Основная задача эконометрики
Характеристика целей эконометрического моделирования. Линейная модель парной регрессии и корреляции. Исследование особенностей системы эконометрических уравнений. Основные аспекты отбора факторов при построении уравнения множественной регрессии.
Рубрика | Экономика и экономическая теория |
Вид | курс лекций |
Язык | русский |
Дата добавления | 08.02.2015 |
Размер файла | 297,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.
4.3 Моделирование сезонных колебаний
Простейший подход к моделированию сезонных колебаний - это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.
Общий вид аддитивной модели следующий:
. (4.3)
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.
Общий вид мультипликативной модели выглядит так:
. (4.4)
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.
Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.
Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
Выравнивание исходного ряда методом скользящей средней.
Расчет значений сезонной компоненты .
Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.
Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.
Расчет полученных по модели значений () или ().
Расчет абсолютных и/или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.
В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле.
Скорректированные значения сезонной компоненты в аддитивной модели равны , где , в мультипликативной модели получаются при умножении ее средней оценки на корректирующий коэффициент , где .
Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент, в мультипликативной модели есть произведение трендовой и сезонной компонент.
4.4 Автокорреляция в остатках. Критерий Дарбина-Уотсона
Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.
Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.
В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .
Один из более распространенных методов определения автокорреляции в остатках - это расчет критерия Дарбина-Уотсона:
. (4.5)
Т.е. величина есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.
Можно показать, что при больших значениях существует следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка : .
Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Т.е. .
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:
- есть положительная автокорреляция остатков, отклоняется, с вероятностью принимается ;
- зона неопределенности;
- нет оснований отклонять , т.е. автокорреляция остатков отсутствует;
- зона неопределенности;
- есть отрицательная автокорреляция остатков, отклоняется, с вероятностью принимается .
Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .
Краткий справочник по формулам
Формула |
Пояснение |
|
Остаточная дисперсия |
||
Параметр а регрессии |
||
Коэффициент регрессии |
||
Ковариация |
||
Вариация х |
||
Вариация у |
||
Среднее квадратическое отклонение х |
||
Среднее квадратическое отклонение у |
||
Коэффициент корреляции |
||
Коэффициент детерминации |
||
Средняя ошибка аппроксимации |
||
Общая сумма квадратов отклонений равна сумме факторной и остаточной сумм квадратов отклонений |
||
Общая сумма квадратов отклонений |
||
Факторная сумма квадратов отклонений |
||
Остаточная сумма квадратов отклонений |
||
Общая дисперсия на одну степень свободы |
||
Факторная дисперсия на одну степень свободы |
||
Остаточная дисперсия на одну степень свободы |
||
Расчетное значение критерия Фишера |
||
, и . |
Табличное значение критерия Фишера |
|
Стандартная ошибка коэффициента регрессии |
||
Остаточная дисперсия на одну степень свободы |
||
t-статистика коэффициента регрессии |
||
Доверительный интервал коэффициента регрессии |
||
Стандартная ошибка параметра регрессии |
||
t-статистика параметра регрессии |
||
Стандартная ошибка коэффициента корреляции |
||
t-статистика коэффициента корреляции |
||
Связь между критерием Стьюдента и критерием Фишера |
||
Доверительный интервал прогноза |
||
Предельная ошибка прогноза |
||
Стандартная ошибка прогноза |
||
Коэффициент эластичности |
||
Индекс корреляции |
||
Индекс детерминации |
||
Расчетное значение критерия Фишера для нелинейной регрессии |
||
Стандартизованный вид множественной регрессии |
||
Связь между коэффициентами «чистой» регрессии и стандартизованными |
||
Частный коэффициент эластичности |
||
Средний показатель эластичности |
||
Множественный коэффициент корреляции |
||
Множественный коэффициент детерминации |
||
Определитель матрицы парных коэффициентов |
||
Определитель матрицы межфакторной корреляции |
||
Скорректированный индекс множественной детерминации |
||
Частный коэффициент корреляции |
||
, |
Частный коэффициент корреляции |
|
Частный коэффициент корреляции |
||
Частный коэффициент корреляции |
||
Множественный коэффициент корреляции |
||
Множественный коэффициент корреляции |
||
Расчетное значение критерия Фишера для множественной регрессии |
||
Частный F-критерий |
||
, |
Частный F-критерий |
|
t-статистика коэффициента множественной регрессии |
||
Стандартная ошибка коэффициента множественной регрессии |
Размещено на Allbest.ru
...Подобные документы
Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.
контрольная работа [1,3 M], добавлен 24.09.2013Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.
контрольная работа [172,9 K], добавлен 17.01.2004Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.
контрольная работа [932,7 K], добавлен 09.06.2012Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.
лабораторная работа [666,9 K], добавлен 21.04.2015Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.
контрольная работа [513,5 K], добавлен 02.05.2015Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.
контрольная работа [25,2 K], добавлен 20.11.2014Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.
контрольная работа [317,0 K], добавлен 11.05.2009Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.
контрольная работа [253,4 K], добавлен 17.03.2011Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.
лабораторная работа [1,6 M], добавлен 13.04.2010Анализ, расчет и построение исходных динамических рядов признака-функции и признака-фактора. Расчет показателей вариации динамических рядов. Количественное измерение тесноты связи признака-функции и признаков-факторов методом парной корреляции.
курсовая работа [92,7 K], добавлен 24.09.2014Составление матрицы парных коэффициентов корреляции. Построение уравнения регрессии, характеризующего зависимость цены от всех факторов. Проведение регрессионного анализа с помощью пакета SPSS. Экономическая интерпретация коэффициентов модели регрессии.
лабораторная работа [2,5 M], добавлен 27.09.2012Экономическая интерпретация коэффициентов регрессии. Графическое представление фактических и модельных значений точки прогноза, уравнений регрессии (гиперболической, степенной, показательной). Нахождение коэффициентов детерминации и эластичности.
контрольная работа [324,1 K], добавлен 13.04.2010Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.
книга [26,6 M], добавлен 19.05.2010Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.
реферат [101,8 K], добавлен 31.10.2009Исходные данные о продаже квартир на вторичном рынке жилья исследуемого региона, этапы нахождения на данной основе парной регрессии, уравнения линейной регрессии, выборочной дисперсии и ковариации. Определение средней стоимости квартиры, ее вариации.
контрольная работа [80,7 K], добавлен 14.04.2011Методика построения графика зависимости между величиной капитала и чистыми активами банков, определение уравнения регрессии зависимости чистых активов и капитала коммерческих банков. Вычисление показателей тесноты связи между изучаемыми признаками.
контрольная работа [89,5 K], добавлен 04.02.2009Параметры уравнений линейной, степенной парной. Оценка тесноты связи с помощью показателей корреляции и детерминации, качества уравнений с помощью средней ошибки аппроксимации. Определение прогнозного значения от среднего значения заданного параметра.
контрольная работа [150,5 K], добавлен 22.02.2016Основные этапы многофакторного корреляционного анализа и интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэффициентов. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента.
контрольная работа [605,2 K], добавлен 29.07.2010Виды корреляции и регрессии, применяемые в статистическом анализе социально-экономических явлений и процессов. Построение корреляционной модели (уравнения регрессии). Построение корреляционной таблицы, выполнение интервальной группировки по признакам.
курсовая работа [131,7 K], добавлен 03.10.2014Расчет показателей динамики стоимости имущества ОАО "Сургутнефтегаз". Построение линейного уравнения тренда роста балансовой стоимости имущества. Однофакторный дисперсионный анализ. Параметры уравнения регрессии. Значимость коэффициента корреляции.
дипломная работа [146,6 K], добавлен 29.11.2014