Уравнение парной регрессии
Использование графического метода для наглядного изображения формы связи между изучаемыми экономическими показателями. Линейная парная регрессия и метод наименьших квадратов. Оценка качества уравнения регрессии с помощью ошибки абсолютной аппроксимации.
Рубрика | Экономика и экономическая теория |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.09.2014 |
Размер файла | 23,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Корреляционный анализ
1.1 Уравнение парной регрессии. Использование графического метода
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид
y = bx + a + е
Здесь е - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления - это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения еi для каждого конкретного наблюдения i - случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров б и в
2) Оценками параметров б и в регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид
y = bx + a + е,
где ei - наблюдаемые значения (оценки) ошибок еi, а и b соответственно оценки параметров б и в регрессионной модели, которые следует найти.
Для оценки параметров б и в - используют МНК (метод наименьших квадратов).
Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (е) и независимой переменной (x).
Формально критерий МНК можно записать так:
S = ?(yi - y*i)2 > min
Система нормальных уравнений.
a*n + b?x = ?y
a?x + b?x2 = ?y*x
Для наших данных система уравнений имеет вид
5a + 19.8 b = 20.3
19.8 a + 94.38 b = 95.76
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем эмпирические коэффициенты регрессии: b = 0.9624, a = 0.2488
Уравнение регрессии (эмпирическое уравнение регрессии): y = 0.9624 x + 0.2488
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
Для расчета параметров регрессии построим расчетную таблицу (табл. 1)
x |
y |
x2 |
y2 |
x * y |
|
5.2 |
4.8 |
27.04 |
23.04 |
24.96 |
|
1 |
0.9 |
1 |
0.81 |
0.9 |
|
3.6 |
5 |
12.96 |
25 |
18 |
|
6.3 |
6.3 |
39.69 |
39.69 |
39.69 |
|
3.7 |
3.3 |
13.69 |
10.89 |
12.21 |
|
19.8 |
20.3 |
94.38 |
99.43 |
95.76 |
1. Параметры уравнения регрессии.
Выборочные средние.
Выборочные дисперсии:
Среднеквадратическое отклонение
1.2 Коэффициент корреляции. Ковариация
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от -1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 < rxy < 0.3: слабая;
0.3 < rxy < 0.5: умеренная;
0.5 < rxy < 0.7: заметная;
0.7 < rxy < 0.9: высокая;
0.9 < rxy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
1.3 Уравнение регрессии (оценка уравнения регрессии)
Линейное уравнение регрессии имеет вид y = 0.96 x + 0.25
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = 0.96 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.96.
Коэффициент a = 0.25 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 - прямая связь, иначе - обратная). В нашем примере связь прямая.
1.4 Ошибка аппроксимации
экономический линейный регрессия аппроксимация
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.
Поскольку ошибка больше 7%, то данное уравнение не желательно использовать в качестве регрессии.
1.5 Коэффициент детерминации
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= 0.932 = 0.8697
т.е. в 86.97 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 13.03 % изменения Y объясняются факторами, не учтенными в модели (а также ошибками спецификации).
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2)
x |
y |
y(x) |
(yi-ycp)2 |
(y-y(x))2 |
(xi-xcp)2 |
|y - yx|:y |
|
5.2 |
4.8 |
5.25 |
0.55 |
0.21 |
1.54 |
0.0945 |
|
1 |
0.9 |
1.21 |
9.99 |
0.0968 |
8.76 |
0.35 |
|
3.6 |
5 |
3.71 |
0.88 |
1.66 |
0.13 |
0.26 |
|
6.3 |
6.3 |
6.31 |
5.02 |
0.000146 |
5.48 |
0.00192 |
|
3.7 |
3.3 |
3.81 |
0.58 |
0.26 |
0.0676 |
0.15 |
|
19.8 |
20.3 |
20.3 |
17.01 |
2.22 |
15.97 |
0.85 |
2. Оценка параметров уравнения регрессии
2.1 Значимость коэффициента корреляции
Для того чтобы при уровне значимости б проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ? 0, надо вычислить наблюдаемое значение критерия
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости б и числу степеней свободы k = n - 2 найти критическую точку tкрит двусторонней критической области. Если tнабл < tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| > tкрит -- нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости б=0.05 и степенями свободы k=3 находим tкрит:
tкрит (n-m-1;б/2) = (3;0.025) = 3.182
где m = 1 - количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
2.2 Интервальная оценка для коэффициента корреляции (доверительный интервал)
Доверительный интервал для коэффициента корреляции
r(0.75;1.12)
2.3 Анализ точности определения оценок коэффициентов регрессии
Несмещенной оценкой дисперсии возмущений является величина:
S2y = 0.74 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 0.86 - стандартная ошибка оценки (стандартная ошибка регрессии).
Sa - стандартное отклонение случайной величины a.
Sb - стандартное отклонение случайной величины b.
2.4 Доверительные интервалы для зависимой переменной
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± е)
tкрит (n-m-1;б/2) = (3;0.025) = 3.182
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 4
(0.25 + 0.96*4 ± 1.22) (2.87;5.32)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
2.5 Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика. Критерий Стьюдента.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y).
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости б=0.05.
В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).
Табличное значение определяется в зависимости от уровня значимости (б) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-б) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости б.
tкрит (n-m-1;б/2) = (3;0.025) = 3.182
Поскольку 4.47 > 3.182, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 0.27 < 3.182, то статистическая значимость коэффициента регрессии a не подтверждается (принимаем гипотезу о равенстве нулю этого коэффициента). Это означает, что в данном случае коэффициентом a можно пренебречь.
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - tкрит Sb; b + tкрит Sb)
(0.96 - 3.182 * 0.22; 0.96 + 3.182 * 0.22)
(0.28;1.65)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - tкрит Sa; a + tкрит Sa)
(0.25 - 3.182 * 0.93; 0.25 + 3.182 * 0.93)
(-2.73;3.22)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
Так как точка 0 (ноль) лежит внутри доверительного интервала, то интервальная оценка коэффициента a статистически незначима.
2) F-статистика. Критерий Фишера.
Коэффициент детерминации R2 используется для проверки существенности уравнения линейной регрессии в целом.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели. Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m - число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости б.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=3, Fтабл = 10.1
Поскольку фактическое значение F > Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:
Показатели качества уравнения регрессии.
Показатель |
Значение |
|
Коэффициент детерминации |
0.87 |
|
Средний коэффициент эластичности |
не был рассчитан |
|
Средняя ошибка аппроксимации |
17.08 |
Размещено на Allbest.ru
...Подобные документы
Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.
контрольная работа [317,0 K], добавлен 11.05.2009Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.
контрольная работа [932,7 K], добавлен 09.06.2012Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.
контрольная работа [253,4 K], добавлен 17.03.2011Сущность и применение метода наименьших квадратов для однофакторной линейной регрессии. Нахождение коэффициента эластичности для указанной модели в заданной точке X и его экономический анализ. Прогноз убыточности на основании линейной регрессии.
контрольная работа [47,3 K], добавлен 15.06.2009Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.
контрольная работа [1,3 M], добавлен 24.09.2013Методика построения графика зависимости между величиной капитала и чистыми активами банков, определение уравнения регрессии зависимости чистых активов и капитала коммерческих банков. Вычисление показателей тесноты связи между изучаемыми признаками.
контрольная работа [89,5 K], добавлен 04.02.2009Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.
лабораторная работа [666,9 K], добавлен 21.04.2015Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.
лабораторная работа [1,6 M], добавлен 13.04.2010Временной ряд и его основные элементы. Автокорреляция уровней временного ряда и выявление структуры. Моделирование тенденции временного ряда. Метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Оценка параметров уравнения регрессии.
контрольная работа [95,7 K], добавлен 25.02.2010Расчет корреляции между экономическими показателями. Построение линейной и не линейной множественной регрессии. Проверка на гетероскедастичность моделей с использованием теста Бреуша-Пагана. Корреляция между наблюдаемыми экономическими показателями.
курсовая работа [82,2 K], добавлен 23.03.2011Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.
реферат [101,8 K], добавлен 31.10.2009Эффективность оборотных средств. Оценка тесноты связи между факторным и результативным показателями на основе корреляционного анализа. Проверка значимости коэффициента корреляции. Оценка значимости уравнения линейной регрессии. Формы связи показателей.
курсовая работа [143,2 K], добавлен 15.03.2015Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.
книга [26,6 M], добавлен 19.05.2010Методика оценки вероятности банкротства в модели Альтмана. Расчет индекса кредитоспособности применительно к российским условиям. Параметры уравнения регрессии методом наименьших квадратов. Оценка адекватности финансовых политик состояниям экономики.
курсовая работа [74,6 K], добавлен 08.01.2010Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.
контрольная работа [25,2 K], добавлен 20.11.2014Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.
контрольная работа [513,5 K], добавлен 02.05.2015Параметры уравнений линейной, степенной парной. Оценка тесноты связи с помощью показателей корреляции и детерминации, качества уравнений с помощью средней ошибки аппроксимации. Определение прогнозного значения от среднего значения заданного параметра.
контрольная работа [150,5 K], добавлен 22.02.2016Порядок проведения проверки статистических гипотез. Проверка однородности результатов эксперимента в целях исключения грубых ошибок. Расчет теоретических частот для нормального распределения. Уравнение линейной регрессии и метод наименьших квадратов.
курсовая работа [349,5 K], добавлен 09.01.2011Составление матрицы парных коэффициентов корреляции. Построение уравнения регрессии, характеризующего зависимость цены от всех факторов. Проведение регрессионного анализа с помощью пакета SPSS. Экономическая интерпретация коэффициентов модели регрессии.
лабораторная работа [2,5 M], добавлен 27.09.2012Статистика розничного и оптового товарооборота: показательная регрессия, построение регрессии. Дисперсионный анализ для линейной регрессии, изучение ее качества. Доверительные интервалы для оцененных параметров и критерий Фишера значимости регрессии.
контрольная работа [300,4 K], добавлен 21.08.2008