Статистическое изучение взаимосвязи социально-экономических явлений

Исследование объективно существующих связей между явлениями как важнейшая задача общей теории статистики. Знакомство с основным методом приведения параллельных данных. Рассмотрение особенностей использования корреляционно-регрессионного анализа.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 15.11.2015
Размер файла 250,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статистическое изучение взаимосвязи социально-экономических явлений

Исследование объективно существующих связей между явлениями -- важнейшая задача общей теории статистики. В процессе статистического исследования зависимостей вскрываются причинно - следственные отношения между явлениями, что позволяет выявлять факторы (признаки), оказывающие основное влияние на вариацию изучаемых явлений и процессов. Причинно-следственные отношения -- это связь явлений и процессов, когда изменение одного из них -- причины, ведет к изменению другого -- следствия.

Особое значение при исследовании причинно-следственных связей имеет выявление временной последовательности: причина всегда должна предшествовать следствию, однако не каждое предшествующее событие следует считать причиной, а последующее -- следствием.

В реальной социально-экономической действительности причину и следствие необходимо рассматривать как смежные явления, появление которых обусловлено комплексом сопутствующих более простых причин и следствий. Между сложными группами причин и следствий возможны многозначные связи, когда за одной причиной будет следовать то одно, то другое действие или одно действие имеет несколько различных причин. Каждое явление может выступать в одних случаях как причина, а в других -- как следствие.

Но чем сложнее изучаемые явления, тем труднее выявить причинно-следственные связи между ними. Взаимное переплетение различных внутренних и внешних факторов неизбежно приводит к некоторым ошибкам в определении причины и следствия. Социально-экономические явления представляют собой результат одновременного воздействия большого числа причин. Поэтому при изучении этих явлений необходимо выявлять главные, основные причины, абстрагируясь от второстепенных.

На первом этапе статистического изучения связи проводят качественный анализ изучаемого явления, связанный с анализом природы социального или экономического явления при помощи экономической теории, социологии, конкретной экономики. Второй этап -- построение модели связи. Он базируется на методах статистики: группировках, средних величинах, таблицах и т. д. Третий, последний этап -- интерпретация результатов -- вновь связан с качественными особенностями изучаемого явления.

Статистика разработала множество методов изучения связей, выбор которых зависит от целей исследования и поставленных задач. Признаки по их значению для изучения взаимосвязи делятся на два класса. Признаки, обусловливающие изменения других, связанных с ними признаков, называются факторными или просто факторами. Признаки, изменяющиеся под действием факторных признаков, являются результативными.

Связи между явлениями и их признаками классифицируются по степени тесноты связи, направлению и аналитическому выражению.

В статистике различают функциональную связь и статистическую зависимость. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой единицы исследуемой совокупности.

Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется статистической. Частным случаем связи является корреляционная связь, при которой изменение среднего значения результативного признака обусловлено изменением факторных признаков.

По степени тесноты связи различают следующие количественные критерии оценки тесноты связи.

По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значении факторного признака происходит увеличение или уменьшение значений результативного. Так, рост производительности труда способствует увеличению уровня рентабельности производства. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением последнего. Так, с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и криволинейные (нелинейные). Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, степенной, показательной, экспоненциальной и т. д.), то такую связь называют нелинейной или криволинейной.

Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: анализ параллельных рядов; аналитические группировки; графический метод; метод корреляции.

Метод приведения параллельных данных основан на сопоставлении двух или нескольких радов статистических величин. Такое сопоставление позволяет установить наличие связи и получить представление о ее характере. Сравним изменения возраста и веса ребенка.

С увеличением возраста вес ребенка также увеличивается. Поэтому связь между ними прямая, и описать ее можно или уравнением прямой, или уравнением параболы второго порядка.

Графически взаимосвязь двух признаков изображается с помощью поля корреляции. В системе координат на оси абсцисс откладываются значения факторного признака, а на оси ординат -- результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. При отсутствии тесных связей имеет место беспорядочное расположение точек на графике (рис. 11.1).

Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.

Для социально-экономических явлений характерно, что наряду с существенными факторами, формирующими уровень результативного признака, на него оказывают воздействие многие другие неучтенные и случайные факторы. Это свидетельствует о том, что взаимосвязи явлений, которые изучает статистика, носят корреляционный характер.

Корреляция -- это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из них приводит к изменению математического ожидания другой.

В статистике принято различать следующие варианты зависимостей.

1. Парная корреляция -- связь между двумя признаками (результативным и факторным).

2. Частная корреляция -- зависимость между результативным и одним из факторных признаков при фиксированном значении других факторных признаков.

3. Множественная корреляция -- зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи). Теснота связи количественно выражается величиной коэффициентов корреляции. Коэффициенты корреляции, представляя количественную характеристику тесноты связи между признаками, дают возможность определять «полезность» факторных признаков при построении уравнений множественной регрессии. Величина коэффициента корреляции служит также оценкой соответствия уравнения регрессии выявленным причинно-следственным связям,

Одновременно с корреляцией начата использоваться и регрессия. Корреляция и регрессия тесно связаны между собой: первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму. Обе служат для определения наличия или отсутствия связи между явлениями.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (называемой зависимой, или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения. Регрессия может быть однофакторной (парной) и многофакторной (множественной).

По форме зависимости различают:

а) линейную регрессию, которая выражается уравнением прямой (линейной функцией) вида:

Y=aQ+a{x

б) нелинейную регрессию, которая рассчитывается уравнением вида:

парабола: Y= а,} + а, х + а7 х1;

гипербола: Уу = а0 + -- и т. д.

По направлению связи различают:а) прямую регрессию (положительную), возникающую при условии, если с увеличением или уменьшением независимой величины значения зависимой также соответственно увеличиваются или уменьшаются;

б) обратную регрессию (отрицательную), появляющуюся при условии, что с увеличением или уменьшением независимой величины зависимая, наоборот, уменьшается или увеличивается.

При использовании корреляционно-регрессионного анализа необходимо соблюдать следующие требования.

1. Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.

2. Все факторные признаки должны иметь количественное (цифровое) выражение.

3. Необходимо наличие достаточно большого объема исследуемой выборочной совокупности.

4. Причинно-следственные связи между явлениями и процессами могут быть описаны линейной или приводимой к линейной формой зависимости.

5. Не должно быть количественных ограничений на параметры модели связи.

6. Необходимо обеспечить постоянство территориальной и временной структур изучаемой совокупности.

Соблюдение данных требований позволяет исследователю построить статистическую модель связи, наилучшим образом аппроксимирующую моделируемые социально-экономические явления и процессы.

Теоретическая обоснованность моделей взаимосвязи, построенных на основе корреляционно-регрессионного анализа, обеспечивается соблюдением следующих основных условий.

1. Все признаки и их совместные распределения должны подчиняться нормальному закону распределения.

2. Дисперсия моделируемого признака должна оставаться постоянной при изменении величины значений факторных признаков.

3. Отдельные наблюдения должны быть независимыми, т. е. результаты, полученные в /-м наблюдении, не должны быть связаны с предыдущими и содержать информацию о последующих наблюдениях, а также влиять на них. Отступление от выполнения этих условий и предпосылок приводит к тому, что параметры регрессии не будут отражать реальное воздействие на моделируемый показатель.

Одной из проблем построения уравнения регрессии является размерность параметров, т. е. определение числа факторных признаков, включаемых в модель. Их число должно быть оптимальным. Сокращение размерности за счет исключения второстепенных, несущественных факторов позволяет получить модель, быстрее и качественнее реализуемую. В то же время построение модели малой размерности может привести к тому, что она будет недостаточно полно описывать исследуемое явление или процесс в единой системе национального счетоводства. При построении модели число факторных признаков должно быть в 5--6 раз меньше объема изучаемой совокупности.

Задача

По городу имеются следующие данные о распределении предприятий по размеру прибыли:

Таблица 1

Прибыль, тыс. руб.

до 600

600 - 800

800 - 1000

1000-1200

свыше 1200

Число предприятий, %

15

35

30

12

8

теория статистика корреляционный

Определите:

1) средний размер прибыли в расчете на одно предприятие;

2) показатели вариации: размах вариации, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение и коэффициент вариации;

3) степень надежности средней величины, использую коэффициент вариации.

Таблица 2

Тест

Показатели, характеризующие использование элементов национального богатства:

Ответ - А) фондоотдача.

Список использованной литературы

1. Гусаров В. М. Статистика: Учебное пособие для вузов. - М., 2001.

2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. - М., 1996.

3. http://msd.com.ua/socialno-ekonomicheskaya-statistika/statisticheskoe-izuchenie-vzaimosvyazi-socialno-ekonomicheskix-yavlenij/

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия корреляционно-регрессионного анализа. Вычисление показателей силы и тесноты связи между явлениями и процессами, специфика их интерпретации. Оценка результатов линейного регрессионного анализа. Коэффициент множественной детерминации.

    контрольная работа [228,2 K], добавлен 02.04.2013

  • Роль корреляцонно-регрессионного анализа в обработке экономических данных. Корреляционно-регрессионный анализ и его возможности. Предпосылки корреляционного и регрессионного анализа. Пакет анализа Microsoft Excel.

    курсовая работа [68,4 K], добавлен 11.06.2002

  • Динамика объема реализации продукции и расчет среднего уровня ряда динамики. Отображение динамики явлений с помощью знаков Вазара. Корреляционно-регрессионного анализ методом количественной оценки взаимосвязи и взаимозависимости между двумя явлениями.

    контрольная работа [389,5 K], добавлен 26.01.2009

  • Анализ обобщающих показателей и закономерностей социально-экономических явлений и процессов в конкретных условиях места и времени. Описание количественной стороны массовых социально-экономических явлений, отражаемых посредством показателей статистики.

    контрольная работа [761,6 K], добавлен 22.01.2015

  • Корреляционный и регрессионный приемы выявления связей между признаками. Оценка значимости параметров и взаимосвязи. Виды, формы (открытая, подавленная), способы измерения инфляции. Методология расчета и сезонной корректировки индекса потребительских цен.

    курсовая работа [223,3 K], добавлен 25.08.2010

  • Виды и формы связей между явлениями. Методы изучения взаимосвязи экономических явлений. Статистические методы изучения взаимосвязи. Метод аналитических группировок. Дисперсионный и корреляционно-регрессионный анализ. Непараметрические методы оценки связи.

    курсовая работа [235,9 K], добавлен 10.12.2008

  • Основные черты, задачи и предпосылки применения корреляционно-регрессионного метода. Методы корреляционного и регрессионного анализа. Коэффициент ранговой корреляции Кендалла, Спирмена, Фехнера. Определение тесноты взаимосвязи между показателями.

    контрольная работа [558,5 K], добавлен 08.04.2013

  • Виды и формы связей социально-экономических явлений. Корреляционно-регрессионный анализ. Уравнение парной регрессии: экономическая интерпретация и оценка значимости. Качество однофакторных линейных моделей. Прогнозирование экономических показателей.

    реферат [154,7 K], добавлен 19.12.2010

  • Статистическое изучение инвестиционного климата Хабаровского края; влияние социально-экономических процессов на инвестиции. Моделирование и прогнозирование инвестирования в основной капитал на основе корреляционно-регрессионного и кластерного анализа.

    курсовая работа [101,5 K], добавлен 24.06.2012

  • Виды и методы взаимосвязи. Виды взаимосвязи. Методы взаимосвязи. Аналитические группировки. Метод параллельных рядов. Балансовый метод. Корреляционно-регрессионный анализ. Графики, характеризующие связь социальных явлений.

    курсовая работа [141,7 K], добавлен 26.03.2007

  • Основные принципы методологии и методики экономического анализа, изучение экономических явлений в их взаимосвязи. Способы обработки экономической информации. Использование плановых, учетных и отчетных показателей для измерения экономических явлений.

    презентация [179,0 K], добавлен 19.03.2013

  • Способы приведения показателей в сопоставимый вид. Определение действительного прироста производства продукции в стоимостном выражении. Определение показателей производства методом цепных подстановок и индексного, корреляционно-регрессионного анализа.

    контрольная работа [79,4 K], добавлен 18.03.2013

  • Рассмотрение понятийного аппарата науки эконометрики. Изучение корреляционно-регрессионного анализа. Представление статистических данных для выявления зависимости уровня преступности от возраста. Проведение эконометрического анализа и оценка результатов.

    контрольная работа [159,3 K], добавлен 14.09.2015

  • Проведение экспериментального статистического исследования социально-экономических явлений и процессов Смоленской области на основе заданных показателей. Построение статистических графиков, рядов распределения, вариационных рядов, их обобщение и оценка.

    курсовая работа [786,2 K], добавлен 15.03.2011

  • Основные категории и понятия теории статистики. Ряды динамики и их применение в анализе социально-экономических явлений. Сводка и группировка статистических данных. Общая характеристика системы национальных счетов. Статистика рынка товаров и услуг.

    курс лекций [68,4 K], добавлен 08.08.2009

  • Статистическое изучение рядов динамики, виды показателей. Расчет коэффициента смыкания. Цепной и базисный показатель. Средний уровень динамического ряда. Определение общей закономерности в развитии явления. Статистическое изучение сезонных колебаний.

    лекция [325,3 K], добавлен 27.04.2013

  • Виды корреляции и регрессии, применяемые в статистическом анализе социально-экономических явлений и процессов. Построение корреляционной модели (уравнения регрессии). Построение корреляционной таблицы, выполнение интервальной группировки по признакам.

    курсовая работа [131,7 K], добавлен 03.10.2014

  • Понятие, сущность и классификация инфляции. Показатели рядов динамики. Расчет индексов качественных показателей на примере индекса цен. Взаимосвязи социально-экономических явлений и процессов. Изменение стоимости, объемов производства и инфляции бензина.

    курсовая работа [518,4 K], добавлен 09.06.2014

  • Направление деятельности ОАО "Татнефть", его место на рынке. Система управления компанией. Исследование зависимости прибыли от совокупных активов компании методом корреляционно-регрессионного анализа. Анализ и прогнозирование деятельности предприятия.

    курсовая работа [600,9 K], добавлен 30.10.2011

  • Понятие статистики как научного направления, предмет и методы ее изучения. Методы организации государственной статистики в РФ и международной практике, требования к данным. Сущность и порядок реализации корреляционно-регрессивного анализа и связей.

    учебное пособие [6,2 M], добавлен 07.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.