Обобщенный метод наименьших квадратов

Цели применения к преобразованным данным обобщенного метода наименьших квадратов. Регрессионные модели с переменной структурой (фиктивные переменные). Анализ применения фиктивных переменных для функции спроса. Уравнение регрессии с фиктивными переменными.

Рубрика Экономика и экономическая теория
Вид лекция
Язык русский
Дата добавления 25.04.2015
Размер файла 105,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Обобщенный метод наименьших квадратов

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS - Ordinary Least Squares) заменять обобщенным методом, т.е. методом GLS (Generalized Least Squares).

Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Остановимся на использовании ОМНК для корректировки гетероскедастичности.

Как и раньше, будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине , т.е.

,

где - дисперсия ошибки при конкретном -м значении фактора; - постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков; - коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обусловливает неоднородность дисперсии.

При этом предполагается, что неизвестна, а в отношении величин выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде для уравнения при модель примет вид: . В ней остаточные величины гетероскедастичны. Предполагая в них отсутствие автокорреляции, можно перейти к уравнению с гомоскедастичными остатками, поделив все переменные, зафиксированные в ходе -го наблюдения, на . Тогда дисперсия остатков будет величиной постоянной, т.е. .

Иными словами, от регрессии по мы перейдем к регрессии на новых переменных: и . Уравнение регрессии примет вид:

,

а исходные данные для данного уравнения будут иметь вид:

,.

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные и взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Соответственно получим следующую систему нормальных уравнений:

Если преобразованные переменные и взять в отклонениях от средних уровней, то коэффициент регрессии можно определить как

.

При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней коэффициент регрессии определяется по формуле:

.

Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности коэффициент регрессии представляет собой взвешенную величину по отношению к обычному МНК с весом .

Аналогичный подход возможен не только для уравнения парной, но и для множественной регрессии. Предположим, что рассматривается модель вида

,

для которой дисперсия остаточных величин оказалась пропорциональна . представляет собой коэффициент пропорциональности, принимающий различные значения для соответствующих значений факторов и . Ввиду того, что

,

рассматриваемая модель примет вид

,

где ошибки гетероскедастичны.

Для того чтобы получить уравнение, где остатки гомоскедастичны, перейдем к новым преобразованным переменным, разделив все члены исходного уравнения на коэффициент пропорциональности . Уравнение с преобразованными переменными составит

.

Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:

.

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности . В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки пропорциональны значениям фактора. Так, если в уравнении

предположить, что , т.е. и , то обобщенный МНК предполагает оценку параметров следующего трансформированного уравнения:

.

Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь в виду, что новые преобразованные переменные получают новое экономическое содержание и их регрессия имеет иной смысл, чем регрессия по исходным данным.

Пример. Пусть - издержки производства, - объем продукции, - основные производственные фонды, - численность работников, тогда уравнение

является моделью издержек производства с объемными факторами. Предполагая, что пропорциональна квадрату численности работников , мы получим в качестве результативного признака затраты на одного работника , а в качестве факторов следующие показатели: производительность труда и фондовооруженность труда . Соответственно трансформированная модель примет вид

,

где параметры , , численно не совпадают с аналогичными параметрами предыдущей модели. Кроме этого, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее абсолютное изменение издержек производства с изменением абсолютной величины соответствующего фактора на единицу, они фиксируют при обобщенном МНК среднее изменение затрат на работника; с изменением производительности труда на единицу при неизменном уровне фовдовооруженности труда; и с изменением фондовооруженности труда на единицу при неизменном уровне производительности труда.

Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции, , можно перейти к уравнению регрессии вида

.

В нем новые переменные: - затраты на единицу (или на 1 руб. продукции), - фондоемкость продукции, - трудоемкость продукции.

Гипотеза о пропорциональности остатков величине фактора может иметь реальное основание: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать большая дисперсия результативного признака и большая дисперсия остаточных величин.

При наличии одной объясняющей переменной гипотеза трансформирует линейное уравнение

в уравнение

,

в котором параметры и поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии - свободным членом.

Пример. Рассматривая зависимость сбережений от дохода , по первоначальным данным было получено уравнение регрессии

.

Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:

.

Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т.е. 0,1178 и 0,1026 - оценки параметра зависимости сбережений от дохода.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Процесс перехода к относительным величинам может быть осложнен выдвижением иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Использование той или иной гипотезы предполагает специальные исследования остаточных величин для соответствующих регрессионных моделей. Применение обобщенного МНК позволяет получить оценки параметров модели, обладающие меньшей дисперсией.

Регрессионные модели с переменной структурой (фиктивные переменные)

До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для совокупности обследуемых уравнение регрессии имеет вид:

,

где - количество потребляемого кофе; - цена.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола: и женского пола: .

Различия в потреблении кофе проявятся в различии средних и . Вместе с тем сила влияния на может быть одинаковой, т.е. . В этом случае возможно построение общего уравнения регрессии с включением в него фактора "пол" в виде фиктивной переменной. Объединяя уравнения и и, вводя фиктивные переменные, можно прийти к следующему выражению:

,

где и - фиктивные переменные, принимающие значения:

В общем уравнении регрессии зависимая переменная рассматривается как функция не только цены но и пола . Переменная рассматривается как дихотомическая переменная, принимающая всего два значения: 1 и 0. При этом когда , то , и наоборот.

Для лиц мужского пола, когда и , объединенное уравнение регрессии составит: , а для лиц женского пола, когда и : . Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии: . Параметр является общим для всей совокупности лиц, как для мужчин, так и для женщин.

Однако при введении двух фиктивных переменных и в модель применение МНК для оценивания параметров и приведет к вырожденной матрице исходных данных, а следовательно, и к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в данном уравнении появляется свободный член, т.е. уравнение примет вид

.

Предполагая при параметре независимую переменную, равную 1, имеем следующую матрицу исходных данных:

.

В рассматриваемой матрице существует линейная зависимость между первым, вторым и третьим столбцами: первый равен сумме второго и третьего столбцов. Поэтому матрица исходных факторов вырождена. Выходом из создавшегося затруднения может явиться переход к уравнениям

или

,

т.е. каждое уравнение включает только одну фиктивную переменную или .

Предположим, что определено уравнение

,

где принимает значения 1 для мужчин и 0 для женщин.

Теоретические значения размера потребления кофе для мужчин будут получены из уравнения

.

Для женщин соответствующие значения получим из уравнения

.

Сопоставляя эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: - для женщин и - для мужчин.

Теперь качественный фактор принимает только два состояния, которым соответствуют значения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций. Только при соблюдении этого положения матрица исходных фиктивных переменных не будет линейно зависима и возможна оценка параметров модели.

Пример. Проанализируем зависимость цены двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: "хрущевка", панельный, кирпичный.

При использовании трех категорий домов вводятся две фиктивные переменные: и . Пусть переменная принимает значение 1 для панельного дома и 0 для всех остальных типов домов; переменная принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные и принимают значения 0 для домов типа "хрущевки".

Предположим, что уравнение регрессии с фиктивными переменными составило:

.

Частные уравнения регрессии для отдельных типов домов, свидетельствуя о наиболее высоких ценах квартир в панельных домах, будут иметь следующий вид: "хрущевки" - ; панельные - ; кирпичные - .

Параметры при фиктивных переменных и представляют собой разность между средним уровнем результативного признака для соответствующей группы и базовой группы. В рассматриваемом примере за базу сравнения цены взяты дома "хрущевки", для которых . Параметр при , равный 2200, означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 долл. США выше, чем в "хрущевках". Соответственно параметр при показывает, что в кирпичных домах цена выше в среднем на 1600 долл. при неизменной величине полезной площади по сравнению с указанным типом домов.

В отдельных случаях может оказаться необходимым введение двух и более групп фиктивных переменных, т.е. двух и более качественных факторов, каждый из которых может иметь несколько градаций. Например, при изучении потребления некоторого товара наряду с факторами, имеющими количественное выражение (цена, доход на одного члена семьи, цена на взаимозаменяемые товары и др.), учитываются и качественные факторы. С их помощью оцениваются различия в потреблении отдельных социальных групп населения, дифференциация в потреблении по полу, национальному составу и др. При построении такой модели из каждой группы фиктивных переменных следует исключить по одной переменной. Так, если модель будет включать три социальные группы, три возрастные категории и ряд экономических переменных, то она примет вид:

,

где - потребление;

- экономические (количественные) переменные.

До сих пор мы рассматривали фиктивные переменные как факторы, которые используются в регрессионной модели наряду с количественными переменными. Вместе с тем возможна регрессия только на фиктивных переменных. Например, изучается дифференциация заработной платы рабочих высокой квалификации по регионам страны. Модель заработной платы может иметь вид:

,

обобщенный метод наименьший квадрат

где - средняя заработная плата рабочих высокой квалификации по отдельным предприятиям;

……………………………………………………………………….

Поскольку последний район, указанный в модели, обозначен , то в исследование включено район.

Мы рассмотрели модели с фиктивными переменными, в которых последние выступают факторами. Может возникнуть необходимость построить модель, в которой дихотомический признак, т.е. признак, который может принимать только два значения, играет роль результата. Подобного вида модели применяются, например, при обработке данных социологических опросов. В качестве зависимой переменной рассматриваются ответы на вопросы, данные в альтернативной форме: "да" или "нет". Поэтому зависимая переменная имеет два значения: 1, когда имеет место ответ "да", и 0 - во всех остальных случаях. Модель такой зависимой переменной имеет вид:

.

Модель является вероятностной линейной моделью. В ней принимает значения 1 и 0, которым соответствуют вероятности и . Поэтому при решении модели находят оценку условной вероятности события при фиксированных значениях . Для оценки параметров линейно-вероятностной модели применяются методы Logit-, Probit - и Tobit-анализа. Такого рода модели используют при работе с неколичественными переменными. Как правило, это модели выбора из заданного набора альтернатив. Зависимая переменная представлена дискретными значениями (набор альтернатив), объясняющие переменные - характеристики альтернатив (время, цена), - характеристики индивидов (возраст, доход, уровень образования). Модель такого рода позволяет предсказать долю индивидов в генеральной совокупности, которые выбирают данную альтернативу.

Среди моделей с фиктивными переменными наибольшими прогностическими возможностями обладают модели, в которых зависимая переменная рассматривается как функция ряда экономических факторов и фиктивных переменных . Последние обычно отражают различия в формировании результативного признака по отдельным группам единиц совокупности, т.е. в результате неоднородной структуры пространственного или временного характера.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность и применение метода наименьших квадратов для однофакторной линейной регрессии. Нахождение коэффициента эластичности для указанной модели в заданной точке X и его экономический анализ. Прогноз убыточности на основании линейной регрессии.

    контрольная работа [47,3 K], добавлен 15.06.2009

  • Характеристика двухшагового метода наименьших квадратов для решения систем эконометрических уравнений. Способы оценки неизвестных параметров регрессионных моделей по выборочным данным. Знакомство с особенностями системы эконометрических уравнений.

    курсовая работа [593,8 K], добавлен 04.06.2015

  • Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.

    книга [26,6 M], добавлен 19.05.2010

  • Общий вид искомой модели, нахождению структурных коэффициентов. Ранг матрицы системы, число эндогенных переменных, достаточное условие индентифицируемости системы. Применение косвенного метода наименьших квадратов, выражение переменные через отклонения.

    контрольная работа [33,1 K], добавлен 15.10.2009

  • Основы построения регрессионных моделей: метод наименьших квадратов; двухмерная линейная концепция корреляционного и регрессионного анализа. Показатели статистической обработки информации: дисперсия, математическое ожидание и стандартное отклонение.

    контрольная работа [80,8 K], добавлен 27.11.2012

  • Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.

    реферат [101,8 K], добавлен 31.10.2009

  • Порядок проведения проверки статистических гипотез. Проверка однородности результатов эксперимента в целях исключения грубых ошибок. Расчет теоретических частот для нормального распределения. Уравнение линейной регрессии и метод наименьших квадратов.

    курсовая работа [349,5 K], добавлен 09.01.2011

  • Методика оценки вероятности банкротства в модели Альтмана. Расчет индекса кредитоспособности применительно к российским условиям. Параметры уравнения регрессии методом наименьших квадратов. Оценка адекватности финансовых политик состояниям экономики.

    курсовая работа [74,6 K], добавлен 08.01.2010

  • Статистический метод исследования влияния нескольких независимых переменных на зависимую переменную, определение их вклада в ее вариацию. Связь между несколькими независимыми переменными. Цели регрессионного анализа. Уравнение многомерной регрессии.

    презентация [122,6 K], добавлен 17.12.2012

  • Временной ряд и его основные элементы. Автокорреляция уровней временного ряда и выявление структуры. Моделирование тенденции временного ряда. Метод наименьших квадратов. Приведение уравнения тренда к линейному виду. Оценка параметров уравнения регрессии.

    контрольная работа [95,7 K], добавлен 25.02.2010

  • Нахождение доверительных интервалов с помощью функции Лапласа и критериев распределения Стьюдента: сравнение средних выборок; корреляция случайных величин. Метод наименьших квадратов: построение модели; расчет доверительных интервалов для коэффициентов.

    презентация [109,2 K], добавлен 30.07.2013

  • Решение с помощью метода скользящей средней, метода наименьших квадратов и экспоненциального сглаживания. Линейная зависимость валового выпуска продукции в стране от численности занятых. Определение величины интервала скольжения и временного ряда.

    контрольная работа [79,2 K], добавлен 01.02.2011

  • Проведение исследований, связанных с особенностями потребления домохозяйств. Деление домохозяйств на различные группы. Переменная расходов на человека. Оценивание модели по двухшаговому методу наименьших квадратов. Влияние эффектов дохода и замещения.

    контрольная работа [391,9 K], добавлен 21.09.2016

  • Фитнес в России: история развития, современное состояние. Фитнес-услуга как процесс, происходящий между клиентом и клубом, оказывающим услугу. Анализ клуба "ИКС-ФИТ Азимут" и выбор объекта прогнозирования. Метод парных сравнений и наименьших квадратов.

    курсовая работа [123,2 K], добавлен 28.04.2011

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.

    контрольная работа [317,0 K], добавлен 11.05.2009

  • Сравнение методов дифференциации издержек и результаты расчетов по методу наименьших квадратов. Основные показатели операционного анализа. Факторы, оказывающие влияние на порог рентабельности. Политика финансирования оборотных активов предприятия.

    курсовая работа [1,5 M], добавлен 09.06.2011

  • Показатели и методы анализа доходов окупаемости затрат. Изучение влияния отдельных факторов на урожайность зерновых культур. Выравнивание ряда динамики по среднему абсолютному приросту и способом наименьших квадратов. Прогнозирование окупаемости затрат.

    курсовая работа [249,9 K], добавлен 09.05.2013

  • Понятие, виды производственных средств. Расчет линейного коэффициента корреляции. Аналитическое выражение связи между факторным и результативным показателем на основе регрессионного анализа. Расчет параметров уравнения тренда методом наименьших квадратов.

    курсовая работа [80,9 K], добавлен 07.03.2016

  • Ознакомление с основами расчета численности безработных в заданном городе методом скользящей средней, экспоненциальных взвешенных и наименьших квадратов. Вычисление средней относительной ошибки. Построение графиков фактических и расчетных показателей.

    контрольная работа [219,7 K], добавлен 24.09.2014

  • Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.

    лабораторная работа [1,6 M], добавлен 13.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.