Основная задача эконометрики

Характеристика целей эконометрического моделирования. Линейная модель парной регрессии и корреляции. Исследование особенностей системы эконометрических уравнений. Основные аспекты отбора факторов при построении уравнения множественной регрессии.

Рубрика Экономика и экономическая теория
Вид курс лекций
Язык русский
Дата добавления 08.02.2015
Размер файла 297,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.

4.3 Моделирование сезонных колебаний

Простейший подход к моделированию сезонных колебаний - это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий:

. (4.3)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.

Общий вид мультипликативной модели выглядит так:

. (4.4)

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

Выравнивание исходного ряда методом скользящей средней.

Расчет значений сезонной компоненты .

Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.

Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.

Расчет полученных по модели значений () или ().

Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.

Скорректированные значения сезонной компоненты в аддитивной модели равны , где , в мультипликативной модели получаются при умножении ее средней оценки на корректирующий коэффициент , где .

Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент, в мультипликативной модели есть произведение трендовой и сезонной компонент.

4.4 Автокорреляция в остатках. Критерий Дарбина-Уотсона

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.

В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .

Один из более распространенных методов определения автокорреляции в остатках - это расчет критерия Дарбина-Уотсона:

. (4.5)

Т.е. величина есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Можно показать, что при больших значениях существует следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка : .

Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Т.е. .

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

- есть положительная автокорреляция остатков, отклоняется, с вероятностью принимается ;

- зона неопределенности;

- нет оснований отклонять , т.е. автокорреляция остатков отсутствует;

- зона неопределенности;

- есть отрицательная автокорреляция остатков, отклоняется, с вероятностью принимается .

Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Краткий справочник по формулам

Формула

Пояснение

Остаточная дисперсия

Параметр а регрессии

Коэффициент регрессии

Ковариация

Вариация х

Вариация у

Среднее квадратическое отклонение х

Среднее квадратическое отклонение у

Коэффициент корреляции

Коэффициент детерминации

Средняя ошибка аппроксимации

Общая сумма квадратов отклонений равна сумме факторной и остаточной сумм квадратов отклонений

Общая сумма квадратов отклонений

Факторная сумма квадратов отклонений

Остаточная сумма квадратов отклонений

Общая дисперсия на одну степень свободы

Факторная дисперсия на одну степень свободы

Остаточная дисперсия на одну степень свободы

Расчетное значение критерия Фишера

, и .

Табличное значение критерия Фишера

Стандартная ошибка коэффициента регрессии

Остаточная дисперсия на одну степень свободы

t-статистика коэффициента регрессии

Доверительный интервал коэффициента регрессии

Стандартная ошибка параметра регрессии

t-статистика параметра регрессии

Стандартная ошибка коэффициента корреляции

t-статистика коэффициента корреляции

Связь между критерием Стьюдента и критерием Фишера

Доверительный интервал прогноза

Предельная ошибка прогноза

Стандартная ошибка прогноза

Коэффициент эластичности

Индекс корреляции

Индекс детерминации

Расчетное значение критерия Фишера для нелинейной регрессии

Стандартизованный вид множественной регрессии

Связь между коэффициентами «чистой» регрессии и стандартизованными

Частный коэффициент эластичности

Средний показатель эластичности

Множественный коэффициент корреляции

Множественный коэффициент детерминации

Определитель матрицы парных коэффициентов

Определитель матрицы межфакторной корреляции

Скорректированный индекс множественной детерминации

Частный коэффициент корреляции

,

Частный коэффициент корреляции

Частный коэффициент корреляции

Частный коэффициент корреляции

Множественный коэффициент корреляции

Множественный коэффициент корреляции

Расчетное значение критерия Фишера для множественной регрессии

Частный F-критерий

,

Частный F-критерий

t-статистика коэффициента множественной регрессии

Стандартная ошибка коэффициента множественной регрессии

Размещено на Allbest.ru

...

Подобные документы

  • Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.

    контрольная работа [1,3 M], добавлен 24.09.2013

  • Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.

    контрольная работа [172,9 K], добавлен 17.01.2004

  • Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.

    контрольная работа [932,7 K], добавлен 09.06.2012

  • Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.

    лабораторная работа [666,9 K], добавлен 21.04.2015

  • Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.

    контрольная работа [513,5 K], добавлен 02.05.2015

  • Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.

    контрольная работа [25,2 K], добавлен 20.11.2014

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.

    контрольная работа [317,0 K], добавлен 11.05.2009

  • Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.

    контрольная работа [253,4 K], добавлен 17.03.2011

  • Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.

    лабораторная работа [1,6 M], добавлен 13.04.2010

  • Анализ, расчет и построение исходных динамических рядов признака-функции и признака-фактора. Расчет показателей вариации динамических рядов. Количественное измерение тесноты связи признака-функции и признаков-факторов методом парной корреляции.

    курсовая работа [92,7 K], добавлен 24.09.2014

  • Составление матрицы парных коэффициентов корреляции. Построение уравнения регрессии, характеризующего зависимость цены от всех факторов. Проведение регрессионного анализа с помощью пакета SPSS. Экономическая интерпретация коэффициентов модели регрессии.

    лабораторная работа [2,5 M], добавлен 27.09.2012

  • Экономическая интерпретация коэффициентов регрессии. Графическое представление фактических и модельных значений точки прогноза, уравнений регрессии (гиперболической, степенной, показательной). Нахождение коэффициентов детерминации и эластичности.

    контрольная работа [324,1 K], добавлен 13.04.2010

  • Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.

    книга [26,6 M], добавлен 19.05.2010

  • Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.

    реферат [101,8 K], добавлен 31.10.2009

  • Исходные данные о продаже квартир на вторичном рынке жилья исследуемого региона, этапы нахождения на данной основе парной регрессии, уравнения линейной регрессии, выборочной дисперсии и ковариации. Определение средней стоимости квартиры, ее вариации.

    контрольная работа [80,7 K], добавлен 14.04.2011

  • Методика построения графика зависимости между величиной капитала и чистыми активами банков, определение уравнения регрессии зависимости чистых активов и капитала коммерческих банков. Вычисление показателей тесноты связи между изучаемыми признаками.

    контрольная работа [89,5 K], добавлен 04.02.2009

  • Параметры уравнений линейной, степенной парной. Оценка тесноты связи с помощью показателей корреляции и детерминации, качества уравнений с помощью средней ошибки аппроксимации. Определение прогнозного значения от среднего значения заданного параметра.

    контрольная работа [150,5 K], добавлен 22.02.2016

  • Основные этапы многофакторного корреляционного анализа и интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэффициентов. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента.

    контрольная работа [605,2 K], добавлен 29.07.2010

  • Виды корреляции и регрессии, применяемые в статистическом анализе социально-экономических явлений и процессов. Построение корреляционной модели (уравнения регрессии). Построение корреляционной таблицы, выполнение интервальной группировки по признакам.

    курсовая работа [131,7 K], добавлен 03.10.2014

  • Расчет показателей динамики стоимости имущества ОАО "Сургутнефтегаз". Построение линейного уравнения тренда роста балансовой стоимости имущества. Однофакторный дисперсионный анализ. Параметры уравнения регрессии. Значимость коэффициента корреляции.

    дипломная работа [146,6 K], добавлен 29.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.