Порядковая полезность и спрос
Проблема потребительского выбора, полезность и предпочтения. Количественная и порядковая теории полезности. Функции полезности различных наборов товаров. Основные предположения ординалистской теории. Кривые безразличия, график пространства благ.
Рубрика | Экономика и экономическая теория |
Вид | реферат |
Язык | русский |
Дата добавления | 26.08.2014 |
Размер файла | 63,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Порядковая полезность и спрос
Раздел 1. Проблема потребительского выбора
Теория спроса, которой и посвящена целиком эта часть нашего издания, должна в конечном счете дать ответ на следующие важнейшие вопросы: сколько единиц каждого товара будет закупать потребитель при тех или иных условиях (данном доходе и данных ценах) и как будет изменяться объем закупок потребителя при изменении этих условий (дохода и цен)?
Мы предположили ранее (см. лекцию 11), что суверенный потребитель самостоятельно принимает решения о том, что покупать, а что нет. Следовательно, чтобы ответить на поставленные выше вопросы, экономисты должны вначале обратиться к поведению потребителя и описать каким-то образом механизм потребительского выбора.
Вообще говоря, каждый из нас постоянно и ежедневно сталкивается с множеством самых различных, связанных с выбором ситуаций (причем не только в области потребления) от относительно простых (как провести свободный вечер? каким способом добраться до работы? брать ли на улицу зонтик? и т. д.) до значительно более сложных. Самым сложным посвящена немалая часть шедевров мировой художественной литературы:
Быть или не быть, вот в чем вопрос.
Достойно ли смиряться под ударами судьбы
Иль надо оказать сопротивленье
И в смертной схватке с целым морем бед
Покончить с ними?
В. Шекспир
Конечно, часто выбор является нелегкой задачей это мы знаем и из литературы (вспомним судьбу литературного героя, чей монолог мы цитировали выше), и из собственного опыта.
Но все же немногие, наверное, согласились бы добровольно отказаться от права выбора, уступив это право кому-либо другому.
Попробуем теперь обобщить наши представления о ситуациях выбора с тем, чтобы выявить в них некоторые общие элементы и составить формальное описание (модель) ситуаций такого рода.
Во-первых, ситуация выбора предполагает, что есть из чего выбирать, или, иными словами, имеются несколько (по крайней мере два) возможных вариантов выбора.
Вариантов выбора может быть очень много, однако лишь в сказках, когда добрый волшебник предлагает герою исполнение любого желания, возможности выбора могут быть безграничны.
В действительности наши возможности всегда ограничены тем или иным образом, а следовательно, ограничено и множество доступных вариантов выбора.
Так, для человека, выбирающего профессию, отсутствие слуха делает недоступной профессию музыканта, а слабое зрение профессию шофера.
Если у вас в распоряжении три часа свободного времени, то имей вы хоть миллиард долларов в кармане, вам все равно не удастся совершить кругосветное путешествие.
Очевидно, что и в потребительском выборе множество доступных потребителю наборов благ ограничено доходом потребителя и ценами благ.
Во-вторых, ситуация выбора подразумевает, что из всего множества доступных вариантов необходимо выбрать какой-либо один вариант, тем самым отвергнув остальные.
Задача эта, как мы отмечали, в общем нелегка и в принципе может быть решена двумя способами: либо выбирающий, имея в голове некий критерий выбора, сравнивает все доступные альтернативные варианты и выбирает вариант, самый предпочтительный по этому критерию; либо он, не имея критерия выбора или не будучи способен сравнить доступные варианты, вынужден совершить выбор каким-либо случайным образом (бросить монетку или ткнуть пальцем в карту, чтобы решить, куда поехать в отпуск). Так каким же способом принимает решения потребитель? Призовем на помощь наш опыт, а заодно вспомним аксиому рациональности потребителя (см. лекцию 11), которая как раз и предполагает, что потребитель знает, чего хочет, может сравнивать доступные ему наборы благ и выбирает из них некоторый наиболее предпочтительный (самый "лучший") набор.
Как же поведет себя потребитель, если окажется, что среди доступных ему наборов имеется не один, а два или еще больше "наилучших" и все они для него равноценны?
Реальный потребитель в конце концов выберет какой-то один под влиянием трудно учитываемых мелочей, и не окажется в положении Буриданова осла. Как мы увидим дальше, допущения о потребительских предпочтениях, которыми оперирует теория, позволяют исключить подобные ситуации.
Итак, потребитель выбирает самый предпочтительный для себя набор благ из всего множества доступных ему наборов (которое определяется доходом потребителя и ценами благ). Предположим теперь, что вкусы потребителя остались неизменными, но при этом изменились границы множества доступных наборов (т. е. изменились цены или доход).
Что произойдет в этом случае? Каким образом изменится выбор потребителя? Ответив на этот вопрос, мы сможем объяснить характер зависимости объема спроса от цены товара и от располагаемого дохода.
В заключение попробуем сформулировать задачи, которые стоят перед экономической теорией поведения потребителя (в том порядке, в каком они будут рассматриваться далее).
1. Описать систему предпочтений потребителя.
2. Описать множество доступных потребителю наборов благ.
3. Описать механизм потребительского выбора и свойства лучшего из доступных наборов (при этом желательно, чтобы такой набор оказался единственным).
4. Выяснить, как изменяется выбор потребителя при изменении множества доступных наборов.
Раздел 2. Полезность и предпочтения. Количественная и порядковая теории полезности
Экономисты XIX в. (У. Джевонс, К. Менгер, Л. Вальрас) предположили, что потребитель способен оценивать потребляемые им блага с точки зрения величины полезности, приносимой этими благами, причем целью потребителя является максимизация полезности. Полезность это не объективное свойство благ, а субъективное отношение людей к благам (величину полезности может определить только сам потребитель, а полезность одного и того же блага для разных людей различна). Приведем для иллюстрации этой мысли еще одну цитату из классики: "...сами по себе вещи не бывают ни хорошими, ни дурными, а только в нашей оценке" (В. Шекспир).
Даже полезность одинаковых порций одного и того же блага для потребителя может быть различной.
В предыдущей лекции мы рассматривали полезность, извлекаемую потребителем из потребления некоторого отдельно взятого блага. Полезность от потребления этого блага (например, воды) зависит, по нашему предположению, лишь от количества потребляемых единиц данного блага (стаканов или глотков воды). Это утверждение можно записать следующим образом:
ui = f(xi), (1)
где ui полезность, получаемая потребителем от потребления некоторого количества блага; xi количество потребляемых единиц блага.
Мы сделали также (см. лекцию 12) несколько весьма существенных предположений о свойствах функции (1). Во-первых, мы предположили, что эта функция имеет возрастающий характер, т. е. каждая дополнительная единица блага увеличивает общую полезность (по крайней мере, до некоторой точки насыщения), а во-вторых, что каждая следующая единица блага приносит меньшее увеличение общей полезности, чем предыдущая, т. е. приращение общей полезности (предельная полезность) уменьшается с увеличением количества потребляемых единиц блага.
Понятно, что функция (1) позволяет полностью описать систему предпочтений потребителя в том только случае, если все потребление ограничивается одним единственным благом (правда, тогда и задача выбора была бы весьма проста потребитель приобретал бы этого блага так много, как это возможно, если бы только не достигал ранее точки насыщения).
К счастью, в действительности наши возможности выбора значительно богаче. Утолить жажду можно не только водой, но и чаем, кофе и пепси-колой, а выпить это можно с хлебом, пирожками, вареньем или конфетами, причем как сосуды для питья могут быть использованы эмалированная кружка, граненый стакан или фарфоровая чашка.
Следовательно, потребитель должен определить общую полезность всего набора потребляемых им благ и максимизировать именно эту общую полезность. Первопроходцы теории полезности (У. Джевонс и др.) представляли себе полезность как простую сумму полезностей всех входящих в некоторый набор благ (при этом полезность, извлекаемая из потребления каждого отдельного блага, по-прежнему зависит лишь от объема потребления этого блага):
U = u1(x1) + u2(x2) + … +un(xn) (2)
где U - общая полезность от всего набора потребляемых благ; u1, u2,..., un - полезности от потребления благ: 1, 2,.... n; x1, x2,..., xn - объемы потребления блага 1, 2,..., n.
Отметим, что такой подход покоится на неявной предпосылке о независимости полезностей отдельных блага. В самом деле, только при предположении о независимости полезности, например, куска хлеба от количества съеденных бифштексов, можно рассматривать полезность хлеба и бифштексов отдельно, а потом складывать эти полезности друг с другом. В действительности многие товары взаимосвязаны в процессе потребления: некоторые могут потребляться совместно (взаимодополняющие товары), другие, напротив, служить удовлетворению одной и той же потребности (товары-заменители). Это обстоятельство вызвало резкую критику рассмотренного выше подхода к функции полезности (2). В результате развернувшейся дискуссии экономисты пришли к единому мнению: бессмысленно говорить о полезности трех пирожных, не зная, съедены ли они всухомятку, со стаканом кипятка или с чашкой кофе, так же, как бессмысленно говорить о полезности стакана воды, не зная, сколько стаканов пепси-колы в распоряжении потребителя. Иными словами, необходимо рассматривать не полезность от потребления некоторого отдельно взятого товара, а полезность от всего набора потребляемых благ. Следовательно, функция полезности принимает вид:
U = f(x1,x2,…xn) (3)
или (для упрощения записи):
U = f(X) (4)
где X = (x1,x2,…xn) -- набор благ 1, 2,..., n.
Отказ экономистов от функций полезности (1) и (2) и переход к функции полезности (3) ярко обнажил еще одно весьма уязвимое место в ранней теории полезности. Эта теория основывалась на кардиналистском (количественном) подходе к полезности, предполагавшем теоретическую возможность измеримости полезности подобно измеримости массы, расстояния и т. д. Большинство экономистов соглашались, что потребитель способен сравнивать различные наборы благ с точки зрения отношения предпочтения и безразличия, но предпосылка о том, что потребитель может с точностью сказать, сколько единиц полезности он получил от того или иного набора благ, казалась многим экономистам явно нереалистичной.
В противоположность кардиналистскому был выдвинут ординалистский (порядковый) подход, не предполагающий возможности измерения полезности и основанный на простой возможности сравнения и упорядочения потребителем товарных наборов с точки зрения их предпочтительности. Этот подход, требующий от теории поведения потребителя значительно менее жестких допущений, чем количественный подход, выглядел в глазах экономистов и более близким к реальности. Очевидно, однако, что первой жертвой отказа от предположения об измеримости полезности должна была пасть предельная полезность, а следовательно, и вся теория спроса, рассмотренная нами в предыдущей лекции. Все же после того, как была построена теория спроса, основывающаяся на порядковом подходе к функции полезности, количественный подход уступил место порядковому. Первые шаги в этом направлении были сделаны в начале XX в. итальянским экономистом В. Парето и российским экономистом и математиком Е. Е. Слуцким (1915 г.), а окончательное оформление теория спроса, базирующаяся на ординалистском подходе, получила в статье английских экономистов Аллена Р. и Хикса Дж. (1934 г.) (Хикс Дж. Р., Аллен Р. Г. Д. Пересмотр теории стоимости // Теория потребительского поведения и спроса. СПб., 1993. (Вехи экономической мысли; Вып. 1).) и в более поздней работе Дж. Хикса "Стоимость и капитал" (1939 г.). Однако прежде чем перейти к изложению этой теории, поговорим немного о том, что такое, вообще говоря, количественные и порядковые величины.
Начнем с величин количественных. Прежде всего, не следует отождествлять измеримость с наличием некоторой единственной единицы измерения. Так, расстояние может быть с равным успехом измерено в километрах, милях, верстах, саженях или локтях, а вес в килограммах, пудах или фунтах. Отметим, правда, что все единицы измерений какой-либо величины (веса, например) должны быть связаны между собой некоторыми соотношениями (так, 1 пуд » 16 кг; 1 кг » 2.5 фунта и т. д.).
Вообще говоря, мы можем изобрести множество единиц измерения, умножая некоторую известную нам единицу на любое положительное число (предположить, например, что 15 кг = 1 "буму" и в дальнейшем измерять вес исключительно в "бумах"). Понятно, что применение различных единиц измерения приведет нас к одним и тем же ответам на следующие вопросы: что тяжелее -- грузовик или записная книжка? что выше -- гора Эверест или дом, в котором мы живем? Менее очевидно другое весьма важное свойство количественных величин. Рассмотрим табл. 1, где приведены данные о рек, измеренной в километрах и верстах.
Таблица 1. Длина российских рек
Река |
Длина |
||
в километрах |
в верстах |
||
Лена |
4599 |
4311 |
Из табл. 1 видно, что Лена длиннее Волги, а Волга длиннее Невы как в верстах, так и в километрах. Но это еще не вся информация, которую мы можем извлечь из зафиксированных в таблице результатов измерений. Заметим, что Лена длиннее Волги на 4599 км -- 3392 км = 1207 км, или на 4311 верст -- 3180 верст = 1131 версту, а Волга в свою очередь длиннее Невы на 3317 км или на 3110 верст. Таким образом, разница в длине Лены и Волги меньше разницы в длине Волги и Невы и в километрах, и в верстах:
1207 км < 333317 км,
1131 верста < 3110 верст.
Самое интересное, что в каких бы единицах мы ни измеряли длину рассматриваемых рек -- результат все равно получился бы таким же. Итак, мы подошли к фундаментальному свойству количественно измеримых величин: количественная измеримость предполагает не только возможность сравнения, например, длины или веса различных объектов наблюдения, но и возможность сравнения разницы, в весе и длине объектов. Иными словами, мы можем не только определить, что Эверест выше нашей комнаты, но ответить на вопрос: насколько он выше?
Вернемся теперь к кардиналистской функции полезности. Этот подход, рассматривающий полезность как количественную величину, предполагает не только возможность упорядочения наборов благ с точки зрения возрастания их полезности:
U(X`) < U(X``) < U(X```) < U(X````)
но и возможность сравнения разницы в полезности различных наборов благ: U(X``) - U(X`) и U(X````) - U(X```). При этом U(X``) - U(X`) может быть больше, меньше или равно U(X````) - U(X```).
На возможности такого сравнения, собственно, и основана предпосылка об уменьшении предельной полезности - ведь последняя есть не что иное, как приращение полезности при переходе от одного набора благ к другому.
Заметим, что существование функции количественной полезности вовсе не требует единственности этой функции: ведь нами могут быть изменены единицы измерения (путем умножения принятой единицы измерения на любое положительное число) и даже "точка отсчета". Вообще говоря, если U(X) представляет собой функцию количественной полезности, то и любая функция V(X), такая, что:
V(X) = a + bU(X), b > 0, (5)
также является функцией полезности.
Рассмотрим теперь ординалистский (порядковый) подход к полезности. Как уже отмечалось ранее, этот подход основан на значительно менее жестких допущениях, чем кардиналистский, - мы отказываемся от предположения о том, что потребитель способен "измерять полезность, извлекаемую из некоторого набора товаров, и предполагаем, что потребитель просто может сравнить и упорядочить различные наборы товаров с точки зрения их предпочтительности. При этом, естественно, более предпочтительны наборы товаров, имеющие более высокий уровень полезности, и равноценны наборы, имеющие одинаковый уровень полезности.
Заметим прежде всего, что порядковый подход вовсе не исключает возможности присвоения полезностям наборов благ некоторых численных значений.
Пусть, например, потребитель, столкнувшись с тремя наборами благ, сумел сравнить эти наборы и расположить их в порядке возрастания полезности следующим образом: , X``, X```. Тогда ничто не мешает нам принять порядковый номер набора благ в этом упорядоченном множестве за численное выражение полезности данного товарного набора, т. е.:
U(X`) = 1, U(X``) = 2, U(X```) = 3.
Предположим теперь, что появился еще один набор благ, , равноценный с точки зрения потребителя набору . Как определить полезность этого набора? Понятно, что полезности равноценных наборов должны быть равны, т. е.:
U(X```) = U(X``) = 2
Очевидно, однако, что численные значения, присвоенные нами полезности наборов благ, не внесут в этом случае никакой информации, помимо ответа на простой вопрос: является ли некоторый набор благ более предпочтительным, менее предпочтительным или равноценным какому-либо другому набору. По этой причине функцией порядковой полезности может служить любая функция U(X), отвечающая следующему требованию: эта функция принимает большие значения для тех наборов благ, которые предпочтительнее ("лучше") с точки зрения потребителя, и одинаковые значения для равноценных наборов благ.
В табл. 2 приведены несколько вариантов, отвечающих этому требованию функций полезности для рассматриваемого нами примера.
Таблица 2. Функции полезности различных наборов товаров
Набор благ |
U1(X) |
U2(X) |
U3(X) |
|
X` |
1 |
1 |
1 |
Из табл. 2 легко увидеть важнейшее различие между кардиналистским и ординалистским подходами. Функция порядковой полезности в противоположность количественной позволяет лишь судить о том, какой из наборов благ предпочтительнее, и отнюдь не дает возможности оценивать и сравнивать разницу в полезности наборов (насколько один набор предпочтительнее другого), что, кстати, и делает бессмысленным при ординалистском подходе понятие предельной полезности.
Вообще говоря, если U(X) - ординалистская функция полезности, а Т(U) - любая монотонно возрастающая функция, то функция вида:
V(X) = T(U(X)) (6)
также является функцией полезности.
Как видим, по сравнению с кардиналистским ординалистский подход допускает значительно больший произвол в присвоении числовых значений различным полезностям: функция T(U) не обязательно должна быть линейной. Важно лишь, чтобы большим значениям ее аргумента соответствовали большие значения функции.
Раздел 3. Основные предположения ординалистской теории полезности
До сих пор, говоря об ординалистском подходе, мы считали, что возможность упорядочения потребителем наборов благ по степени их предпочтения и существование функции порядковой полезности есть нечто само собой разумеющееся. На самом деле, однако, такое утверждение требует от нас принятия некоторых предположений аксиоматического характера о свойствах отношений предпочтения и безразличия, не выходящих, впрочем, за рамки простого здравого смысла.
I. Предположение о сравнимости. Потребитель способен сравнить любые два возможные набора благ и в результате этого сравнения приходит к одному (и только одному) из следующих трех возможных заключений:
или X` > X`` (набор X` предпочтительнее, чем набор X``);
или X` < X`` (набор X` менее предпочтителен, чем набор X``);
или X` ~ X`` (набор X` столь же предпочтителен, как и набор X`` - потребитель безразличен в выборе между и ).
Заметим, что мы не даем здесь какого-либо специального определения понятиям "предпочтение" и "безразличие", считая, что смысл этих понятий достаточно ясен.
Подчеркнем лишь, что безразличие в выборе ни в коем случае не означает "не могу сравнить". Потребитель безразличен в выборе между двумя равно желаемыми наборами, имеющими одинаковый уровень полезности. Предположение I в целом кажется вполне разумным и не противоречащим действительности. Конечно, вкусы, а значит, и предпочтения потребителей могут изменяться во времени, однако это вовсе не исключает однозначной определенности предпочтений в каждый конкретный момент времени.
Экономистам же в конечном счете для построения теории спроса важно определить, как изменяется потребительский выбор при изменении экономических переменных (цены и дохода), а вовсе не при изменении потребительских вкусов.
II. Предположение о транзитивности отношений предпочтения и безразличия. Если потребитель предпочитает набор X` набору X``, а набор X`` набору X```, то он предпочитает набор X` набору X```, т. е.:
если X` > X`` и X`` > X```,
то X` > X```.
Точно так же:
если X` > X`` и X`` ~ X```
или X` ~ X`` и X`` > X```,
то X` > X```,
а также:
если X` ~ X`` и X`` ~ X```,
то X` ~ X```.
Вообще говоря, справедливость предположений I и II обеспечивает возможность упорядочения потребителем всего множества наборов благ и присвоения полезностям этих наборов численных значений.
III. Предположение о ненасыщаемости. Если набор X` содержит не меньшее количество единиц каждого блага, чем набор X``, то набор X` предпочтительнее или безразличен набору X``. Если же только набор X` содержит при этом больше единиц хотя бы одного блага, чем набор X``, то набор X` предпочтительнее набора X``.
Это предположение, соответствующее интуитивному представлению о том, что "больше - лучше, чем меньше", охватывает практически все случаи, представляющие интерес для общей теории. Ситуации типа "больше некуда" встречаются редко; к тому же потребитель всегда может отказаться от дополнительного количества блага, если оно не увеличивает полезности.
Теперь, когда после всех сделанных выше предположений мы принимаем допущение о возможности упорядочения потребителем всего множества наборов благ с точки зрения их предпочтительности и существования порядковой функции полезности, мы могли бы в принципе вести дальнейший анализ с помощью математических методов, рассматривая задачу потребительского выбора как стандартную оптимизационную задачу максимизации функции полезности при некотором ограничении (задаваемом доходом потребителя и ценами благ). Однако, как мы не раз уже убеждались, применение графических методов исследования в экономике приводит к более наглядным результатам, причем более доступным путем (по крайней мере для читателя, не имеющего специальной математической подготовки). Попробуем представить систему предпочтений потребителя с помощью широко распространенного и играющего в экономике весьма важную роль инструментария кривых безразличия.
Раздел 4. Кривые безразличия
Прежде всего, очевидно, нам необходимо создать некий графический образ пространства благ, чтобы обеспечить возможность графического изображения любого из возможных наборов благ. Заметим, что графические методы наряду со своими неоспоримыми достоинствами имеют и один весьма существенный недостаток: эти методы ограничивают исследователя двумерным пространством. Оказывается, однако, что основные выводы, полученные для случая двух благ, без труда могут быть распространены и на случай сколь угодно большого числа благ. Именно последнее обстоятельство и дает нам возможность "пожертвовать" количеством благ с целью большей наглядности и доступности изложения. Итак, пусть потребитель сталкивается только с двумя благами, Х и У. Тогда любая из возможных комбинаций благ (например, комбинация А, содержащая х, единиц блага Х и у1 единиц благ Y) может быть представлена в виде точки на графике (рис. 1), где по оси абсцисс откладывается количество единиц блага X, а по оси ординат - количество единиц блага Y.
Рис. 1 Пространство благ
Основная идея графического представления системы предпочтений (функции полезности) потребителя с помощью кривых безразличия (впервые примененных английским экономистом Ф. Эджуортом в 1881 г.) весьма проста: соединим все точки, характеризующие наборы благ, имеющие некоторый определенный уровень полезности (для потребителя но, какой их этих наборов выбирать), и назовем полученную линию равной полезности кривой безразличия. Повторим теперь то же самое с наборами благ, имеющими какой-либо иной уровень полезности. Проделав эту операцию со всеми возможными наборами благ, получим карту безразличия - множество кривых безразличия, соответствующих всем возможным уровням полезности для данного потребителя.
Очевидно, карта безразличия есть не что иное, как графическое изображение шкалы предпочтений потребителя. Рассмотрим теперь некоторые свойства кривых безразличия.
Свойство 1. Кривые безразличия имеют отрицательный наклон.
Попробуем определить, в какой области лежат точки, характеризующие комбинации благ, имеющие такой же уровень полезности, как и набор А (рис. 2). Для этого проведем параллельно осям координат две перпендикулярные прямые линии, пересекающиеся в точке А. Эти линии разделяют пространство благ на четыре квадранта. Очевидно, что в соответствии с предположением III ординалистской теории полезности ("больше - лучше, чем меньше") любой набор благ из квадранта I предпочтительнее набора А. По этой же причине набор А предпочтительнее любого набора из квадранта III. Следовательно, все наборы благ, имеющие равный с набором А уровень полезности, должны лежать в квадрантах II и IV. Иными словами, кривая безразличия имеет отрицательный наклон. Это обстоятельство вполне понятно - ведь чтобы сохранить тот же общий уровень полезности набора при уменьшении потребления благ X, потребитель должен компенсировать это уменьшение увеличением потребления благ Y.
Рис. 2. Кривые безразличия имеют отрицательный наклон
Предположение III приводит нас к еще одному важному выводу: все точки, лежащие выше данной кривой безразличия, характеризуют наборы благ, имеющие более высокий уровень полезности, чем лежащие на этой кривой безразличия, а точки, лежащие ниже данной кривой безразличия, -- наборы, имеющие более низкий уровень полезности. (Предоставим доказательство читателю).
Свойство 2. Две кривые безразличия не могут пересекаться.
Предположим, что две кривые безразличия пересекаются в точке А (рис. 3).
Рис. 3. Кривые безразличия не могут пересекаться
Тогда (по определению кривой безразличия) B ~ A, C ~ A. Следовательно, по предположению II (транзитивности) должно быть B ~ C. Но это неверно. На самом деле (по предположению III) B > C. Следовательно, две кривые безразличия не могут иметь общую точку, так как один набор благ не может характеризоваться двумя различными уровнями полезности.
Свойство 3. Кривая безразличия может быть проведена через каждую точку в пространстве благ (по предположению I о сравнимости). Таким образом, мы получаем множество кривых безразличия - карту безразличия (рис. 4), содержащую полную информацию о системе предпочтений потребителя.
Рис. 4. Карта безразличия
Обращаем внимание читателя, что мы до сих пор изображали кривые безразличия выпуклыми к началу координат, ничем не аргументируя принятие такой формы кривых безразличия. Заметим также, что выпуклость не может быть обоснована предположениями I-III ординалистской теории полезности, т. е. требует от нас некоторых дополнительных предположений.
Попробуем теперь объяснить, почему мы изображаем кривые безразличия выпуклыми к началу координат.
Пусть x1x2 = x3x4 (рис. 5). Тогда при переходе из точки А в точку В потребитель сохранил общую полезность набора благ при увеличении потребления блага Х на x1x2 единиц и уменьшении потребления блага Y на y1y2 единиц. При переходе из точки С в точку D потребитель сохранил общую полезность при увеличении потребления блага Х на x3x4 = x1x2 единиц и уменьшении потребления блага Y на y3y4 единиц; при этом y1y2 > y3y4.
потребительский ординалистский полезность безразличие
Рис. 5. Уменьшение нормы замены при движении по кривой безразличия
Введем теперь понятие нормы замены. Нормой замены блага Y благом Х называется то количество блага Y, которое потребитель согласен уступить "в обмен" на увеличение количества блага Х на единицу с тем, чтобы общий уровень удовлетворения остался неизменным:
RS = - Dy/Dx. (7)
Из рис. 5 видно, что норма замены уменьшается при движении вдоль кривой безразличия, что, впрочем, вполне объяснимо логически: с увеличением количества блага Х и, соответственно, уменьшением количества блага Y потребитель все больше ценит ставшее относительно более дефицитным благо Y и, следовательно, готов отдать все меньшее количество единиц этого блага в обмен на каждую следующую единицу блага X.
При приближении точки В к точке А мы получаем предельную норму замены:
RS = - Dy/Dx. (8)
Очевидно, что предельная норма замены в этом случае равна угловому коэффициенту наклона касательной к кривой безразличия в точке А.
Таким образом, предположение о падении предельной нормы замены при движении вдоль кривой безразличия приводит нас к утверждению о выпуклости кривой безразличия: если верно первое, то верно и второе.
Итак, сформулируем еще одно свойство кривых безразличия.
Свойство 4. Предельная норма замены уменьшается при движении вдоль кривой безразличия. Кривые безразличия выпуклы к началу координат.
Строго говоря, это условие может иногда не соблюдаться.
Рассмотрим два следующих случая: жесткая взаимодополняемость благ (правый и левый ботинок) и совершенная взаимозаменяемость (например, два сорта аспирина для потребителя, не видящего разницы между этими сортами).
Рис. 6. Жесткая взаимодополняемость MRS = 0
На рис. 6 изображена кривая безразличия в случае жесткой взаимодополняемости, когда благ связаны в потреблении жестким соотношением и MRS = 0. На рис. 7 представлен случай совершенной взаимозаменяемости, когда оба блага воспринимаются потребителем как один, и MRS - постоянная величина.
Рис. 7. Совершенная взаимозаменяемость MRS = const.
Все же мы считаем, что большинство реальных кривых безразличия лежит между этими двумя крайними случаями (при этом чем более взаимозаменяемы блага, тем менее выпуклы кривые безразличия), и четвертое свойство кривых безразличия справедливо.
Итак, карта безразличия - множество кривых безразличия (отвечающих свойствам 1-4) - дает нам полную информацию о системе предпочтений потребителя (не требуя даже присвоения полезностям наборов благ каких-либо численных значений).
Размещено на Allbest.ru
...Подобные документы
Особенности потребительского выбора и потребительского поведения. Спрос и полезность; теории предельной полезности: от кардинализма к ординализму. Бюджетные линии и кривые безразличия. Правило максимизации полезности. Аксиомы ординалистской теории спроса.
контрольная работа [770,4 K], добавлен 17.06.2014Предпочтения потребителя и полезность, аксиомы теории потребительского выбора. Функция полезности как соотношение между ее уровнем, достигаемым потребителем, и объемами потребляемых благ. Анализ кривых безразличия для объяснения выбора потребителя.
лекция [85,8 K], добавлен 30.03.2011Основные теоретические положения ординалистской теории полезности. Кривые безразличия и закон замещения. Общая и предельная полезность: сущность категорий, способы их измерения и их практическая значимость. Бюджетная линия и равновесие потребителя.
курсовая работа [636,2 K], добавлен 26.05.2014Поведение каждого покупателя базируется на его собственном наборе потребностей, предпочтений и возможностей. Исследование потребительских предпочтений в рамках порядковой концепции полезности. Кривые безразличия, их свойства. Уравнение бюджетной линии.
контрольная работа [530,1 K], добавлен 18.07.2011Роль категории "полезность" в экономической теории. Изучение воздействия предельной полезности на индивидуальный и рыночный спрос. Закон убывающей предельной полезности. Количественный подход к анализу полезности и спроса. Теория потребительского выбора.
курсовая работа [186,0 K], добавлен 18.10.2014Полезность, предельная полезность и закон убывающей предельной полезности. Исторические сведения о возникновении этого понятия. Кардиналисты о состоянии равновесия потребителя. Основные положения ординалистской теории полезности, ее практическое значение.
курсовая работа [46,3 K], добавлен 27.08.2011Предпосылки теории потребительского выбора. Кардиналистская (количественная) полезность. Порядковая полезность и потребительский выбор. Предельная норма замещения. Кривая "доход–потребление". Зона замещения, кривая безразличия и бюджетное ограничение.
контрольная работа [278,5 K], добавлен 21.02.2015Общая и предельная полезность, закон убывающей предельной полезности и правило максимизации полезности. Кривые безразличия, карта безразличия, предельная норма замещения. Бюджетное ограничение, равновесие потребителя, индивидуальный и рыночный спрос.
курсовая работа [928,7 K], добавлен 23.09.2011Полезность блага как субъективная, индивидуальная для каждого потребителя величина. Создание теории предельной полезности. Возможность точно измерить полезность благ (кардинализм). Анализ шкалы предпочтения экономических благ в основе ординализма.
контрольная работа [30,5 K], добавлен 25.10.2013Сущность теории полезности и потребительского выбора. Понятие бюджетной линии и кривых безразличия. Расчет риска и доходности. Подходы к анализу кривых безразличия. Использование кривых безразличия "доходность-риск" для формирования портфеля ценных бумаг.
курсовая работа [680,9 K], добавлен 18.10.2012Понятие общей и предельной полезности. Потребительский выбор и бюджетное сдерживание. Закон предельной убывающей полезности. Типы кривых безразличия. Предельная полезность на рубль. Индивидуальный и рыночный спрос. Эффект дохода и эффект замещения.
курсовая работа [593,3 K], добавлен 06.03.2016Главные положения маржинализма. Потребительский выбор и поведение, правило максимизации полезности. Кривые и карта безразличия, предельная норма замещения. Характерные черты потребительского рынка. Потребительское поведение в современных условиях.
курсовая работа [144,4 K], добавлен 02.01.2013Полезность и равновесие потребителя. Закон убывающей предельной полезности. Кардиналистская теория полезности. Ординалистский подход к измерению полезности. Отношение предельной полезности к цене. Влияние изменения цены и дохода на выбор потребителя.
лекция [112,5 K], добавлен 13.11.2015Анализ поведения потребителя на основе количественной и порядковой теории полезности, их общие черты. Принцип убывающей предельной полезности ("первый закон Госсена"). Понятие "полезность" и монополистическая конкуренция. Доводы в пользу и против рекламы.
контрольная работа [18,3 K], добавлен 16.11.2010Количественный (кардиналистский) подход к анализу полезности и спроса. Аксиомы порядкового подхода. Предельная норма замещения и предельная полезность. Свойства кривых безразличия стандартного вида. Предельная норма замещения, основные свойства.
курсовая работа [335,2 K], добавлен 03.11.2013Полезность как способность блага (товара) к удовлетворению человеческих потребностей, суждение человека о благе. Общая характеристика аксиом ординалистской теории спроса. Знакомство с теорией потребительского выбора и потребительского поведения.
контрольная работа [548,1 K], добавлен 04.06.2014Проблема потребительского выбора. Модель поведения потребителя. Особенности потребительского спроса. Условия равновесия потребителя. Потребительский набор и бюджетное ограничение. Способы максимизации полезности. Правило максимизации полезности.
курсовая работа [791,5 K], добавлен 25.05.2006Сущность теории стоимости в экономической теории. Теория предельной полезности. Экономический смысл равенства. Потребительская и меновая стоимости. Полезность и ценность в экономической теории. Спрос, предложение и цена как элементы рыночного механизма.
курсовая работа [167,4 K], добавлен 04.06.2014Анализ потребительского выбора и теории полезности. Маркетинговое исследование спроса на новый товар. Оценка покупательских предпочтений рынка колбасных изделий. Влияние эластичности спроса по цене на ценовую политику, потребительские инновации.
дипломная работа [272,2 K], добавлен 11.08.2011Анализ бюджетного ограничения как фактора потребительского выбора. Определение правила максимизации полезности. Характеристика ординалисткой теории предельной полезности. Изучение эффектов дохода и замещения на примерах их практического применения.
контрольная работа [35,5 K], добавлен 23.03.2010