уровней или любых внутригодичных уровней в один год распределены совершенно иначе, чем в другой год, то это - не сезонные, а случайные колебания т. е. колебания, вызванные причинами, не связанными со сменой времен года. Например, такими могут быть колебания курсов акций, обменных курсов валют, вызванные изменением финансовой политики государства, научно-техническими открытиями, политическими кризисами в стране и мире, слиянием и разделением компаний и т. п.

Поскольку интервальные уровни зависят от длительности интервалов времени, а длина месяцев не равная, точнее проводить анализ сезонных колебаний не по фактическим месячным уровням, а по уровням, пересчитанным на равную (30-дневную) длительность всех месяцев или среднесуточным. Если изучаются сезонные колебания за отдельный год, то обычно тренд не принимается во внимание, и отклонения месячных (30-дневных) уровней, исчисляются от среднемесячного уровня за год.

Кроме рассмотренных показателей колеблемости для характеристики сезонных колебаний важное значение имеет форма сезонной «волны», изучаемая с помощью относительных показателей - отношений месячных уровней к среднемесячному (так называемый «индекс сезонности»). Лучше, конечно, изучать сезонные колебания за несколько лет, чтобы сгладить случайные колебания и точнее измерить сезонные.

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход - расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

У=Т+5+Е

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (7), сезонной (5) и случайной (Е) компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений Т,S и E для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты S

Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных (T+Е) в аддитивной или (Т-Е)в мультипликативной модели.

Аналитическое выравнивание уровней (Т+Е) или (Т-Е) и расчет значений Т с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (Т+5) или (T-S)|

6. Расчет абсолютных и/или относительных ошибок.

2. Статистическое изучение связи между явлениями

Исследование объективно существующих связей между явлениями - важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно-следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие существенное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения - это связь явлений и процессов, при которой изменение одного из них - причины - ведет к изменению другого - следствия.

Причина - это совокупность условий, обстоятельств, действие которых приводит к появлению следствия. Если между явлениями действительно существуют причинно-следственные отношения, то эти условия должны обязательно реализовываться вместе с действием причин. Причинные связи носят всеобщий и многообразный характер, и для обнаружения причинно-следственных связей необходимо отбирать отдельные явления и изучать их изолированно.

Особое значение при исследовании причинно-следственных связей имеет выявление временной последовательности: причина всегда должна предшествовать следствию, однако не каждое предшествующее событие следует считать причиной, а последующее - следствием.

В реальной социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначные связи, в которых за одной причиной будет следовать то одно, то другое действие или одно действие будет иметь несколько различных причин. Чтобы установить однозначную причинную связь между явлениями или предсказать возможные следствия конкретной причины, необходима полная абстракция от всех прочих явлений в исследуемой временной или пространственной среде. Теоретически такая абстракция воспроизводится. Приемы абстракции часто применяются при изучении взаимосвязей между двумя признаками (парная корреляция). Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия.

Особенностью причинно-следственных связей в социально-экономических явлениях является их транзитивность, т.е. причина и следствие связаны соотношением, а не непосредственно. Однако промежуточные факторы, как правило, при анализе опускаются.

Так, например, при использовании показателей международной методологии расчетов фактором валовой прибыли считается валовое накопление основных и оборотных фондов, но при этом допускаются такие факторы, как валовой выпуск, оплата труда и т.д. Правильно вскрытые причинно-следственные связи позволяют установить силу воздействия отдельных факторов на результаты хозяйственной деятельности.

Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Следовательно, при изучении этих явлений необходимо, абстрагируясь от второстепенных, выявлять главные, основные причины.

На первом этапе статистического изучения связи осуществляется качественный анализ изучаемого явления методами экономической теории, социологии, конкретной экономики.

На втором этапе строится модель связи на основе методов статистики: группировок, средних величин, таблиц и т. д.

На третьем, последнем этапе интерпретируются результаты; анализ вновь связан с качественными особенностями изучаемого явления.

Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и поставленных задач. Связи между признаками и явлениями, ввиду их большого разнообразия, классифицируются по ряду оснований. Признаки по значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными. Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.

В статистике различают функциональную связь и стохастическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической. Частным случаем стохастической является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.

По степени тесноты связи различают количественные критерии оценки тесноты связи (табл. 1).

Таблица 1 Количественные критерии оценки тесноты связи

Величина коэффициента корреляции

Характер связи

До |±0,3|

Практически отсутствует

|±0,3|-|±0,5|

Слабая

|±0,5|-|±0,7|

Умеренная

|±0,7|-|±1,0|

Сильная

По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так, с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные. Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной, экспоненциальной и т. д.), то такую связь называют нелинейной или криволинейной.

В статистике не всегда требуются количественные оценки связи, часто важно определить лишь ее направление и характер, выявить форму воздействия одних факторов на другие. Для выявления наличия связи, ее характера и направления в статистике используются методы приведения параллельных данных; аналитических группировок; графический; корреляционный, регрессионный.

Метод приведения параллельных данных основан на сопоставлении двух или нескольких рядов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменения двух величин и с увеличением величины величина также возрастает. Поэтому связь между ними прямая, и описать ее можно или уравнением прямой, или уравнением параболы второго порядка.

Взаимосвязь двух признаков изображается графически с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. При отсутствии тесных связей наблюдается беспорядочное расположение точек на графике. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.

Для социально-экономических явлений характерно, что наряду с существенными факторами, формирующими уровень результативного признака, на него оказывают воздействие многие другие неучтенные и случайные факторы. Это свидетельствует о том, что взаимосвязи явлений, которые изучает статистика, носят корреляционный характер и аналитически выражаются функцией вида.

Корреляционный метод имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Корреляция - это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

В статистике различаются следующие варианты зависимостей:

-парная корреляция - связь между двумя признаками (результативным и факторным или двумя факторными);

-частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;

-множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.

Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определить «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям.

Первоначально исследования корреляции проводились в биологии, а позднее распространились и на другие области, в том числе на социально-экономическую. Одновременно с корреляцией начала использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: корреляция оценивает силу (тесноту) статистической связи, регрессия исследует ее форму. Та и другая служат для установления соотношения между явлениями, для определения наличия или отсутствия связи.

Корреляционный и регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).

Регрессионный метод заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной).

По форме зависимости различают:

-линейную регрессию, которая выражается уравнением прямой (линейной функцией) вида:

Yx = а0 + а1х;

-нелинейную регрессию, которая выражается уравнениями вида:

Yx = а0 + а1х + а2 х2 - парабола; Yx = а0 ++ а1/х - гипербола

По направлению связи различают:

-прямую регрессию (положительную), возникающую при условии, если с увеличением или уменьшением независимой величины значения зависимой также соответственно увеличиваются или уменьшаются;

-обратную (отрицательную) регрессию, появляющуюся при условии, что с увеличением или уменьшением независимой величины зависимая соответственно уменьшается или увеличивается.

Положительную и отрицательную регрессии можно легче понять, если использовать их графическое изображение.

Для простой (парной) регрессии в условиях, когда достаточно полно установлены причинно-следственные связи, приобретает практический смысл только последнее положение; при множественности причинных связей невозможно четко отграничить одни причинные явления от других.

сезонный колебание регрессия

Практическая часть

Задача 1.

Студентов учебной группы попросили отметить, сколько минут в определенный день они затратили на дорогу от дома до колледжа. Получили следующие результаты (в минутах):

Таблица 2

18,6

21

16

17,1

19,3

23,5

22

23,4

15,9

22,4

21,7

20

16,4

22,3

16,8

19,7

15

22

15,3

19,7

18,2

17,5

19,4

21,7

Используя эти данные, составьте интервальный ряд с интервалом в 3 мин. Постройте соответствующую гистограмму.

Решение:

Для того, чтобы узнать ширину интервала, надо определить на сколько групп разбиты данные числа.

Определение числа групп.

Число групп приближенно определяется по формуле Стэрджесса

n = 1 + 3,2log n

n = 1 + 3,2log(24) = 5

Ширина интервала составит:

h = 3

h =

Таблица 3

Интервал

Частота

Накопленная частота

15 - 18

8

8

18 - 21

8

16

21 - 24

8

24

Всего:

24

Модальный интервал: 15 - 18;

Медиальный интервал: 18 - 21;

X =

Т.к. коэффициент вариации ?13% и < 33%, то совокупность считается однородной.

Рис. 1

Задача 2.

На основе данных, представленных в таблице, определить среднюю месячную зарплату рабочих по предприятию в целом:

Таблица 4

Цех

Среднемесячная заработная плата, руб.

Число рабочих, чел.

1

1250

80

2

1640

65

Решение:

Ср. з/п =

Используемая литература

1. Воронин В.Ф., Жильцова Ю.В. Статистика: Учеб. пособие для вузов. - М.: Экономистъ, 2004. - 301 с.

2. Голуб Л.А. Социально-экономическая статистика: Учеб. пособие. - М.: Владос, 2001. - 272 с.

3. Гусаров В.М. Статистика: Учеб. пособие для вузов. - М.: ЮНИТИ-ДАНА, 2001. - 463 с.

4. Гусаров В.М. Теория статистики: Учебн. пособие для вузов. - М.: Аудит, ЮНИТИ, 1998. - 247 с.

5. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учеб для вузов. - М.: Финансы и статистика, 1995.

6. Ряузов Н.Н. Общая теория статистики. Москва 1979

7. Статистика: Курс лекций для вузов / под ред. В.Г. Ионина. - 2-е изд., перераб. и доп. - М.: ИНФРА-М, 2001. - 384 с.

8. Теория статистики: Учебник /под ред. Р.А. Шмойловой. - 4-е изд., перераб. и доп. - М.: Финансы и статистика, 2004. - 656 с.: ил.

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия корреляционно-регрессионного анализа. Вычисление показателей силы и тесноты связи между явлениями и процессами, специфика их интерпретации. Оценка результатов линейного регрессионного анализа. Коэффициент множественной детерминации.

    контрольная работа [228,2 K], добавлен 02.04.2013

  • Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.

    контрольная работа [513,5 K], добавлен 02.05.2015

  • Методы анализа структуры временных рядов, содержащих сезонные колебания. Рассмотрение подхода методом скользящей средней и построение аддитивной (или мультипликативной) модели временного ряда. Расчет оценок сезонной компоненты в мультипликативной модели.

    контрольная работа [57,9 K], добавлен 12.02.2015

  • Методика построения графика зависимости между величиной капитала и чистыми активами банков, определение уравнения регрессии зависимости чистых активов и капитала коммерческих банков. Вычисление показателей тесноты связи между изучаемыми признаками.

    контрольная работа [89,5 K], добавлен 04.02.2009

  • Статистическое изучение рядов динамики, виды показателей. Расчет коэффициента смыкания. Цепной и базисный показатель. Средний уровень динамического ряда. Определение общей закономерности в развитии явления. Статистическое изучение сезонных колебаний.

    лекция [325,3 K], добавлен 27.04.2013

  • Понятие системы национальных счетов (СНС) и ее значение. Макроэкономические показатели и методы их расчета. Исследование структуры совокупности. Выявление наличия корреляционной связи между признаками, установление направления связи, измерение ее тесноты.

    курсовая работа [3,0 M], добавлен 05.05.2011

  • Этапы корреляционно-регрессионного анализа, построение корреляционной модели и определение функции, отражающей механизм связи между факторным и результативным признаками. Измерение тесноты корреляционной связи, расчет индекса корреляции и дисперсии.

    лекция [38,1 K], добавлен 13.02.2011

  • Классификация показателей тесноты связи. Основные способы расчета показателей и определение их значимости. Линейный коэффициент корреляции для несгруппированных данных. Принятие решений о тесноте связи на основе линейного коэффициента корреляции.

    презентация [146,4 K], добавлен 16.03.2014

  • Выявление корреляционной связи между факторным и результативным признаками, направления связи и ее тесноты. Расчёт дисперсии, ошибки выборки, индексов среднего товарооборота на душу населения переменного, постоянного состава, структурных сдвигов.

    курсовая работа [166,7 K], добавлен 15.01.2014

  • Комбинационное распределение рабочих цеха и завода в целом по общему стажу работы и заработной плате. Расчет среднего тарифного разряда, зарплаты и производственного стажа рабочих. Определение формы связи и степени тесноты между данными признаками.

    курсовая работа [91,2 K], добавлен 10.11.2013

  • Эффективность оборотных средств. Оценка тесноты связи между факторным и результативным показателями на основе корреляционного анализа. Проверка значимости коэффициента корреляции. Оценка значимости уравнения линейной регрессии. Формы связи показателей.

    курсовая работа [143,2 K], добавлен 15.03.2015

  • Анализ, расчет и построение исходных динамических рядов признака-функции и признака-фактора. Расчет показателей вариации динамических рядов. Количественное измерение тесноты связи признака-функции и признаков-факторов методом парной корреляции.

    курсовая работа [92,7 K], добавлен 24.09.2014

  • Статистические методы выявления сезонных колебаний. Изучение сезонных колебаний в деятельности торгового предприятия. Гармонический (спектральный) анализ внутригодовой динамики социально-экономических явлений в деятельности предприятия торговли.

    курсовая работа [141,6 K], добавлен 24.05.2008

  • Статистическое изучение производительности труда. Анализ структурных группировок. Виды и задачи группировок, связи между ними. Техника выполнения группировки. Формула Стерджесса. Статистика фондовооруженности, производительности труда и основных фондов.

    курсовая работа [77,3 K], добавлен 15.01.2009

  • Организация статистики и источники статистических данных. Наблюдение по способу регистрации данных. Выявление и изучение связи и взаимозависимости между явлениями. Система статистических показателей. Определение средних и относительных величин.

    контрольная работа [53,6 K], добавлен 27.01.2011

  • Определение средней выработки одного рабочего в целом по заводу. Определение моды и медианы, сводного индекса цен и общей экономии от изменения цен, дисперсии основных производственных фондов предприятий. Измерение тесноты связи между признаками.

    контрольная работа [61,6 K], добавлен 07.04.2012

  • Проведение статистического наблюдения: принципы, основные этапы и закономерности, теоретическая база. Группировка статистических данных. Расчет характеристик вариационного ряда. Анализ связи между признаками по аналитической группировке, рядов динамики.

    курсовая работа [202,5 K], добавлен 08.03.2011

  • Экономико-статистический анализ временных рядов развития строительства Тюменской области. Выявление и измерение сезонных колебаний. Корреляция рядов динамики и проведение регрессионного анализа показателей. Экстраполяция по мультипликативной схеме.

    курсовая работа [521,5 K], добавлен 20.01.2016

  • Виды и формы связей между явлениями. Методы изучения взаимосвязи экономических явлений. Статистические методы изучения взаимосвязи. Метод аналитических группировок. Дисперсионный и корреляционно-регрессионный анализ. Непараметрические методы оценки связи.

    курсовая работа [235,9 K], добавлен 10.12.2008

  • Причины сезонных колебаний в экономике Российской Федерации. Оценка сезонности реализации товаров и услуг. Классификация рядов динамики. Методы выявления сезонной компоненты. Анализ сезонности без предварительного исчисления общей тенденции развития.

    курсовая работа [882,8 K], добавлен 15.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.