Основные статистические расчеты

Построение интервального ряда распределения банков по объему кредитных вложений. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Оценка статистической значимости коэффициента детерминации.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 23.11.2015
Размер файла 169,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Имеются следующие выборочные данные о деятельности коммерческих банков (выборка 5%-ная механическая), млн. руб.: 

№ банка п/п

прибыль, млн руб.

Собственный капитал, млн руб.

1

170

3900

2

200

4500

3

150

3000

4

90

2300

5

130

3700

6

170

3200

7

155

3780

8

190

4000

9

180

3100

10

210

4600

11

100

2200

12

220

5280

13

250

4700

14

180

4400

15

276

6500

16

220

5000

17

140

2500

18

50

1800

19

190

4200

20

210

5600

21

346

7962

22

240

5850

23

120

400

24

230

4900

25

350

8400

26

280

7088

27

163

5100

28

200

4300

29

260

6020

30

270

4800

Задание 1

По исходным данным (табл.1) необходимо выполнить следующее:

Построить статистический ряд распределения банков по прибыли, образовав пять группы с равными интервалами.

Графическим методом и путем расчётов определить значения моды и медианы полученного ряда распределения.

Рассчитать характеристики ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации.

Вычислить среднюю арифметическую по исходным данным (табл. 1.1), сравнить её с аналогичным показателем, рассчитанным в п. 3 для интервального ряда распределения. Объяснить причину их расхождения.

Сделать выводы по результатам выполнения Задания 1.

Решение:

Целью выполнения данного Задания является изучение состава и структуры выборочной совокупности банков путем построения и анализа статистического ряда распределения банков по признаку прибыль.

1.Построение интервального ряда распределения банков по объему кредитных вложений

Для построения интервального вариационного ряда, характеризующего распределение банков по объему кредитных вложений, необходимо вычислить величину и границы интервалов ряда.

При построении ряда с равными интервалами величина интервала h определяется по формуле

, (1)

где - наибольшее и наименьшее значения признака в исследуемой совокупности, k- число групп интервального ряда.

Число групп k задается в условии задания или рассчитывается по формуле Г.Стерджесса

k=1+3,322lgn, (2)

где n - число единиц совокупности.

Определение величины интервала по формуле (1) при заданных k = 5, xmax = 350 млн руб., xmin = 50 млн руб.:

При h = 60 млн руб. границы интервалов ряда распределения имеют следующий вид (табл. 2):

Таблица 2

Номер группы

Нижняя граница, млн руб.

Верхняя граница, млн руб.

1

50

110

2

110

170

3

170

230

4

230

290

5

290

350

Для построения интервального ряда необходимо подсчитать число банков, входящих в каждую группу (частоты групп). При этом возникает вопрос, в какую группу включать единицы совокупности, у которых значения признака выступают одновременно и верхней, и нижней границами смежных интервалов (для демонстрационного примера - это 110, 170, 230, 290 млн руб.). Отнесение таких единиц к одной из двух смежных групп рекомендуется осуществлять по принципу полуоткрытого интервала [ ). Т.к. при этом верхние границы интервалов не принадлежат данным интервалам, то соответствующие им единицы совокупности включаются не в данную группу, а в следующую. В последний интервал включаются и нижняя, и верхняя границы.

Процесс группировки единиц совокупности по признаку прибыль представлен во вспомогательной (разработочной) таблице 3 (графа 4 этой таблицы необходима для построения аналитической группировки в Задании 2).

Таблица 3

Разработочная таблица для построения интервального ряда распределения и аналитической группировки

Группы банков по оприбыли, млн руб.

№ банка п/п

прибыль

Собственный капитал

1

2

3

4

50-110

18

50

1800

4

90

2300

11

100

2200

Всего

3

240

6300

110-170

23

120

400

5

130

3700

17

140

2500

3

150

3000

7

155

3780

27

163

5100

Всего

6

858

18480

170-230

1

170

3900

6

170

3200

9

180

3100

14

180

4400

8

190

4000

19

190

4200

2

200

4500

28

200

4300

10

210

4600

20

210

5600

12

220

5280

16

220

5000

Всего

12

2340

52080

230-290

24

230

4900

22

240

5850

13

250

4700

29

260

6020

30

270

4800

15

276

6500

26

280

7088

Всего

7

1806

39858

290-350

21

346

7962

25

350

8400

Всего

2

696

16362

На основе групповых итоговых строк «Всего» табл. 3 формируется итоговая табл. 4, представляющая интервальный ряд распределения банков по прибыли.

Таблица 4

Распределение банков по объему кредитных вложений

Номер группы

Группы банков по объему прибыли, млн руб., х

Число банков, f

1

50 - 110

3

2

110 - 170

6

3

170 - 230

12

4

230 - 290

7

5

290 - 350

2

Итого

30

Помимо частот групп в абсолютном выражении в анализе интервальных рядов используются ещё три характеристики ряда, приведенные в графах 4 - 6 табл. 1.4. Это частоты групп в относительном выражении, накопленные (кумулятивные) частоты Sj, получаемые путем последовательного суммирования частот всех предшествующих (j-1) интервалов, и накопленные частоты, рассчитываемые по формуле .

Таблица 5 Структура банков по прибыли

№ группы

Группы банков по прибыли, млн руб.

Число банков, fj

Накопленная

частота,

Sj

Накопленная

частоcть, %

в абсолютном выражении

в % к итогу

1

2

3

4

5

6

1

50 - 110

3

10

3

10

2

110 - 170

6

20

9

30

3

170 - 230

12

40

21

70

4

230 - 290

7

23,33

28

93,33

5

290 - 350

2

6,67

30

100

Итого

30

100

Вывод. Анализ интервального ряда распределения изучаемой совокупности банков показывает, что распределение банков по прибыли не является равномерным: преобладают банки с прибылью от 170 млн руб. до 230 млн руб. (это 12 банков, доля которых составляет 40%); 30% банков имеют прибыль менее 170 млн руб., а 70% - менее 230 млн руб.

1.2 Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов

Мода и медиана являются структурными средними величинами, характеризующими (наряду со средней арифметической) центр распределения единиц совокупности по изучаемому признаку.

Мода Мо для дискретного ряда - это значение признака, наиболее часто встречающееся у единиц исследуемой совокупности. В интервальном вариационном ряду модой приближенно считается центральное значение модального интервала (имеющего наибольшую частоту). Более точно моду можно определить графическим методом по гистограмме ряда (рис.1).

Рис. 1 Определение моды графическим методом

Конкретное значение моды для интервального ряда рассчитывается по формуле:

(3)

где хМo - нижняя граница модального интервала,

h -величина модального интервала,

fMo - частота модального интервала,

fMo-1 - частота интервала, предшествующего модальному,

fMo+1 - частота интервала, следующего за модальным.

Согласно табл.1.3 модальным интервалом построенного ряда является интервал 170 - 230 млн. руб., так как его частота максимальна (f3 = 12).

Расчет моды по формуле (3):

Вывод. Для рассматриваемой совокупности банков наиболее распространенный объем кредитных вложений характеризуется средней величиной 202,73 млн руб.

Медиана Ме - это значение признака, приходящееся на середину ранжированного ряда. По обе стороны от медианы находится одинаковое количество единиц совокупности.

Медиану можно определить графическим методом по кумулятивной кривой (рис. 2). Кумулята строится по накопленным частотам (табл. 5, графа 5).

Рис. 2. Определение медианы графическим методом

Конкретное значение медианы для интервального ряда рассчитывается по формуле:

, (4)

где хМе- нижняя граница медианного интервала,

h - величина медианного интервала,

- сумма всех частот,

fМе - частота медианного интервала,

SMе-1 - кумулятивная (накопленная) частота интервала, предшествующего медианному.

Для расчета медианы необходимо, прежде всего, определить медианный интервал, для чего используются накопленные частоты (или частости) из табл. 5 (графа 5). Так как медиана делит численность ряда пополам, она будет располагаться в том интервале, где накопленная частота впервые равна полусумме всех частот или превышает ее (т.е. все предшествующие накопленные частоты меньше этой величины).

В демонстрационном примере медианным интервалом является интервал 170 - 230 млн. руб., так как именно в этом интервале накопленная частота Sj = 21 впервые превышает величину, равную половине численности единиц совокупности (=).

Расчет значения медианы по формуле (4):

Вывод. В рассматриваемой совокупности банков половина банков имеют в среднем объем кредитных вложений не более 200 млн руб., а другая половина - не менее 200 млн руб.

Расчет характеристик ряда распределения

Для расчета характеристик ряда распределения , у, у2, Vу на основе табл. 5 строится вспомогательная табл. 6 ( - середина j-го интервала).

Таблица 6

Расчетная таблица для нахождения характеристик ряда распределения

Группы банков по прибыли, млн руб.

Середина интервала,

Число банков,

fj

1

2

3

4

5

6

7

50 - 110

80

3

240

-118

13924

41772

110 - 170

140

6

840

-58

3364

20184

170 - 230

200

12

2400

2

4

48

230 - 290

260

7

1820

62

3844

26908

290 - 350

320

2

640

122

14884

29768

Итого

30

5944

118687

Расчет средней арифметической взвешенной:

(5)

Расчет дисперсии:

(6)

Расчет среднего квадратического отклонения:

Расчет коэффициента вариации:

(7)

Вывод. Анализ полученных значений показателей и у говорит о том, что средний объем прибыли составляет 198 млн руб., отклонение от среднего объема в ту или иную сторону составляет в среднем 62,9 млн руб. (или 31,77%), наиболее характерные значения объема кредитных вложений находятся в пределах от 135,1 млн руб. до 260,9 млн руб. (диапазон ).

Значение Vу = 31,77% не превышает 33%, следовательно, вариация прибыли в исследуемой совокупности банков незначительна и совокупность по данному признаку качественно однородна. Расхождение между значениями , Мо и Ме незначительно (=198млн руб., Мо=202,73млн руб., Ме=200млн руб.), что подтверждает вывод об однородности совокупности банков. Таким образом, найденное среднее значение объема кредитных вложений банков (198 млн руб.) является типичной, надежной характеристикой исследуемой совокупности банков.

4.Вычисление средней арифметической по исходным данным

Для расчета применяется формула средней арифметической простой:

, (8)

Причина расхождения средних величин, рассчитанных по формулам (8) и (5), заключается в том, что по формуле (8) средняя определяется по фактическим значениям исследуемого признака для всех 30-ти банков, а по формуле (5) средняя вычисляется для интервального ряда, когда в качестве значений признака берутся середины интервалов и, следовательно, значение средней будет менее точным (за исключением случая равномерного распределения значений признака внутри каждой группы).

Задание 2

По исходным данным табл. 1 с использованием результатов выполнения Задания 1 необходимо выполнить следующее:

Установить наличие и характер корреляционной связи между признаками суммой прибыли и Объём собственного капитала, используя метод аналитической группировки.

Оценить тесноту и силу корреляционной связи, используя коэффициент детерминации и эмпирическое корреляционное отношение.

3. Оценить статистическую значимость показателя силы связи.

Сделать выводы по результатам выполнения Задания 2.

Решение:

Целью выполнения данного Задания является выявление наличия корреляционной связи между факторным и результативным признаками, установление направления связи, оценка тесноты и силы связи.

Факторный и результативный признаки либо задаются в условии задания, либо определяются путем проведения предварительного теоретического анализа. Лишь после того, как выяснена экономическая сущность явления и определены факторный и результативный признаки, приступают к проведению корреляционного анализа данных.

По условию Задания 2 факторным является признак Сумма прибыли (X), результативным - признак Объём собственного капитала (Y).

1. Установление наличия и характера связи между признаками Сумма прибыли и Объём собственного капитала методом аналитической группировки

Применение метода аналитической группировки

При использовании метода аналитической группировки строится интервальный ряд распределения единиц совокупности по факторному признаку Х и для каждой j-ой группы ряда определяется среднегрупповое значение результативного признака Y. Если с ростом значений фактора Х от группы к группе средние значения систематически возрастают (или убывают), между признаками X и Y имеет место корреляционная связь.

Используя разработочную таблицу 3, строим аналитическую группировку, характеризующую зависимость между факторным признаком Х - Сумма прибыли и результативным признаком Y - Объём собственного капитала. Макет аналитической таблицы имеет следующий вид (табл. 7):

Номер группы

Группы банков по Сумма прибыли, млн руб.

Число банков

Объём собственного капитала,

млн руб.

всего

в среднем на один банк

1

2

3

4

 Итого

Таблица 8

Зависимость Объём собственного капитала банков от Сумма прибыли

Номер группы

Группы банков по Сумме прибыли,

Число банков

Объём собственного капитала,

млн руб.

млн руб.

 

всего

в среднем на один банк

1

50 - 110

3

6300

2100

2

110 - 170

6

18480

3080

3

170 - 230

12

52080

4340

4

230 - 290

7

39858

5694

5

290 - 350

2

16362

8181

 Итого

 

30

133080

4436

Вывод. Анализ данных табл. 8 показывает, что с увеличением суммы прибыли от группы к группе систематически возрастает и объем собственного капитала по каждой группе банков, что свидетельствует о наличии прямой корреляционной связи между исследуемыми признаками.

2. Измерение тесноты и силы корреляционной связи с использованием коэффициента детерминации и эмпирического корреляционного отношения

Для измерения тесноты и силы связи между факторным и результативным признаками рассчитывают специальные показатели - эмпирический коэффициент детерминации и эмпирическое корреляционное отношение .

Эмпирический коэффициент детерминации оценивает силу связи, определяя, насколько вариация результативного признака Y объясняется вариацией фактора Х (остальная часть вариации Y объясняется вариацией прочих факторов). Показатель рассчитывается как доля межгрупповой дисперсии в общей дисперсии по формуле

, (9)

где - общая дисперсия признака Y,

- межгрупповая (факторная) дисперсия признака Y.

Значения показателя изменяются в пределах . При отсутствии корреляционной связи между признаками Х и Y имеет место равенство =0, а при наличии функциональной связи между ними - равенство =1.

Общая дисперсия характеризует вариацию результативного признака, сложившуюся под влиянием всех действующих на Y факторов (систематических и случайных). Этот показатель вычисляется по формуле

, (10)

где yi - индивидуальные значения результативного признака;

- общая средняя значений результативного признака;

n - число единиц совокупности.

Общая средняя вычисляется как средняя арифметическая простая по всем единицам совокупности:

(11)

или как средняя взвешенная по частоте групп интервального ряда:

(12)

Для вычисления удобно использовать формулу (11), т.к. в табл. 8 (графы 3 и 4 итоговой строки) имеются значения числителя и знаменателя формулы.

Расчет по формуле (11):

Для расчета общей дисперсии применяется вспомогательная таблица 12.

Таблица 12

Вспомогательная таблица для расчета общей дисперсии

Номер

Банка п/п

Объём собственного капитала, млн руб.

1

2

3

4

5

1

3900

-536

287296

15210000

2

4500

64

4096

20250000

3

3000

-1436

2062096

9000000

4

2300

-2136

4562496

5290000

5

3700

-736

541696

13690000

6

3200

-1236

1527696

10240000

7

3780

-656

430336

14288400

8

4000

-436

190096

16000000

9

3100

-1336

1784896

9610000

10

4600

164

26896

21160000

11

2200

-2236

4999696

4840000

12

5280

844

712336

27878400

13

4700

264

69696

22090000

14

4400

-36

1296

19360000

15

6500

2064

4260096

42250000

16

5000

564

318096

25000000

17

2500

-1936

3748096

6250000

18

1800

-2636

6948496

3240000

19

4200

-236

55696

17640000

20

5600

1164

1354896

31360000

21

7962

3526

12432676

63393444

22

5850

1414

1999396

34222500

23

400

-4036

16289296

160000

24

4900

464

215296

24010000

25

8400

3964

15713296

70560000

26

7088

2652

7033104

50239744

27

5100

664

440896

26010000

28

4300

-136

18496

18490000

29

6020

1584

2509056

36240400

30

4800

364

132496

23040000

Итого

133080

0

90670008

681012888

Расчет общей дисперсии по формуле (10):

Общая дисперсия может быть также рассчитана по формуле

,

где - средняя из квадратов значений результативного признака,

- квадрат средней величины значений результативного признака.

Для демонстрационного примера

Тогда

Межгрупповая дисперсия измеряет систематическую вариацию результативного признака, обусловленную влиянием признака-фактора Х (по которому произведена группировка). Воздействие фактора Х на результативный признак Y проявляется в отклонении групповых средних от общей средней . Показатель вычисляется по формуле

, (13)

где -групповые средние,

- общая средняя,

-число единиц в j-ой группе,

k - число групп.

Для расчета межгрупповой дисперсии строится вспомогательная таблица 13 При этом используются групповые средние значения из табл. 8 (графа 5).

Таблица 13

Вспомогательная таблица для расчета межгрупповой дисперсии

Группы банков по Сумме прибыли, млн руб.

Число банков,

Среднее значение в группе

1

2

3

4

5

50 - 110

3

2100

-2336

16370688

110 - 170

6

3080

-1356

11032416

170 - 230

12

4340

-96

110592

230 - 290

7

5694

1258

11077948

290 - 350

2

8181

3745

28050050

Итого

30

 

66641699

Расчет межгрупповой дисперсии по формуле (11):

Расчет эмпирического коэффициента детерминации по формуле (9):

или 73,4%

Вывод. 73,4% вариации объёма собственного капитала банков обусловлено вариацией прибыли, а 26,7% - влиянием прочих неучтенных факторов.

Эмпирическое корреляционное отношение оценивает тесноту связи между факторным и результативным признаками и вычисляется по формуле

(14)

Значение показателя изменяются в пределах . Чем ближе значение к 1, тем теснее связь между признаками. Для качественной оценки тесноты связи на основе служит шкала Чэддока (табл. 14):

Таблица 14

Шкала Чэддока

0,1 - 0,3

0,3 - 0,5

0,5 - 0,7

0,7 - 0,9

0,9 - 0,99

Характеристика

силы связи

Слабая

Умеренная

Заметная

Тесная

Весьма тесная

Расчет эмпирического корреляционного отношения по формуле (14):

Вывод. Согласно шкале Чэддока связь между суммами прибыли и объёмом собственного капитала банков является тесной.

3. Оценка статистической значимости коэффициента детерминации .

Показатели и рассчитаны для выборочной совокупности, т.е. на основе ограниченной информации об изучаемом явлении. Поскольку при формировании выборки на первичные данные могли иметь воздействии какие-либо случайные факторы, то есть основание полагать, что и полученные характеристики связи , несут в себе элемент случайности. Ввиду этого, необходимо проверить, насколько заключение о тесноте и силе связи, сделанное по выборке, будет правомерными и для генеральной совокупности, из которой была произведена выборка.

Проверка выборочных показателей на их неслучайность осуществляется в статистике с помощью тестов на статистическую значимость (существенность) показателя. Для проверки значимости коэффициента детерминации служит дисперсионный F-критерий Фишера, который рассчитывается по формуле

,

где n - число единиц выборочной совокупности,

m - количество групп,

- межгрупповая дисперсия,

- дисперсия j-ой группы (j=1,2,…,m),

- средняя арифметическая групповых дисперсий.

Величина рассчитывается, исходя из правила сложения дисперсий:

,

где - общая дисперсия.

Для проверки значимости показателя рассчитанное значение F-критерия Fрасч сравнивается с табличным Fтабл для принятого уровня значимости и параметров k1, k2, зависящих от величин n и m : k1=m-1, k2=n-m. Величина Fтабл для значений , k1, k2 определяется по таблице распределения Фишера, где приведены критические (предельно допустимые) величины F-критерия для различных комбинаций значений , k1, k2. Уровень значимости в социально-экономических исследованиях обычно принимается равным 0,05 (что соответствует доверительной вероятности Р=0,95).

Если FрасчFтабл , коэффициент детерминации признается статистически значимым, т.е. практически невероятно, что найденная оценка обусловлена только стечением случайных обстоятельств. В силу этого, выводы о тесноте связи изучаемых признаков, сделанные на основе выборки, можно распространить на всю генеральную совокупность.

Если FрасчFтабл, то показатель считается статистически незначимым и, следовательно, полученные оценки силы связи признаков относятся только к выборке, их нельзя распространить на генеральную совокупность.

Фрагмент таблицы Фишера критических величин F-критерия для значений =0,05; k1=3,4,5; k2=24-35 представлен ниже:

k2

k1

24

25

26

27

28

29

30

31

32

33

34

35

3

3,01

2,99

2,98

2,96

2,95

2,93

2,92

2,91

2,90

2,89

2,88

2,87

4

2,78

2,76

2,74

2,73

2,71

2,70

2,69

2,68

2,67

2,66

2,65

2,64

5

2,62

2,60

2,59

2,57

2,56

2,55

2,53

2,52

2,51

2,50

2,49

2,48

Расчет дисперсионного F-критерия Фишера для оценки =73,4%, полученной при =, =:

Fрасч

Табличное значение F-критерия при = 0,05:

n

m

k1=m-1

k2=n-m

Fтабл (,5, 25)

30

5

4

25

2,60

Вывод: поскольку FрасчFтабл, то величина коэффициента детерминации =75,1% признается значимой (неслучайной) с уровнем надежности 95% и, следовательно, найденные характеристики связи между признаками Объем кредитных вложений банков и Сумма прибыли банков правомерны не только для выборки, но и для всей генеральной совокупности банков.

Задание 3

По результатам выполнения Задания 1 с вероятностью 0,683 необходимо определить:

ошибку выборки средней величины объема кредитных вложений банков и границы, в которых будет находиться генеральная средняя.

ошибку выборки доли банков с прибылью 230 млн руб. и выше, а также границы, в которых будет находиться генеральная доля.

Решение:

Целью выполнения данного Задания является определение для генеральной совокупности коммерческих банков региона границ, в которых будут находиться величина среднего объема прибыли банков и доля банков с объемом кредитных вложений не менее 230 млн руб.

1. Определение ошибки выборки для среднего объема кредитных вложений банков и границ, в которых будет находиться генеральная средняя

Применение выборочного метода наблюдения всегда связано с установлением степени достоверности оценок показателей генеральной совокупности, полученных на основе значений показателей выборочной совокупности. Достоверность этих оценок зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности. Как правило, генеральные и выборочные характеристики не совпадают, а отклоняются на некоторую величину е, которую называют ошибкой выборки (ошибкой репрезентативности).

Значения признаков единиц, отобранных из генеральной совокупности в выборочную, всегда случайны, поэтому и статистические характеристики выборки случайны, следовательно, и ошибки выборки также случайны. Ввиду этого принято вычислять два вида ошибок - среднюю и предельную .

Средняя ошибка выборки - это среднее квадратическое отклонение всех возможных значений выборочной средней от генеральной средней, т.е. от своего математического ожидания M[].

Величина средней ошибки выборки рассчитывается дифференцированно (по различным формулам) в зависимости от вида и способа отбора единиц из генеральной совокупности в выборочную.

Для собственно-случайной и механической выборки с бесповторным способом отбора средняя ошибка выборочной средней определяется по формуле

, (15)

где - общая дисперсия выборочных значений признаков,

N - число единиц в генеральной совокупности,

n - число единиц в выборочной совокупности.

Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная средняя:

,

, (16)

где - выборочная средняя,

- генеральная средняя.

Границы задают доверительный интервал генеральной средней, т.е. случайную область значений, которая с вероятностью Р гарантированно содержит значение генеральной средней. Эту вероятность Р называют доверительной вероятностью или уровнем надёжности.

В экономических исследованиях чаще всего используются доверительные вероятности Р= 0.954, Р= 0.997, реже Р= 0,683.

В математической статистике доказано, что предельная ошибка выборки кратна средней ошибке µ с коэффициентом кратности t (называемым также коэффициентом доверия), который зависит от значения доверительной вероятности Р. Для предельной ошибки выборочной средней это теоретическое положение выражается формулой

(17)

Значения t вычислены заранее для различных доверительных вероятностей Р и протабулированы (таблицы функции Лапласа Ф). Для наиболее часто используемых уровней надежности Р значения t задаются следующим образом (табл. 15):

Таблица 15

Доверительная вероятность P

0,683

0,866

0,954

0,988

0,997

0,999

Значение t

1,0

1,5

2,0

2,5

3,0

3,5

По условию демонстрационного примера выборочная совокупность насчитывает 30 банков, выборка 20% механическая, следовательно, генеральная совокупность включает 150 банков. Выборочная средняя , дисперсия определены в Задании 1 (п. 3). Значения параметров, необходимых для решения задачи, представлены в табл. 16:

Таблица 16

Р

t

n

N

0,683

1

30

150

198

3956,23

Расчет средней ошибки выборки по формуле (15):

,

Расчет предельной ошибки выборки по формуле (17):

Определение по формуле (16) доверительного интервала для генеральной средней:

198-10,27198+10,27,

187,73 млн руб. 208,27 млн руб.

Вывод. На основании проведенного выборочного обследования коммерческих банков региона с вероятностью 0,683 можно утверждать, что для генеральной совокупности банков средний объем прибыли банка находится в пределах от 187,73 млн руб. до 208,27 млн руб.

2. Определение ошибки выборки для доли банков с объемом прибыли 230 млн руб. и выше, а также границ, в которых будет находиться генеральная доля

Доля единиц выборочной совокупности, обладающих тем или иным заданным свойством, выражается формулой

, (18)

где m - число единиц совокупности, обладающих заданным свойством;

n - общее число единиц в совокупности.

Для собственно-случайной и механической выборки с бесповторным способом отбора предельная ошибка выборки доли единиц, обладающих заданным свойством, рассчитывается по формуле

, (19)

где w - доля единиц совокупности, обладающих заданным свойством;

(1-w) - доля единиц совокупности, не обладающих заданным свойством,

N - число единиц в генеральной совокупности,

n- число единиц в выборочной совокупности.

Предельная ошибка выборки определяет границы, в пределах которых будет находиться генеральная доля р единиц, обладающих заданным свойством:

(20)

По условию Задания 3 исследуемым свойством является равенство или превышение объема прибылей банка величины 230 млн руб.

Число банков с заданным свойством определяется из табл. 3 (графа 3):

m=9

Расчет выборочной доли по формуле (18):

Расчет по формуле (19) предельной ошибки выборки для доли:

Определение по формуле (20) доверительного интервала генеральной доли:

0,23 0,37

Или

23% 37%

Вывод. С вероятностью 0,683 можно утверждать, что в генеральной совокупности банков доля банков с объемом прибыли 230 млн руб. и выше будет находиться в пределах от 23% до 37%.

Задание 4

Имеются следующие данные о динамике задолженности организаций по кредитам банков (табл. 17):

Таблица 17

Год

Задолженность по кредитам, млрд. руб.

1

960

2

1800

3

2400

4

3500

5

4200

Определите:

Среднегодовую задолженность по кредиту

Абсолютные и относительные изменения задолженности (цепные и базисные абсолютные приросты, темпы роста, темпы прироста)

Среднегодовые темпы роста и прироста задолженности

Осуществите прогноз задолженности организации по кредитам банков при условии что средне годовой темп сохранится на прежнем уровне ещё в течении 2х лет

Постройте график динамики задолженности

Решение:

1. Определение среднегодовой задолженности по кредиту

Средний уровень ряда динамики () характеризует типичную величину уровней ряда.

Для интервального ряда динамики с равноотстоящими уровнями средний уровень ряда определяется как простая арифметическая средняя из уровней ряда:

,

где n- число уровней ряда.

млрд. руб.

2. Определение абсолютного и относительного изменения задолженности

Аналитические показатели рядов динамики строятся на основе сравнения двух уровней ряда. Используют два способа сравнения уровней:

1) базисный способ, при котором каждый последующий уровень сравнивается с одним и тем же уровнем, принятым за базу сравнения (то есть база сравнения - постоянная);

2) цепной способ, при котором каждый последующий уровень сравнивается с предыдущим уровнем (то есть база сравнения - переменная).

Соответственно различают:

- базисные показатели, обозначаемые надстрочным индексом б;

- цепные показатели, обозначаемые надстрочным индексом ц.

Общеупотребительные обозначения уровней ряда динамики:

yi - данный (текущий) уровень;

yi-1- предыдущий уровень;

y0 - базисный уровень;

yn - конечный уровень;

К числу основных аналитических показателей рядов динамики, характеризующих изменения уровней ряда за отдельные промежутки времени, относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента прироста, которые рассчитываются по следующим формулам:

?уiб = уi - уо, ?уiц = уi - уi-1

,

Тпрi=Трi-100 (%)

Аналитические показатели годовых изменений уровней ряда приведены в табл.18.

Показатели динамики задолженностей по кредиту

Годы

Выпуск продукции, млрд. руб.

Абсолютный прирост,

Темп роста,

Темп прироста,

Абсолютное

млрд. руб.

%

%

значение

цепной

базисный

цепной

базисный

цепной

базисный

1% прироста

1

2

3

4

5

6

7

8

9

1-й

960,00

 

 

 

 

 

 

 

2-й

1800,00

840,00

840,00

187,50

187,50

87,50

87,50

9,60

3-й

2400,00

600,00

1440,00

133,33

250,00

33,33

150,00

18,00

4-й

3500,00

1100,00

2540,00

145,83

364,58

45,83

264,58

24,00

5-й

4200,00

700,00

3240,00

120,00

437,50

20,00

337,50

35,00

3. Определение среднегодовых темпов роста и прироста задолженности

В табл.18 приведены данные, характеризующие динамику изменения уровней ряда за отдельные периоды времени. Для обобщающей оценки изменений уровней ряда за весь рассматриваемый период времени необходимо рассчитать средние показатели динамики.

В анализе динамики явления в зависимости от вида исходного ряда динамики используются различные средние показатели динамики, характеризующие изменения ряда динамики в целом.

Средний уровень ряда динамики () характеризует типичную величину уровней ряда.

Для интервального ряда динамики с равноотстоящими уровнями средний уровень ряда определяется как простая арифметическая средняя из уровней ряда:

,

где n- число уровней ряда.

Средний абсолютный прирост () является обобщающей характеристикой индивидуальных абсолютных приростов и определяется как простая арифметическая средняя из цепных абсолютных приростов:

где n- число уровней ряда.

Средний темп роста () - это обощающая характеристика интенсивности изменения уровней ряда, показывающая во сколько раз изменялись уровни ряда в среднем за единицу времени. Показатель может быть рассчитан по формуле

где n - число уровней ряда.

Средний темп прироста () рассчитывают с использованием среднего темпа роста по формуле:

Средние показатели ряда динамики выпуска продукции представлены в табл.19.

Таблица 19

Средние показатели ряда динамики задолженностей по кредиту

Средний уровень ряда динамики, млрд. руб.,

2572

Средний абсолютный прирост, млрд. руб.,

648

Средний темп роста, %,

144,6

Средний темп прироста, %,

44,6

3. Осуществите прогноз задолженности организации по кредитам банков

Применение метода экстраполяции основано на инерционности развития социально-экономических явлений и заключается в предположении о том, что тенденция развития данного явления в будущем не будет претерпевать каких-либо существенных изменений. При этом с целью получения окончательного прогноза всегда следует учитывать все имеющиеся предпосылки и гипотезы дальнейшего развития рассматриваемого социально-экономического явления. Прогноз, сделанный на период экстраполяции (период упреждения), больший 1/3 рассмотренного периода развития явления, не может считаться научно обоснованным (например, по данным за 6 лет научно обоснованным будет прогноз лишь на 2 года вперед).

Выполнение Задания 3 заключается в решении двух задач:

Задача 3.1. Прогнозирование выпуска продукции предприятием на год вперёд с использованием среднего абсолютного прироста и среднего темпа роста.

Задача 3.2. Прогнозирование выпуска продукции предприятием на год вперёд с использованием аналитического выравнивания ряда динамики по прямой, параболе и степенной функции.

Задача 3.1.

Прогнозирование уровня ряда динамики с использованием среднего абсолютного прироста и среднего темпа роста осуществляется соответственно по формулам:

, (1),

(2),

где: - прогнозируемый уровень;

t - период упреждения (число лет, кварталов и т.п.);

yi - базовый для прогноза уровень;

- средний за исследуемый период абсолютный прирост (среднегодовой, среднеквартальный и т.п.);

- средний за исследуемый период темп роста (среднегодовой, среднеквартальный и т.п.).

Формула (1) применяется при относительно стабильных абсолютных приростах Дyц, что с некоторой степенью приближения соответствует линейной форме зависимости . Формула (2) используется при достаточно стабильных темпах ростах (), что с некоторой степенью приближения соответствует показательной форме зависимости .

Прогнозные оценки объема реализации продукции на 7-ой год (по данным шестилетнего периода), рассмотренные с использованием среднего абсолютного прироста и среднего темпа роста (рассчитанные в задании 1), приведены в табл.20.

...

Таблица 20

Прогноз Yпрог задолженностей по кредиту на 6-ой год, млрд. руб.

По среднему абсолютному приросту

4848,00

По среднему темпу роста


Подобные документы

  • Интервальный ряд распределения банков по объему прибыли. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик интервального ряда распределения. Вычисление средней арифметической.

    контрольная работа [150,6 K], добавлен 15.12.2010

  • Затраты на рабочую силу как объект статистического изучения. Применение индексного метода. Нахождение моды и медианы интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик ряда распределения, средней арифметической.

    курсовая работа [920,1 K], добавлен 04.05.2013

  • Сущность оптового, розничного и общественного товарооборота. Формулы расчета индивидуальных, агрегатных индексов товарооборота. Расчет характеристик интервального ряда распределения - среднего арифметического, моды и медианы, коэффициента вариации.

    курсовая работа [1,2 M], добавлен 10.05.2013

  • Построение интервального вариационного ряда распределения стран Европы по объему импорта с Россией, выделение четырех групп стран с равными интервалами. Определение среднемесячных и среднегодовых остатков сырья, материалов, фурнитуры на складе ателье.

    контрольная работа [69,3 K], добавлен 16.11.2011

  • Построение статистического ряда распределения организаций. Графическое определение значения моды и медианы. Теснота корреляционной связи с использованием коэффициента детерминации. Определение ошибки выборки среднесписочной численности работников.

    контрольная работа [82,0 K], добавлен 19.05.2009

  • Анализ эффективности деятельности предприятий. Построение статистического ряда распределения организаций по выручке от продажи продукции. Вычисление медианы для интервального вариационного ряда. Группировка предприятий по выручке от продажи продукции.

    контрольная работа [82,4 K], добавлен 30.04.2014

  • Исследование структуры совокупности организаций по признаку "среднегодовая стоимость материальных оборотных фондов". Характеристика ряда интервального ряда распределения: средней арифметической, среднеквадратического отклонения, коэффициента вариации.

    курсовая работа [586,0 K], добавлен 07.05.2015

  • Прибыль и рентабельность как показатели, характеризующие результаты деятельности кредитных организаций. Построение статистического ряда распределения организаций, расчёт моды, медианы, дисперсии, коэффициента вариации, тесноты корреляционной связи.

    курсовая работа [599,0 K], добавлен 06.12.2013

  • Понятие и виды статистической группировки, производимой с целью установления статистических связей и закономерностей, выявления структуры изучаемой совокупности. Построение интервального ряда распределения предприятий по признаку "торговая площадь".

    дипломная работа [1,6 M], добавлен 14.02.2016

  • Формирование массива случайных чисел. Построение интервального ряда распределения. Определение тесноты связи между типом населения и средним размером вклада, путем исчисления эмпирического корреляционного отношения. Географическая структура экспорта.

    задача [138,1 K], добавлен 05.12.2009

  • Построение интервального ряда распределения по группировочному признаку. Характеристика отклонения распределения частот от симметричной формы, расчет показателей эксцесса и ассиметрии. Анализ показателей бухгалтерского баланса или отчёта о прибылях.

    контрольная работа [102,4 K], добавлен 19.10.2014

  • Расчет среднего балла успеваемости по данным результатов сессии, определение показателя вариаций уровня знаний и структуры численности студентов по успеваемости. Построение интервального ряда распределения предприятий. Оценка коэффициентов корреляции.

    контрольная работа [76,0 K], добавлен 21.08.2009

  • Группировка предприятий по объему выработанной продукции. Ранжирование ряда по объему выработанной продукции. Расчет характеристики ряда распределения. Определение индекса цен переменного, фиксированного состава. Поиск уравнения линейной регрессии.

    контрольная работа [132,1 K], добавлен 28.01.2011

  • Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа [218,5 K], добавлен 27.02.2011

  • Характеристика используемых статистических показателей. Графическое представление распределения значений (гистограмма, куммулята). Оценка структурных средних (моды, медианы) на основе структурной группировки. Выравнивание ряда методом скользящей средней.

    контрольная работа [464,1 K], добавлен 29.10.2014

  • Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.

    контрольная работа [120,9 K], добавлен 01.03.2012

  • Национальное богатство как объект статистического изучения. Применение анализа рядов динамики в изучении национального богатства. Распределения предприятий по среднегодовой стоимости основных фондов. Характеристики интервального ряда распределения.

    курсовая работа [578,0 K], добавлен 20.03.2014

  • Табличное и графическое представление вариационного ряда. Определение среднестатистической численности населения в субъектах России. Характеристика форм распределения с расчетом коэффициентов асимметрии и эксцесса и применением критерия согласия Пирсона.

    курсовая работа [403,2 K], добавлен 17.11.2014

  • Методические рекомендации для решения задач по общей теории статистики. Формулы для вычисления моды. Расчет медианы для интервального ряда. Определение средней арифметической простой, средней геометрической. Расчет индекса структурных сдвигов.

    методичка [101,6 K], добавлен 22.03.2010

  • Построение рядов распределения и секторной диаграммы. Графическое изображение дискретного ряда. Показатели центра распределения, к которым относятся мода, медиана, средняя арифметическая. Вычисление основных показателей вариации и формы распределения.

    контрольная работа [355,3 K], добавлен 22.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.