Расчет коэффициентов регрессии и корреляции

Расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Оценка статистической значимости параметров регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента. Расчет ошибки прогноза и доверительного интервала.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 15.04.2015
Размер файла 85,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).

Требуется:

1. Построить линейное уравнение парной регрессии от .

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

корреляция аппроксимайия регрессия интервал

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

79

134

2

91

154

3

77

128

4

87

138

5

84

133

6

76

144

7

84

160

8

94

149

9

79

125

10

98

163

11

81

120

12

115

162

Решение

1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.

Таблица D.2

1

79

134

10586

6241

17956

134,746

-0,746

0,01

2

91

154

14014

8281

23716

146,194

7,806

0,05

3

77

128

9856

5929

16384

132,838

-4,838

0,04

4

87

138

12006

7569

19044

142,378

-4,378

0,03

5

84

133

11172

7056

17689

139,516

-6,516

0,05

6

76

144

10944

5776

20736

131,884

12,116

0,08

7

84

160

13440

7056

25600

139,516

20,484

0,13

8

94

149

14006

8836

22201

149,056

-0,056

0,00

9

79

125

9875

6241

15625

134,746

-9,746

0,08

10

98

163

15974

9604

26569

152,872

10,128

0,06

11

81

120

9720

6561

14400

136,654

-16,65

0,14

12

115

162

18630

13225

26244

169,09

-7,09

0,04

Итого

1045

1710

150223

92375

246164

1709,49

0

71,00

Среднее значение

87,08

142,5

12518,58

7697,917

20514

-

-

5,92

10,696

14,402

-

-

-

-

-

-

114,41

207,42

-

-

-

-

-

-

;

.

Получено уравнение регрессии:

у = 59,37+0,954 х.

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,954 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

; .

Это означает, что 67% вариации заработной платы () объясняется вариацией фактора - среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

%.

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как Fфакт=10,1> Fтабл=4,96, то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит .

Определим случайные ошибки , , :

Тогда

;

;

Фактические значения -статистики превосходят табличное значение:

ta =2,25> tтабл =2,23; tв =3,18> tтабл =2,23; tв =3,15> tтабл =2,23;

поэтому параметры , и не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:

;

Доверительные интервалы

59,37+-56,76

= 59,37 - 56,76 =2,61

=59,37 + 56,76 =116,13

=0,954+-0,669

= 0,954-0,669 = 0,285

=0,954+0,669 = 1,623

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: =87,08*1,07 = 93,18 руб., тогда прогнозное значение заработной платы составит: =59,37+0,954*93,18 =148,26 руб.

5. Ошибка прогноза составит:

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

.=2,23*11,74=26,18

Доверительный интервал прогноза:

148,26+-26,18

148,26-26,18 = 122,08руб.;

148,26+26,18 = 174,44руб.

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 122,08 руб. до 174,44 руб.

6. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):

Рис. D.1

Размещено на Allbest.ru

...

Подобные документы

  • Основные этапы многофакторного корреляционного анализа и интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэффициентов. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента.

    контрольная работа [605,2 K], добавлен 29.07.2010

  • Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.

    контрольная работа [1,3 M], добавлен 24.09.2013

  • Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.

    лабораторная работа [1,6 M], добавлен 13.04.2010

  • Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.

    контрольная работа [25,2 K], добавлен 20.11.2014

  • Проверка выполнения предпосылок МНК. Значимость параметров уравнения регрессии с помощью t-критерия Стьюдента и F-критерия Фишера. Средняя относительная ошибка аппроксимации. Гиперболические, степенные и показательные уравнения нелинейной регрессии.

    контрольная работа [253,4 K], добавлен 17.03.2011

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.

    контрольная работа [317,0 K], добавлен 11.05.2009

  • Расчет коэффициентов корреляции Пирсона и ранговой корреляции Спирмена по регионам Российской Федерации для заданных показателей. Построение линейной и нелинейной (квадратической) модели регрессии. Проведение проверки значимости для полученных данных.

    контрольная работа [464,0 K], добавлен 28.05.2012

  • Построение корреляционного поля между ценой акции и доходностью капитала. Гипотеза о тесноте и виде зависимости между доходностью и ценой. Расчет коэффициента детерминации. Оценка статистической значимости уравнения регрессии с помощью F-критерия Фишера.

    контрольная работа [274,3 K], добавлен 25.09.2013

  • Эконометрическое изучение и анализ производственных затрат и себестоимости зерна. Многофакторный корреляционно-регрессионный анализ. Параметры парной регрессии и корреляции. Автокорреляция временного ряда и в остатках, расчет критерия Дарбина-Уотсона.

    курсовая работа [234,8 K], добавлен 21.01.2011

  • Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.

    контрольная работа [513,5 K], добавлен 02.05.2015

  • Параметры уравнений линейной, степенной парной. Оценка тесноты связи с помощью показателей корреляции и детерминации, качества уравнений с помощью средней ошибки аппроксимации. Определение прогнозного значения от среднего значения заданного параметра.

    контрольная работа [150,5 K], добавлен 22.02.2016

  • Раскрытие понятия: интервальной шкалы, среднего арифметического, уровня статистической значимости. Как интерпретировать моду, медиану и среднее. Решение задач с использованием критерия Фридмана, Розенбаума. Расчет коэффициента корреляции Спримена.

    контрольная работа [90,5 K], добавлен 29.09.2010

  • Гипотезы о нормальном и о равномерном распределении. Оценка параметров регрессии. Расчет математического ожидания и дисперсии. Расчет коэффициентов регрессии. Использование статистического критерия хи-квадрат. Построение сгруппированной выборки.

    курсовая работа [185,4 K], добавлен 20.04.2015

  • Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.

    реферат [101,8 K], добавлен 31.10.2009

  • Оценка силы вариации признака. Построение регрессионной модели. Парный линейный коэффициент корреляции. Оценка статистической надежности результатов. Значение коэффициента детерминации. Оценка силы связи признаков. Фактическое значение критерия Фишера.

    контрольная работа [165,8 K], добавлен 27.05.2015

  • Средние статистические величины и аналитическая группировка данных предприятия. Результаты расчета коэффициента Фехнера по цехам. Измерение степени тесноты связи в статистике с помощью показателя корреляции. Поля корреляции и уравнения регрессии для цеха.

    практическая работа [495,9 K], добавлен 26.11.2012

  • Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.

    контрольная работа [932,7 K], добавлен 09.06.2012

  • Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.

    лабораторная работа [666,9 K], добавлен 21.04.2015

  • Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.

    контрольная работа [172,9 K], добавлен 17.01.2004

  • Составление матрицы парных коэффициентов корреляции. Построение уравнения регрессии, характеризующего зависимость цены от всех факторов. Проведение регрессионного анализа с помощью пакета SPSS. Экономическая интерпретация коэффициентов модели регрессии.

    лабораторная работа [2,5 M], добавлен 27.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.