Статистика площадей регионов, числа дорожно-транспортных происшествий и численности населения
Структурная равноинтервальная, аналитическая и комбинационная группировка по признакам. Анализ рядов распределения, разложение дисперсии. Среднее значение признака и снижение ошибки средней величины. Статистика и динамика численности населения в регионах.
Рубрика | Экономика и экономическая теория |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.06.2015 |
Размер файла | 722,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Псковский государственный университет»
Кафедра «государственное и муниципальное управление»
Курсовая работа
По дисциплине: Статистика
Выполнила:
Александрова Надежда Станиславовна
Шифр 13001040
Группа 0012-05
Проверил:
Переверзев Г.А.
Псков
2015г.
Оглавление
Задание №1
1.1 Структурная равноинтервальная группировка
1.1.1 Структурная группировка по признаку - площадь территории на 1 янв. 2009 г., тыс. км. кв.
1.1.2 Структурная группировка по признаку - число автобусов общего пользования на 100000 чел. населения. шт
1.2 Аналитическая группировка
1.3 Комбинационная группировка
Задание №2
2.1 Построение рядов распределения
2.1.1 Ряд распределения регионов по площади территории на 1 янв. 2009 г., тыс. км. кв
2.1.2 Ряд распределения регионов по числу ДТП на 100 000 чел. населения
2.2 Анализ рядов распределения
2.2.1 Анализ ряда распределения регионов по числу ДТП на 100 000 чел. населения
2.2.2 Анализ ряда распределения регионов по площади территории на 1 янв. 2009 г., тыс. км. кв
2.3 Проверка теоремы о разложении дисперсии
Задание №3
Задание №4
4.1 Произвести сглаживание ряда динамики трёхлетней скользящей средней. Отобразить графически
4.2 Произвести аналитическое сглаживание ряда динамики
Задание №5
5.1 Пользуясь таблицами №4 и №5, сформировать таблицу исходных данных
Список использованной литературы
5.2 Определить индивидуальные индексы
5.3 Определить общие индексы
5.4 Определите прирост товарооборота - всего и в том числе за счёт изменения цен и объёма продажи товаров
5.5 Определите индекс структурных сдвигов
Список использованной литературы
Задание №1
Таблица 1.1 Исходные данные - социально-экономические показатели по регионам России, 2008 год
Регионы |
Площадь территории на 1 янв. 2009 г., тыс. км. кв. |
Число автобусов общего пользования на 100000 чел. населения, шт |
|
Ульяновская обл. |
37,2 |
29 |
|
Курганская обл. |
71,5 |
19 |
|
Свердловская обл.. |
194,3 |
38 |
|
Тюменская обл. |
1464,2 |
120 |
|
Челябинская обл. |
88,5 |
43 |
|
Алтайский край |
168,0 |
17 |
|
Забайкальский край |
431,9 |
29 |
|
Красноярский край |
2366,8 |
58 |
|
Иркутская обл. |
774,8 |
40 |
|
Кемеровская обл. |
95,7 |
61 |
|
Новосибирская обл. |
177,8 |
28 |
|
Омская обл. |
141,1 |
81 |
|
Томская обл. |
314,4 |
22 |
|
Камчатский край |
464,3 |
35 |
|
Приморский край |
164,7 |
23 |
|
Амурская обл. |
361,9 |
19 |
|
Магаданская обл. |
462,5 |
26 |
|
Сахалинская обл. |
87,1 |
2 |
|
Еврейская авт. обл. |
36,3 |
66 |
|
Чукотский авт. округ |
721,5 |
105 |
|
Белгородская обл. |
27,1 |
24 |
|
Брянская обл. |
34,9 |
49 |
|
Владимирская обл. |
29,1 |
20 |
|
Воронежская обл. |
52,2 |
28 |
|
Ивановская обл. |
21,4 |
12 |
|
Калужская обл. |
29,8 |
26 |
|
Костромская обл. |
60,2 |
44 |
|
Курская обл. |
30,0 |
51 |
|
Липецкая обл. |
24,0 |
60 |
|
Московская обл. |
45,8 |
53 |
1.1 Структурная равноинтервальная группировка
Структурные группировки строятся либо на основе ранее проведенной типологической группировки, либо на основе первичных данных. Проведение структурной группировки по первичной статистической информации предполагает решение таких методологических вопросов, как:
* выбор группировочного признака; в качестве такового может выступать как существенный, так и несущественный признак;
* определение числа групп и величины интервала.
1.1.1 Структурная группировка по признаку - площадь территории на 1 янв. 2009 г., тыс. км. кв.
Х - Площадь территории на 1 янв. 2009 г., тыс. км. кв.
Y- Число ДТП на 100 000 чел. населения
Xmax =2366,8 Xmin = 21,4
Формула Стерджесса для определения оптимального числа групп:
где n - число групп; N - число единиц совокупности
n = 1+3.322lgN, N= 30
n = 1+3.322lg30= 6
R = Xmax - Xmin = 2345,4
h = R / n = 390,9
Таблица 1.2 Группировка регионов по площади территории на 1 янв. 2009 г., тыс. км. кв.
Площадь территории на 1 янв. 2009 г., тыс. км. кв. |
Количество регионов |
в % к итогу |
|
21,4 - 412,3 |
23 |
76,7% |
|
412,3 - 803,2 |
5 |
16,7% |
|
803,2 - 1194,1 |
0 |
0,00% |
|
1194,1 - 1585 |
1 |
3,3% |
|
1585 - 1975,9 |
0 |
0,00% |
|
1975,9 - 2366,8 |
1 |
3,3% |
|
Итого |
30 |
100% |
Вывод: Максимальное количество регионов 23 из 30 (76,7 %) имеют площадь территории лежащую в пределах от 21,4 тыс. км. кв. - 412,3 тыс. км. кв. Минимальное количество регионов, а именно 0 из 30 имеют площадь территории лежащие в пределах от 803,2 тыс. км. кв. - 1194,1 тыс. км. кв., и в пределах от 1585 тыс. км. кв. - 1975,9 тыс. км. кв.
Среди регионов с самой большой площадью выделяется Красноярский край (2366,8 тыс. км. кв.). Среди регионов с самой маленькой площадью территории выделяется Ивановская область (21,4 тыс. км. кв.)
1.1.2 Структурная группировка по признаку - число автобусов общего пользования на 100000 чел. населения. шт
Y- Число автобусов общ. польз-я на 100000 чел. Населения.шт
Ymax = 120 Ymin = 2
R = Ymax - Ymin = 118
h = R / n = 19,7
Таблица 1.3 Группировка Числа автобусов общего пользования на 100000 чел. населения. шт
Число автобусов общего пользования на 100000 чел. населения, шт |
Количество единиц |
В % к итогу |
|
2 - 21,7 |
6 |
20% |
|
21,7 - 41,4 |
12 |
40% |
|
41,4 - 61,1 |
8 |
26,7% |
|
61,1 - 80,8 |
1 |
3,3% |
|
80,8 - 100,5 |
1 |
3,3% |
|
100,5- 120 |
2 |
6,7% |
|
Итого |
30 |
100% |
Вывод: максимальное количество регионов 12 из 30 (40,00%) имеют Число автобусов общего пользования на 100000 чел. населения. шт лежащее в пределах 21,7-41,4. Минимальное количество регионов 1 из 30 имеют Число автобусов общего пользования на 100000 чел. населения. шт от 61,1-80,8 и от 80,8-100,5.
Среди регионов с самой высоким Числом автобусов общего пользования на 100000 чел. населения. шт выделяется Тюменская обл. (120 на 100 000 чел. населения). Среди регионов с самым низким Числом автобусов общего пользования на 100000 чел. Населения шт выделяется Сахалинская обл (2, на 100 000 чел. населения)
1.2 Аналитическая группировка
Аналитическая группировка - распространенный прием статистического изучения связей, которые обнаруживаются при параллельном сопоставлении обобщенных значений признаков по группам. Различают признаки зависимые, значения которых изменяются под влиянием других признаков, их обычно в статистике называют результативными, и факторные, оказывающие влияние на другие. Обычно в основе аналитической группировки лежит признак-фактор, а по результативным признакам производится расчет групповых средних, по изменению величины которых определяют наличие связи между признаками. Таким образом, аналитическими можно назвать такие группировки, которые позволяют установить и изучить связь между результативными и факторными признаками единиц однотипной совокупности.
В качестве признака фактора выберем - площадь территории на 1 янв. 2009 г., тыс. км. кв., а в качестве результата - Число автобусов общего пользования на 100000 чел. населения. шт
Таблица 1.4 Распределение регионов по площадь территории на 1 янв. 2009 г., тыс. км. кв. и числу ДТП на 100 000 чел. населения.
Площадь территории |
количество регионов |
Итого по признаку результата |
Среднее значение по признаку результата |
|
21,4 - 412,3 |
23 |
815 |
35,43 |
|
412,3 - 803,2 |
5 |
235 |
47 |
|
803,2 - 1194,1 |
0 |
0 |
0 |
|
1194,1 - 1585 |
1 |
120 |
120 |
|
1585 - 1975,9 |
0 |
0 |
0 |
|
1975,9 - 2366,8 |
1 |
58 |
58 |
|
итого |
30 |
1228 |
260,43 |
Вывод: Связь между признаками отсутствует.
1.3 Комбинационная группировка
Таблица 1.5 Комбинационная таблица площади территории на 1 янв. 2009 г., тыс. км. кв., и Число автобусов общего пользования на 100000 чел. населения. шт.
Площади территории на 1 янв. 2009 г., тыс. км. кв. |
Число автобусов общего пользования на 100000 чел. населения. шт |
итого |
||||||
2-21,7 |
21,7-41,4 |
41,4-61,1 |
61,1-80,8 |
80,8-100,5 |
100,5-120 |
|||
21,4 - 412,3 |
6 |
8 |
7 |
1 |
1 |
0 |
23 |
|
412,3 - 803,2 |
0 |
4 |
0 |
0 |
0 |
1 |
5 |
|
803,2 - 1194,1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
1194,1 - 1585 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
|
1585 - 1975,9 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
1975,9 - 2366,8 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
|
итого: |
6 |
12 |
8 |
1 |
1 |
2 |
30 |
На основании полученных данных, можно сделать вывод: максимальные значения расположены не вдоль главной диагонали, значит, между рассматриваемыми признаками не наблюдается явной связи.
Задание №2
группировка численность население регион
2.1 Построение рядов распределения
Ряд распределения - это числовой ряд, который представляет собой упорядоченное распределение единиц статистической совокупности. Он характеризует состав (структуру) изучаемого явления.
2.1.1 Ряд распределения регионов по площади территории на 1 янв. 2009 г., тыс. км. кв
Таблица 2.1 Распределение регионов по площади территории на 1 янв. 2009 г., тыс. км. кв.
Площади территории на 1 янв. 2009 г., тыс. км. кв. |
Количество регионов |
в % к итогу |
Середины интервалов, хi |
Накопленные частоты S |
|
21,4 - 412,3 |
23 |
76,7% |
216,85 |
23 |
|
412,3 - 803,2 |
5 |
16,7% |
607,75 |
28 |
|
803,2 - 1194,1 |
0 |
0,00% |
998,65 |
28 |
|
1194,1 - 1585 |
1 |
3,3% |
1389,55 |
29 |
|
1585 - 1975,9 |
0 |
0,00% |
1780,45 |
29 |
|
1975,9 - 2366,8 |
1 |
3,3% |
2171,35 |
30 |
|
итого |
30 |
100% |
Гистограмма - графическое изображение интервального ряда распределения.
Количественные соотношения некоторого показателя представлены в виде прямоугольников, площади которых пропорциональны. Чаще всего для удобства восприятия ширину прямоугольников берут одинаковую, при этом их высота определяет соотношения отображаемого параметра.
Таким образом, гистограмма представляет собой графическое изображение зависимости частоты попадания элементов выборки от соответствующего интервала группировки.
На основе данных показанных в таблице 2.1 построим гистограмму:
Рис. 1. Гистограмма распределения регионов по численности населения на 1 января 2013 года (млн. чел)
Кумулята - ломаная линия, изображающая ряд накопленных частот. Накопленные частоты наносятся в системе координат в виде ординат для границ интервалов; соединяя нанесенные точки отрезками прямых, получаем кумуляту. Кумуляту называют также полигоном накопленных частот.
На основе данных показанных в таблице 2.1 построим Кумуляту
Рис. 2. Кумулятивное распределение по площади территории на 1 янв. 2009 г., тыс. км. кв.
2.1.2 Ряд распределения регионов по числу ДТП на 100 000 чел. населения
Таблица 2.2 Распределение регионов по числу ДТП на 100 000 чел. населения
Число ДТП на 100 000 чел. населения |
Количество единиц |
В % к итогу |
Середины интервалов, хi |
Накопленные частоты S |
|
2-21,7 |
6 |
20% |
11,85 |
11,85 |
|
21,7-41,4 |
12 |
40% |
31,55 |
43,4 |
|
41,4-61,1 |
8 |
26,7% |
51,25 |
94,65 |
|
61,1-80,8 |
1 |
3,3% |
70,95 |
165,6 |
|
80,8-100,5 |
1 |
3,3% |
90,65 |
256,25 |
|
100,5-120 |
2 |
6,7% |
110,25 |
366,5 |
|
итого |
30 |
100% |
366,5 |
Гистограмма - графическое изображение интервального ряда распределения.
Количественные соотношения некоторого показателя представлены в виде прямоугольников, площади которых пропорциональны. Чаще всего для удобства восприятия ширину прямоугольников берут одинаковую, при этом их высота определяет соотношения отображаемого параметра.
Таким образом, гистограмма представляет собой графическое изображение зависимости частоты попадания элементов выборки от соответствующего интервала группировки.
На основе данных показанных в таблице 2.2 построим гистограмму:
Рис. 3. Гистограмма распределения регионов по числу ДТП на 100 000 чел. населения
На основе данных показанных в таблице 2.2 построим Кумуляту:
Рис. 4. Кумулятивное распределение по числу ДТП на 100 000 чел. населения
2.2 Анализ рядов распределения
2.2.1 Анализ ряда распределения регионов по числу ДТП на 100 000 чел. населения
Таблица 2.3 Распределение регионов по Числу автобусов общего пользования на 100000 чел. населения. шт
Число автобусов |
Количество единиц, fi |
Середины интервалов, хi |
Накопленные частоты S |
xi fi |
(x - )2·fi |
|
2-21,7 |
6 |
11,85 |
11,85 |
71,1 |
5235,67 |
|
21,7-41,4 |
12 |
31,55 |
43,4 |
378,6 |
1161,90 |
|
41,4-61,1 |
8 |
51,25 |
94,65 |
410 |
777,76 |
|
61,1-80,8 |
1 |
70,95 |
165,6 |
70,95 |
873,79 |
|
80,8-100,5 |
1 |
90,65 |
256,25 |
90,65 |
2462,55 |
|
100,5-120 |
2 |
110,25 |
366,5 |
220,5 |
9483,4 |
|
итого |
30 |
366,5 |
1241,8 |
19995,07 |
Среднее арифметическое значение признака:
= 1241,8/ 30 = 41,39 тыс. чел.
Вывод: По данным по 30 регионам в 2008 г Число автобусов общего пользования на 100000 чел. населения. шт составляет 41,39.
Мода:
+
- начало модального интервала
- величина интервала
- частота модального интервала
- частота интервала предшествующего модальному
- частота интервала последующему модальному
Вывод: в большинстве регионов в 2008 году Число автобусов общего пользования на 100000 чел. населения. шт составляет 33,52 на 100 000 чел. населения.
Медиана:
- начало медианного интервала
- величина интервала
- сумма частот
- накопленная частота ряда, предшествующего медианному
- частота медианного интервала
Вывод: половина регионов имеет Число автобусов общего пользования на 100 000 чел. населения менее 36,48 , другая половина имеет Число автобусов общего пользования 36,48 на 100 000 чел. населения.
Квартили
Квартили - это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1; 25% будут заключены между Q1 и Q2; 25% - между Q2 и Q3; остальные 25% превосходят Q3.
x0- нижняя граница интервала, содержащего нижний квартиль;
h- величина (шаг) интервала, где находится нижний квартиль;
SQ1-1- накопленная частота интервала, предшествующая нижнему квартилю.
FQ1- частота интервала, содержащего нижний квартиль;
Таким образом, 25% единиц совокупности будут меньше по величине Q2 совпадает с медианой, Q2 = 26,87
x0- нижняя граница интервала, содержащего верхний квартиль;
h- величина (шаг) интервала, где находится верхний квартиль;
SQ3-1- накопленная частота интервала предшествующая верхнему квартилю;
fQ3- частота интервала, содержащего верхний квартиль;
Остальные 25% превосходят значение 38,75
Среднеквадратическое отклонение:
= 19995,07/30=666,5на 100 000 чел. населения
==25,82
Вывод: возможное отклонение номинального Число автобусов общего пользования на 100000 чел. населения. шт на конец года от среднемесячного Число автобусов общего пользования составляет 25,82 на 100 000 чел. населения.
Коэффициент вариации:
=/*100%=(25,82/41,39)*100%=62,38%
Вывод: совокупность не однородна, т.к. коэффициент вариации превышает 33%.
2.2.2 Анализ ряда распределения регионов по площади территории на 1 янв. 2009 г., тыс. км. кв
Таблица 2.4 Распределение регионов по площади территории на 1 янв. 2009 г., тыс. км. кв
Площадь территории на 1 янв. 2009 г., тыс. км. кв. |
Количество регионов |
Середины интервалов, хi |
Накопленные частоты S |
xi fi |
(x - )2·fi |
|
21,4 - 412,3 |
23 |
216,85 |
23 |
4987,55 |
659938,36 |
|
412,3 - 803,2 |
5 |
607,75 |
28 |
3038,75 |
516843,4 |
|
803,2 - 1194,1 |
0 |
998,65 |
28 |
0 |
0 |
|
1194,1 - 1585 |
1 |
1389,55 |
29 |
1389,55 |
1006630,96 |
|
1585 - 1975,9 |
0 |
1780,45 |
29 |
0 |
0 |
|
1975,9 - 2366,8 |
1 |
2171,35 |
30 |
2171,35 |
31866117,71 |
|
итого |
30 |
11587,2 |
34049530,43 |
Среднее арифметическое значение признака:
=11587,2/ 30 = 386,24
Вывод: средняя площадь территории в регионах на 1 янв. 2009 г., 386,24 тыс. км. кв.
Мода:
+ ,
где
- начало интервала, содержащего моду,
- величина интервала, содержащего моду,
- частота того интервала, в котором расположена мода,
- частота интервала, предшествующего модальному,
- частота интервала, следующего за модальным.
Вывод: в большинстве регионов площадь территории составляет 240,46 тыс. км. кв.
Медиана:
Численное значение медианы определяется по ряду накопленных частот.
,
где
- начало интервала, содержащего медиану,
- величина интервала, содержащего медиану,
- накопленная частота интервала, который стоит перед медианным,
- объем совокупности,
- частота того интервала, в котором расположена медиана.
Вывод: в половине регионов площадь территории более 276,33 тыс. км. кв., в другой половине менее 276,33 тыс. км. кв.
Квартили.
Квартили - это значения признака в ранжированном ряду распределения, выбранные таким образом, что 25% единиц совокупности будут меньше по величине Q1; 25% будут заключены между Q1 и Q2; 25% - между Q2 и Q3; остальные 25% превосходят Q3.
Таким образом, 25% единиц совокупности будут меньше по величине .
Q2 совпадает с медианой, Q2 = 276,33.
Остальные 25% превосходят значение 359,68 .
Среднеквадратическое отклонение:
Для того чтобы посчитать среднее квадратичное отклонение, сначала необходимо найти дисперсию по формуле:
=34049530,43/ 30=1134984,35
==1065,36
Вывод: возможное отклонение площади территории регионов составляет 1065,36.
Коэффициент вариации:
=/*100% =1065,36/386,24* 100%=275,83%
Вывод: совокупность не однородна, так как коэффициент вариации более 33%
2.3 Проверка теоремы о разложении дисперсии
Правило сложения дисперсий: общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий.
Общая дисперсия по формуле:
=
Таблица 2.5 Расчетная таблица для нахождения общей дисперсии
№п/п |
||||
1 |
29 |
-11,93 |
142,3249 |
|
2 |
19 |
-21,93 |
480,9249 |
|
3 |
38 |
-2,93 |
8,5849 |
|
4 |
120 |
79,07 |
6252,065 |
|
5 |
43 |
2,07 |
4,2849 |
|
6 |
17 |
-23,93 |
572,6449 |
|
7 |
29 |
-11,93 |
142,3249 |
|
8 |
58 |
17,07 |
291,3849 |
|
9 |
40 |
-0,93 |
0,8649 |
|
10 |
61 |
20,07 |
402,8049 |
|
11 |
28 |
-12,93 |
167,1849 |
|
12 |
81 |
40,07 |
1605,605 |
|
13 |
22 |
-18,93 |
358,3449 |
|
14 |
35 |
-5,93 |
35,1649 |
|
15 |
23 |
-17,93 |
321,4849 |
|
16 |
19 |
-21,93 |
480,9249 |
|
17 |
26 |
-14,93 |
222,9049 |
|
18 |
2 |
-38,93 |
1515,545 |
|
19 |
66 |
25,07 |
628,5049 |
|
20 |
105 |
64,07 |
4104,965 |
|
21 |
24 |
-16,93 |
286,6249 |
|
22 |
49 |
8,07 |
65,1249 |
|
23 |
20 |
-20,93 |
438,0649 |
|
24 |
28 |
-12,93 |
167,1849 |
|
25 |
12 |
-28,93 |
836,9449 |
|
26 |
26 |
-14,93 |
222,9049 |
|
27 |
44 |
3,07 |
9,4249 |
|
28 |
51 |
10,07 |
101,4049 |
|
29 |
60 |
19,07 |
363,6649 |
|
30 |
53 |
12,07 |
145,6849 |
|
Итого |
1228 |
20375,87 |
=1228/ 30 = 40,93
- общее среднее значение признака
n - количество элементов
- общая дисперсия для нечастного распределения признака
- отдельные значения признака
- общее среднее значение признака
n - количество элементов
Найдем межгрупповую дисперсию:
Таблица 2.6 Расчетная таблица для межгрупповых дисперсий
Группы по площади территории на 1 янв. 2009 г., тыс. км. кв. |
Число автобусов общего пользования на 100000 чел. населения. шт |
x |
xi-x |
(xi-x)2 |
?(xi-x)2 |
|
21,4 - 412,3 |
29 |
35,43 |
-6,43 |
41,34 |
8631,65 |
|
19 |
-16,43 |
269,94 |
||||
38 |
2,57 |
6,60 |
||||
43 |
7,57 |
57,30 |
||||
17 |
-18,43 |
339,66 |
||||
61 |
25,57 |
653,82 |
||||
28 |
-7,43 |
55,20 |
||||
81 |
45,57 |
2076,62 |
||||
23 |
-12,43 |
154,50 |
||||
19 |
-16,43 |
269,94 |
||||
2 |
-33,43 |
1117,56 |
||||
66 |
30,57 |
934,52 |
||||
24 |
-11,43 |
130,64 |
||||
49 |
13,57 |
184,14 |
||||
20 |
-15,43 |
238,08 |
||||
28 |
-7,43 |
55,20 |
||||
12 |
-23,43 |
548,96 |
||||
26 |
-9,43 |
88,92 |
||||
44 |
8,57 |
73,44 |
||||
51 |
15,57 |
242,42 |
||||
60 |
24,57 |
603,68 |
||||
53 |
17,57 |
308,70 |
||||
412,3 - 803,2 |
29 |
47 |
-18 |
324 |
4322 |
|
40 |
-7 |
49 |
||||
35 |
-12 |
144 |
||||
26 |
-21 |
441 |
||||
105 |
58 |
3364 |
||||
803,2 - 1194,1 |
0 |
0 |
0 |
0 |
0 |
|
1194,1 - 1585 |
120 |
120 |
0 |
0 |
0 |
|
1585 - 1975,9 |
0 |
0 |
0 |
0 |
0 |
|
1975,9 - 2366,8 |
58 |
58 |
0 |
0 |
0 |
Найдём внутригрупповые дисперсии для каждой группы регионов:
у21
у2223,4,5,6 = 0,
т.к. в данных группах регионов, вес интервала не превышает единицы.
Найдём среднюю из внутригрупповых дисперсий:
По правилу сложения дисперсий, получим:
679,2 = 679,2
Вывод: теорема подтверждена.
Показана выполнимость Теоремы о разложении дисперсий.
4. Для определения параметров уравнения линейной регрессии строим расчетную таблицу 2.7.
Пусть - Число автобусов общего пользования на 100000 чел. населения. шт. - Площадь территории на 1 янв. 2009 г., тыс. км. кв.
Таблица 2.7 Расчетная таблица для вычисления тесноты связи между признаками
Регионы |
Площадь территории на 1 янв. 2009 г., тыс. км. кв. |
Число автобусов общ польз на 100 000 чел. населения |
Y2 |
X2 |
y*x |
|
Ульяновская обл. |
37,2 |
29 |
1383,84 |
841 |
1078,8 |
|
Курганская обл. |
71,5 |
19 |
5112,25 |
361 |
1358,5 |
|
Свердловская обл.. |
194,3 |
38 |
37752,49 |
1444 |
7383,4 |
|
Тюменская обл. |
1464,2 |
120 |
2143882 |
14400 |
175704 |
|
Челябинская обл. |
88,5 |
43 |
7832,25 |
1849 |
3805,5 |
|
Алтайский край |
168,0 |
17 |
28224 |
289 |
2856 |
|
Забайкальский край |
431,9 |
29 |
186537,6 |
841 |
12525,1 |
|
Красноярский край |
2366,8 |
58 |
5601742 |
3364 |
137274,4 |
|
Иркутская обл. |
774,8 |
40 |
600315 |
1600 |
30992 |
|
Кемеровская обл. |
95,7 |
61 |
9158,49 |
3721 |
5837,7 |
|
Новосибирская обл. |
177,8 |
28 |
31612,84 |
784 |
4978,4 |
|
Омская обл. |
141,1 |
81 |
19909,21 |
6561 |
11429,1 |
|
Томская обл. |
314,4 |
22 |
98847,36 |
484 |
6916,8 |
|
Камчатский край |
464,3 |
35 |
215574,5 |
1225 |
16250,5 |
|
Приморский край |
164,7 |
23 |
27126,09 |
529 |
3788,1 |
|
Амурская обл. |
361,9 |
19 |
130971,6 |
361 |
6876,1 |
|
Магаданская обл. |
462,5 |
26 |
213906,3 |
676 |
12025 |
|
Сахалинская обл. |
87,1 |
2 |
7586,41 |
4 |
174,2 |
|
Еврейская авт. обл. |
36,3 |
66 |
1317,69 |
4356 |
2395,8 |
|
Чукотский авт. округ |
721,5 |
105 |
520562,3 |
11025 |
75757,5 |
|
Белгородская обл. |
27,1 |
24 |
734,41 |
576 |
650,4 |
|
Брянская обл. |
34,9 |
49 |
1218,01 |
2401 |
1710,1 |
|
Владимирская обл. |
29,1 |
20 |
846,81 |
400 |
582 |
|
Воронежская обл. |
52,2 |
28 |
2724,84 |
784 |
1461,6 |
|
Ивановская обл. |
21,4 |
12 |
457,96 |
144 |
256,8 |
|
Калужская обл. |
29,8 |
26 |
888,04 |
676 |
774,8 |
|
Костромская обл. |
60,2 |
44 |
3624,04 |
1936 |
2648,8 |
|
Курская обл. |
30,0 |
51 |
900 |
2601 |
1530 |
|
Липецкая обл. |
24,0 |
60 |
576 |
3600 |
1440 |
|
Московская обл. |
45,8 |
53 |
2097,64 |
2809 |
2427,4 |
Получено уравнение регрессии:
.
С увеличением площади территории Число автобусов общего пользования на 8,1 на 100 000 чел. населения.
3. Для оценки тесноты связи рассчитаем линейный коэффициент парной корреляции:
Коэффициент детерминации:
Коэффициент корреляции, равный , показывает, что между рассматриваемыми признаки существует сильная, прямая связь (0.1 <rxy> 0.3). Коэффициент детерминации, равный 0,9604 устанавливает, что вариация Число автобусов общего пользования на 100 000 чел. населения на % из 100% предопределена вариацией площади территории, роль прочих факторов, влияющих на число автобусов общ польз, определяется в 99,02%
Общий вывод: средняя площадь территории на 1 янв. 2009 г равна 386,24 тыс. км. кв., среднее значение числа автобусов общего пользования на 100 000 чел. населения равно 40,93. Большая часть областей (23 из 30) обладает площадь территории в интервале от 21.4 до 412.3тыс. км. кв.
Половина регионов имеет площадь территории на 1 янв. 2009 г меньше 276,33 тыс. км. кв. другая - больше. В половине регионов Число автобусов общего пользования не превышает 26,87 на 100 000 чел. населения.
Задание №3
1. Используя результаты расчетов, выполненных в задании 2 курсовой работы по признаку 1, и полагая, что эти данные получены при помощи собственно-случайного 40% бесповторного отбора, определить:
пределы, за которые с доверительной вероятностью 0,954 не выйдет среднее значение признака, рассчитанное по генеральной совокупности;
как нужно изменить объем выборки, чтобы снизить предельную ошибку средней величины на 50%.
а) Для того, чтобы определить пределы, за которые не выйдет среднее значение признака, рассчитанное по генеральной совокупности, используется следующая формула:
,
где
- среднее значение площади территории, рассчитанное по выборочной совокупности;
- среднее значение площади территории, рассчитанное по генеральной совокупности;
- предельная ошибка выборки.
Предельная ошибка выборки.
,
где
t - коэффициент доверия, при соответствующей доверительной вероятности (так как p=0,954, то t=2);
- средняя ошибка выборки.
Средняя ошибка выборки.
где
дисперсия площади территории;
n - объем выборочной совокупности;
N - объем генеральной совокупности.
Так как по условию сказано, что данные получены при помощи собственно-случайного 40% бесповторного отбора, то
n=0,4N,
значит:
n=30 ед.
N=n/0,4=30/0,4=75
Д1=2*150,65=301,3
=386,24тыс. км. кв.
- среднее значение по признаку №1
Вывод: с вероятностью 0,954 можно утверждать, что площадь территории на 1января 2009 года тыс. км. кв. колеблется в пределах 84,94 - 687,54 тыс. км. кв.
Определение объема выборки для снижения предельной ошибки средней величины на 50%
где:
n - объём выборочной совокупности;
t - коэффициент доверия;
- среднее квадратическое отклонение;
N - объём генеральной совокупности;
Д - предельная ошибка выборки;
t=2
Предельная ошибка равна 301,3 тыс. км. кв., если мы её снизим на 50% то она будет равна 150,65 млн. чел.
Объём выборочной совокупности n = 30, после снижения предельной ошибки на 50% n - изменится.
n = = = 1,35
Вывод: для того, чтобы снизить предельную ошибку средней величины на 50%, необходимая численность выборки должна составлять 1 регион
Определение пределов, за которые не выйдет значение доли регионов с индивидуальными значениями, превышающими моду
В данном случае отбор повторный, p=0,683, тогда t=1; количество регионов с индивидуальными значениями признака, превышающими моду, равно 6.
Определим долю регионов, у которых Число автобусов общего пользования на 100 тыс. человек населения превышает модальное значение 33,52.:
,
где
m - количество регионов, в которых Число автобусов общего тна 100 тыс. человек населения превышает модальное значение 33,52. (m = 6 по данным таблицы 1.1.)
n - общее число регионов.
Так как отбор повторный, то
;
Определим границы генеральной доли:
Вывод: с доверительной вероятностью 0,954 можно утверждать, что доля регионов, в которых Число автобусов общего на 100 тыс. человек населения превышает модальное значение 161,21 тыс. чел. в общем числе регионов находятся в пределах от 10% до 30%.
Как изменить объем выборки, чтобы снизить предельную ошибку доли на 30%.
Рассчитаем изменение предельной ошибки выборки Числа автобусов общего пользования на 100000 чел. населения. шт:
Необходимо определить n1 - объем выборки, при котором предельная ошибка доли снизится на 30%.
Выборка собственно-случайная, повторный отбор:
Вывод: объем выборочной совокупности необходимо увеличить до 131 регионов, чтобы предельная ошибка доли снизилась на 30%.
Задание №4
Одним из основных показателей, характеризующих изменение социально-экономических показателей районов Псковской области, является численность населения.
Таблица 4.1 Численность населения в Пыталовском и Себежском районах в период 2007-2013гг., единиц численность населения в Пыталовском и Себежском регионах, чел
Год |
Пыталовский район |
Год |
Себежский район |
|
2007 |
14100 |
2007 |
23800 |
|
2008 |
13500 |
2008 |
22800 |
|
2009 |
13200 |
2009 |
22400 |
|
2010 |
13100 |
2010 |
21900 |
|
2011 |
12110 |
2011 |
20670 |
|
2012 |
11925 |
2012 |
21141 |
|
2013 |
11677 |
2013 |
20650 |
|
Итого |
89612 |
Итого |
153361 |
Среднегодовой уровень динамики определяется по формуле средней хронологической простой:
12787,25единиц
21856
б) Базисные и цепные показатели динамики:
Таблица 4.2 Базисные и цепные показатели численности населения в Пыталовском районе в 2007 - 2013 годах
Год |
Численность населения, чел |
Базисные |
Цепные |
А % |
|||||
2007 |
14100 |
- |
- |
- |
- |
- |
- |
||
2008 |
13500 |
-600 |
95,74 |
-4,26 |
-600 |
95,74 |
-4,26 |
140,84 |
|
2009 |
13200 |
-900 |
93,61 |
-6,39 |
-300 |
97,78 |
-2,22 |
135,14 |
|
2010 |
13100 |
-1000 |
92,90 |
-7,1 |
-100 |
99,24 |
-0,76 |
131,58 |
|
2011 |
12110 |
-1990 |
85,88 |
-14,12 |
-990 |
92,44 |
-7,56 |
130,96 |
|
2012 |
11925 |
-2175 |
84,57 |
-15,43 |
-185 |
98,47 |
-1,53 |
120,92 |
|
2013 |
11677 |
-2423 |
82,81 |
-17,19 |
-248 |
97,92 |
-2,08 |
119,24 |
|
Итого |
89612 |
-9088 |
535,51 |
-64,49 |
-2423 |
489,15 |
-18,41 |
778,68 |
Базисные показатели динамики:
Абсолютный прирост:
?0 = ,
Например
?0 = 13500 -14100= -600
Темп роста:
Тр = ,
Например
Тр = * 100 = 95,74
Темп прироста:
Тпр = = Тр - 100%,
Например
Тпр = 95,7- 100 = -4,26
Вывод: Численность населения в Пыталовском районе с 2007 года до 2013 года уменьшилась на 2423 единицы. Темп роста населения составил 82 %.
Цепные показатели динамики:
Абсолютный прирост:
?i = ,
Например
?i = 13200 - 13500 = -300
Темп роста:
Тр = ,
Например
Тр = 97,78
Темп прироста:
Тпр = = Тр - 100%,
Например
Тпр = 97,78 - 100 = -2,22.
Вывод: В 2013 году по сравнению с 2012 годом численность населения в Пыталовском районе уменьшилась на 248 человек. Темп роста составил 97%.
Средние показатели динамики:
Средний абсолютный прирост:
= - 403,83
Средний темп роста:
=%
Средний темп прироста:
= -17,2%
Вывод: среднее уменьшение численности населения Пыталовского района за 2007-2013 годы составило 403 человека. Средний темп роста равен %, средний темп прироста -17,2%.
Таблица 4.3 Базисные и цепные показатели численности населения в Себежском районе в 2007 - 2013 годах
Год |
Число ДТП, единиц. |
Базисные |
Цепные |
А % |
|||||
2007 |
23800 |
- |
- |
- |
- |
- |
- |
- |
|
2008 |
22800 |
-1000 |
95,80 |
-4,2 |
-1000 |
95,80 |
-4,2 |
238,09 |
|
2009 |
22400 |
-1400 |
94,12 |
-5,88 |
-400 |
98,25 |
-1,75 |
228,57 |
|
2010 |
21900 |
-1900 |
92,02 |
-7,98 |
-500 |
97,77 |
-2,23 |
224,21 |
|
2011 |
20670 |
-3130 |
86,85 |
-13,15 |
-1230 |
94,39 |
-5,61 |
1110,74 |
|
2012 |
21141 |
-2659 |
88,83 |
-11,17 |
471 |
102,28 |
2,28 |
206,57 |
|
2013 |
20650 |
-3150 |
86,77 |
-13,23 |
-491 |
97,68 |
-2,32 |
211,63 |
|
Итого |
153361 |
-13239 |
544,39 |
-55,61 |
-3150 |
610,92 |
-13,83 |
227,76 |
Базисные показатели динамики:
Абсолютный прирост:
?0 =
Темп роста:
Тр =
Темп прироста:
Тпр = = Тр - 100%
Вывод: Численность населения в Себежском районе с 2007 года до 2013 года уменьшился на 3150 единиц. Изменение объёма численности населения в Себежском районе за э...
Подобные документы
Сущность понятия "статистика". Абсолютные и относительные величины, характеризующие рождаемость, динамику численности населения города за отчетный год. Исчисление абсолютных и относительных показателей ряда динамики по цепной и базисной системе.
контрольная работа [776,1 K], добавлен 28.09.2011Трудовые ресурсы и их статистико-экономический анализ. Ряд распределения регионов по среднегодовой численности занятого населения. Индексный метод анализа. Проверка гипотезы о законе распределения регионов по среднегодовой численности занятого населения.
курсовая работа [1,2 M], добавлен 08.05.2009Группировка предприятий по различным признакам. Построение статистического ряда распределения предприятий. Определение дисперсии, среднеквадратического отклонения, коэффициента вариации. Исследование средней численности населения города и его районов.
контрольная работа [268,5 K], добавлен 27.11.2012Статистический анализ состояния рынка труда. Группировка населения по возрасту в сочетании с полом. Анализ связей безработицы и экономически активного населения. Прогноз среднегодовой численности трудоспособного населения Приволжского Федерального округа.
курсовая работа [1,9 M], добавлен 11.12.2014Предмет и метод статистики. Группировка и ряд распределения. Абсолютные, относительные, средние величины, показатели вариации. Выборочное наблюдение, ряды динамики. Основы корреляционного и регрессионного анализа. Статистика населения и рынка труда.
методичка [2,2 M], добавлен 16.02.2011Задачи статистики населения. Назначение демографического прогнозирования. Расчёт и анализ показателей динамики численности населения России за 2000-2005 года. Методы исследования, применяемые в статистике населения. Показатели численности населения.
курсовая работа [1,1 M], добавлен 08.01.2010Исследование современной демографической ситуации в Российской Федерации, моментов политики, проводимой государством. Изучение численности населения и особенностей его размещения, основных группировок населения. Анализ показателей статистики населения.
контрольная работа [40,1 K], добавлен 28.06.2012Группировка магазинов по признакам. Определение среднемесячной заработной платы работника, средней продолжительности проживания в месте жительства, дисперсии, среднего квадратического отклонения, коэффициента вариации, средней численности населения.
контрольная работа [156,0 K], добавлен 05.01.2012Расчет показателей численности населения. Анализ миграции населения и расчет перспективной численности населения. Основные показатели уровня жизни населения. Выявление основной тенденции развития уровня потребления методом аналитического выравнивания.
курсовая работа [404,9 K], добавлен 22.10.2013Статистика населения: определение числа предстоящих человеко-лет жизни для разных возрастов. Расчет естественного, общего прироста трудоспособного населения. Статистика основных фондов: определение их полной и средней стоимости на начало и конец года.
контрольная работа [56,8 K], добавлен 24.10.2011Аналитическая группировка по факторному признаку. Построение вариационного частотного и кумулятивного рядов распределения на основе равно интервальной структурной группировки результативного признака – дивидендов, начисленных по результатам деятельности.
контрольная работа [109,4 K], добавлен 07.05.2009Анализ показателей статистики населения Великого Новгорода. Программа и способ наблюдения, сбор первичных данных. Расчет статистических показателей, гистограммы. Корреляция динамических рядов численности населения. Прогноз денежных доходов населения.
контрольная работа [471,8 K], добавлен 12.02.2014Сущность корреляционно-регрессионного анализа. Статистика населения. Население как объект статистического изучения. Источники данных о населении. Изучение численности населения и его размещения на территории страны. Основные группировки населения.
курсовая работа [162,9 K], добавлен 14.10.2008Cущность аналитической, комбинационной и структурной равноинтервальной группировок, их практическое применение в статистике. Построение рядов распределения и их гистограммы. Проверка теоремы о разложении дисперсии. Расчет коэффициента детерминации.
курсовая работа [268,2 K], добавлен 07.04.2010Социально-экономические показатели по регионам России, комбинационная группировка. Построение рядов распределения и их анализ. Проверка теоремы о разложении дисперсии. Методика расчета коэффициента корреляции, а также индекса структурного сдвига.
контрольная работа [1,6 M], добавлен 02.10.2014Формы, виды и способы статистического наблюдения. Применение индексов в экономике. Статистика численности и состава населения. Статистика естественного движения и статистика миграции населения. Применение методов измерения уровня концентрации в экономике.
курс лекций [640,3 K], добавлен 06.04.2011Статистика занятости и безработицы. Определение численности и состава занятых лиц. Выборочное наблюдение, сводка и группировка, ряд распределения. Характеристика статистических показателей. Расчет средних величин и показателей вариации, ошибок выборки.
курсовая работа [180,5 K], добавлен 10.08.2009Население как объект статистического изучения, изучение демографических процессов, численности населения, его размещения по территории, показатели естественного движения. Перспективные расчеты численности и показатели социальной характеристики населения.
курсовая работа [206,1 K], добавлен 21.08.2011Спрос и предложение на рабочую силу, факторы определяющие их масштабы и структуру. Показатели численности и состава экономически активного населения. Анализ динамики численности населения, занятого в экономике и безработных, миграции трудовых ресурсов.
дипломная работа [158,6 K], добавлен 01.06.2015Определение средней численности населения, коэффициентов рождаемости, смертности прироста, брачности и разводимости. Расчет выпуска товаров, промежуточного потребления, валовой добавленной стоимости. Вычисление валового дохода и расхода предприятия.
контрольная работа [271,1 K], добавлен 08.09.2009