Статистический метод средних величин

Общие принципы применения средних величин. Особенность определения моды и медианы структурой распределения. Вычисление различных видов степенных значений. Основные свойства общесредней арифметической, геометрической, квадратической и кубической степени.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 02.02.2016
Размер файла 109,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Виды средних величин

2. Общие принципы применения средних величин

Заключение

Список использованной литературы

Введение

Развитие рыночных отношений в стране, дальнейшее продвижение экономики по пути реформ невозможно без обоснованного статистического анализа экономических процессов. В этих условиях экономическая работа требует специальных знаний обработки исходного цифрового материала, определения содержания тех или иных показателей хозяйственной деятельности предприятия, методов их расчета. И с достаточным основанием можно утверждать, что ни один расчет не обходится без использования метода средних.

Расчет средних показателей необходим при составлении любого экономического отчета, пояснительной записки к бухгалтерской отчетности, проведении экспресс-анализа отчетности хозяйствующего субъекта, специального исследования, например, расчет средней стоимости имущества в налогообложении, средней стоимости основных фондов, среднесписочной численности работников, средней заработной платы, средней или модальной цены товара и т.д.

В современных условиях развития экономики нашей страны, ее многогранности статистико-экономический анализ приобретает особое значение.

Поэтому владение методом средних, сегодня необходимо не только исследователю-статистику, но и бухгалтеру, экономисту, руководителю предприятия.

Раскрытие основных направлений метода средних углубляет наше знание о процессах, происходящих в экономике, закономерностях их становления и развития.

Средней величиной в статистике называется обобщенная характеристика качественно однородных явлений и процессов по какому-либо варьирующему признаку, которая показывает уровень признака, отнесенный к единице совокупности.

Средняя величина абстрактна, т.к. характеризует значение признака у некоторой обезличенной единицы совокупности. Сущность средней величины состоит в том, что через единичное и случайное выявляется общее и необходимое, т. е. тенденция и закономерность в развитии массовых явлений. Признаки, которые обобщают в средних величинах, присущи всем единицам совокупности. Благодаря этому средняя величина имеет большое значение для выявления закономерностей, присущих массовым явлениям и не заметных в отдельных единицах совокупности.

Так, например, средняя заработная плата дает обобщающую количественную характеристику состояния оплаты труда рассматриваемой совокупности работников. Кроме того, используя средние величины, имеется возможность сопоставлять различные информационные совокупности. Так, например, можно сравнивать различные организации по уровню производительности труда, а также по уровню фондоотдачи, материалоотдачи и по другим показателям.

1. Виды средних величин

Средняя величина, рассчитанная в целом по совокупности, называется общей средней; средние величины, рассчитанные для каждой группы, - групповыми средними. Общая средняя отражает общие черты изучаемого явления, групповая средняя дает характеристику явления, складывающуюся в конкретных условиях данной группы.

Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины.

Средние величины делятся на 2 больших класса:

Степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина

().

Структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют «структурными позиционными средними». Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Степенные средние

Для наглядности наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в

Вид

степенной

средней

Показатель

степени

()

Простая

Взвешенная

Гармоническая

-1

,

- веса

Геометрическая

--> 0

Арифметическая

1

Квадратическая

2

Кубическая

3

Средняя арифметическая величина представляет собой такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Для того чтобы исчислить среднюю арифметическую, необходимо сумму всех значений признаков разделить на их число.

Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Примером средней арифметической может служить общий фонд заработной платы - это сумма заработных плат всех работников.

Средняя арифметическая простая величина равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений. Она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака.

Средняя арифметическая взвешенная - это средняя их вариант, которые повторяются различное число раз или имеют различный вес.

Основные свойства средней арифметической:

Если индивидуальные значения признака, т.е. варианты, уменьшить

или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.

Если все варианты осредняемого признака уменьшить или увеличить

на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число.

Если веса всех осредняемых вариантов уменьшить или увеличить в k

раз, то средняя арифметическая не изменится.

Сумма отклонений отдельных значений признака (вариант) от

средней арифметической равна нулю.

Прежде чем выполнять расчет средней величины необходимо преобразовать интервальный ряд в дискретный. Для этого находят середину интервала в каждой группе. Ее определяют делением суммы верхней и нижней границы пополам.

Определяющим свойством средней гармонической величины состоит в том, чтобы при осреднении оставалась неизменной сумма величин, обратных осредняемым.

Формула средней гармонической взвешенной величины применяется тогда, когда статистическая информация не содержит частот по отдельным вариантам x совокупности, а представлена как произведение . Для того чтобы исчислить среднюю, необходимо обозначить , откуда . Теперь преобразуем формулу средней арифметической таким образом, чтобы по имеющимся данным x и m можно было исчислить среднюю. В формулу средней арифметической взвешенной вместо подставим m, а вместо f - отношение , и таким образом получим формулу средней гармонической взвешенной.

Средняя гармоническая простая величина применяется в тех случаях, когда вес каждого варианта равен единице, т.е. ,

Средняя геометрическая величина применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.

Структурные средние

Средние величины, описанные выше, дают обобщенное представление об изучаемой совокупности, и с этой точки зрения их теоретическое, прикладное и познавательное значение бесспорно. Но бывает, что величина средней не совпадает ни с одним из реально существующих вариантов, поэтому кроме рассмотренных средних в статистическом анализе целесообразно использовать величины конкретных вариантов, занимающие в упорядоченном (ранжированном) ряду значений признака вполне определенное положение. Среди таких величин наиболее употребительными являются структурные, или описательные, средние мода () и медиана ().

Мода - значение признака, которое имеет наибольшую частоту в статистическом ряду распределения.

Отыскание моды производится по-разному, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда. Поиск моды в дискретном ряду происходит путем простого просматривания столбца частот. В этом столбце находится наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. Может оказаться, что два признака имеют одинаковую частоту. В этом случае ряд будет называться бимодальным.

В интервальном вариационном ряду модой приближенно считают центральный вариант интервала с наибольшей частотой. В таком ряде распределения мода вычисляется по формуле:

где

- нижняя граница модального интервала;

- модальный интервал;

- частота в модальном интервале;

- частота интервала перед модальным интервалом;

- частота интервала после модального интервала.

Мода широко используется в статистической практике при изучении, например, покупательского спроса, регистрации цен и т.д.

Медиана - это вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные (по числу единиц) части - со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое находится в середине упорядоченного ряда.

В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы по формуле:

, где

n - число членов ряда.

В случае четного объема ряда медиана равна средней из двух вариантов, находящихся в середине ряда.

В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком-то из интервалов признака x. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот) равна или превышает полусумму всех частот ряда. Значение медианы вычисляется по формуле: мода медиана арифметический степень

, где

- нижняя граница медианного интервала;

- медианный интервал;

- половина от общего числа наблюдений;

- сумма наблюдений, накопленная до начала медианного интервала;

- число наблюдений в медианном интервале.

Средние уровни в рядах динамики

Средний уровень ряда характеризует обобщенную величину абсолютных уровней. Он рассчитывается по средней хронологической, т.е. по средней исчисленной из значений, изменяющихся во времени.

Для моментных рядов динамики с равностоящими уровнями средний уровень определяется по формуле средней хронологической моментного ряда:

, где

- уровни периода, за который делается расчет;

-число уровней;

- длительность периода времени.

Для моментных рядов динамики с неравностоящими уровнями средний уровень определяется по формуле средней хронологической взвешенной моментного ряда:

, где

-уровни рядов динамики;

- интервал времени между смежными уровнями.

2. Общие принципы применения средних величин

В статистике правильную характеристику изучаемой совокупности по варьирующему признаку в каждом отдельном случае дает только вполне определенный вид средней. Вопрос о том, какой вид средней необходимо применить в отдельном случае, разрешается путем конкретного анализа изучаемой совокупности, а также исходя из принципа осмысленности результатов при суммировании или при взвешивании. Эти и другие принципы в статистике выражаются теорией средних.

Например, средняя арифметическая и средняя гармоническая используются для характеристики среднего значения варьирующего признака у изучаемой совокупности. Средняя геометрическая применяется только при исчислении средних темпов динамики, а средняя квадратическая только при исчислении показателей вариации.

Введем следующие условные обозначения:

-величины для которых исчисляется средняя;

-средняя где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;

- частота(повторяемость индивидуальных значений признака).

Различные средние выводятся из общей формулы степенной средней:

При k= 1 - средняя арифметическая; k = -1- средняя гармоническая; k = 0 - средняя геометрическая; k= -2 - средняя квадратическая.

Сущность средней заключается в том, что в ней взаимопогашаются случайные отклонения значений признака и учитываются изменения вызванные основным фактором.

Статистическая обработка методом средних величин заключается в замене индивидуальных значений варьирующего признака некоторой уравновешенной средней величиной .

Например, индивидуальная выработка у 5 операционистов коммерческого банка за день составила 136, 140, 154 и 162 операции. Чтобы получить среднее число операций за день, выполненных одним операционистом, необходимо сложить эти индивидуальные показатели и полученную сумму разделить на количество операционистов:

операций.

Как видно из приведенного примера, среднее число операций не совпадает ни с одним из индивидуальных, так как ни один операционист не сделал 150 операций. Но если мы представим себе, что каждый операционист сделал по 150 операций, то их общая сумма не изменится, а будет также равна 750. Таким образом, мы пришли к основному свойству средних величин: сумма индивидуальных значений признака равна сумме средних величин.

Это свойство еще раз подчеркивает, что средняя величина является обобщающей характеристикой всей статистической совокупности.

Средние величины широко применяются в различных отраслях знаний. Особо важную роль они играют в экономике и статистике: при анализе, планировании, прогнозировании, при расчете нормативов и при оценке достигнутого уровня. Средняя всегда именованная величина и имеет ту же размерность, что и отдельная единица совокупности.

Важнейшими условиями (принципами) для правильного вычисления и использования средних величин является следующие:

1. В каждом конкретном случае необходимо исходить из качественного содержания осредняемого признака, учитывать взаимосвязь изучаемых признаков и имеющиеся для расчета данные.

2. Индивидуальные значения, из которых вычисляются средние, должны относиться к однородной совокупности, а число их должно быть значительным.

Расчет некоторых средних величин:

§ Средняя заработная плата 1 работника = Фонд заработной платы / Число работников

§ Средняя цена 1 продукции = Стоимость производства / Количество единиц продукции

§ Средняя себестоимость 1 изделия = Стоимость производства / Количество единиц продукции

§ Средняя урожайность = Валовый сбор / посевная площадь

§ Средняя производительность труда = объем продукции, работ, услуг / Отработанное время

§ Средняя трудоемкость = отработанное время / объем продукции, работ, услуг

§ Средняя фондоемкость = Средняя стоимость основных фондов / объем продукции, работ и услуг

§ Средняя фондоотдача = объем продукции, работ и услуг / средняя стоимость основных фондов

§ Средняя фондовооруженность = средняя величина основных производственных фондов / среднесписочная численность производственного персонала

§ Средний процент брака = ( стоимость бракованной продукции / Стоимость всей произведенной продукции ) * 100%

Заключение

Средние величины имеют большое распространение в статистике коммерческой деятельности. В средних величинах отображаются важнейшие показатели товарооборота, товарных запасов, цен. Средними величинами характеризуются качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.

Правильное понимания сущности средней определяет ее особую

значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.

Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного).

В экономическом анализе использование средних величин является основным инструментом для оценки результатов научно-технического прогресса, социальных мероприятий, поиска резервов развития экономики. В то же время следует помнить о том, что чрезмерное увлечение средними показателями может привести к необъективным выводам при проведении экономико-статистического анализа. Это связано с тем, что средние величины, будучи обобщающими показателями, погашают, игнорируют те различия в количественных признаках отдельных единиц совокупности, которые реально существуют и могут представлять самостоятельный интерес.

Список использованной литературы

1. Экономическая статистика(под ред. Ю.Н.Иванова)- М., ИНФРА-М, 2004.

2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. - Общая теория статистики - М., ИНФРА-М, 1998.

3.Статья. Сущности и виды средних величин (электрон. ист.) 2010г

4.Статистика. Учебное пособие. Васнев С. А. Московский государственный университет печати (электрон. ист.). 2011г

5.Курсовая работа. Метод средних величин (электрон. ист.). 2011г.

6.ГОУ ВПО “Тюменский государственный университет”. Курсовая работа. Средние величины в статистическом анализе деятельности предприятий (электрон. ист.). 2009г

7.Статья. Средние величины и показатели вариаций (электрон. ист.)

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и свойства средних величин. Характеристика и расчет их видов (средних арифметической, гармонической, геометрической, квадратической, кубической и структурных). Сфера их применения в экономическом анализе хозяйственной деятельности отраслей.

    курсовая работа [56,8 K], добавлен 21.05.2014

  • Группы средних величин: степенные, структурные. Особенности применения средних величин, виды. Рассмотрение основных свойств средней арифметической. Характеристика структурных средних величин. Анализ примеров на основе реальных статистических данных.

    курсовая работа [230,6 K], добавлен 24.09.2012

  • Понятие средних величин и их значение в экономике. Классификация видов средних величин и их краткая характеристика. Средняя гармоническая и арифметическая, способы их расчета. Примеры применения средних величин в практической работе экономистов.

    курсовая работа [205,4 K], добавлен 17.09.2014

  • Расчет средних показателей при составлении любого экономического отчета. Исследование метода средних величин. Отражение средней величиной того общего, что характерно для всех единиц изучаемой совокупности. Деление средних величин на два класса.

    курсовая работа [91,7 K], добавлен 14.12.2008

  • Изучение сущности, видов, сферы применения средних величин. Характеристика степенных средних величин: средняя арифметическая; средняя гармоническая; средняя геометрическая; средняя квадратическая. Анализ структурных величин: медиана, мода, их расчет.

    курсовая работа [157,3 K], добавлен 16.01.2010

  • Анализ основных технико-экономических показателей ОАО "Газпром". Изучение сущности средних величин, видов и способов их вычисления. Рассмотрение применения средних величин при анализе хозяйственной деятельности работы ОАО "Газпром" за 2009-2012 гг.

    курсовая работа [177,4 K], добавлен 29.10.2015

  • Основные приемы и методы обработки и анализа статистических данных. Исчисление арифметической, гармонической и геометрической средних величин. Ряды распределения, их основные характеристики. Методы выравнивания рядом динамики. Система национальных счетов.

    курсовая работа [1,2 M], добавлен 24.10.2014

  • Абсолютные и относительные статистические величины. Понятие и принципы применения средних величин и показателей вариации. Правила применения средней арифметической и гармонической взвешенных. Коэффициенты вариации. Определение дисперсии методом моментов.

    учебное пособие [276,4 K], добавлен 23.11.2010

  • Средние величины в экономическом анализе. Общее понятие о степенных и структурных средних. Свойства средней арифметической величины. Расчеты, необходимые для нахождения параметров регрессии. Линейный коэффициент корреляции. Определение медианы и моды.

    курсовая работа [165,9 K], добавлен 12.03.2013

  • Расчет планового и фактического объема продаж, процента выполнения плана, абсолютного изменения товарооборота. Определение абсолютного прироста, средних темпов роста и прироста денежных доходов. Расчет структурных средних: моды, медианы, квартиля.

    контрольная работа [174,9 K], добавлен 24.02.2012

  • Оформление результатов сводки и группировки материалов статистического наблюдения в виде рядов распределения (атрибутивных и вариационных). Расчет средних величин и показателей вариации, моды и меридианы. Графическое изображение статистических данных.

    контрольная работа [226,8 K], добавлен 31.07.2011

  • Формулы определения средних величин интервального ряда - моды, медианы, дисперсии. Расчет аналитических показателей рядов динамики по цепной и базисной схемам, темпов роста и прироста. Понятие сводного индекса себестоимости, цен, затрат и товарооборота.

    курсовая работа [218,5 K], добавлен 27.02.2011

  • Построение ряда распределения предприятий по стоимости основных производственных фондов методом статистической группировки. Нахождение средних величин и индексов. Понятие и вычисление относительных величин. Показатели вариации. Выборочное наблюдение.

    контрольная работа [120,9 K], добавлен 01.03.2012

  • Условия применения средних величин в анализе. Виды средних величин. Средняя арифметическая. Средняя гармоническая. Средняя геометрическая. Средняя квадратическая и средняя кубическая. Структурные средние.

    курсовая работа [98,3 K], добавлен 25.03.2007

  • Статистический анализ производства и себестоимости. Использование формул средних величин в решении задач, вычисление дисперсии, среднего квадратичного отклонения, коэффициента вариации, предельной ошибки выборки. Практическое применение индексного метода.

    контрольная работа [59,3 K], добавлен 26.06.2009

  • Интервальный ряд распределения банков по объему прибыли. Нахождение моды и медианы полученного интервального ряда распределения графическим методом и путем расчетов. Расчет характеристик интервального ряда распределения. Вычисление средней арифметической.

    контрольная работа [150,6 K], добавлен 15.12.2010

  • Группировка единиц наблюдения статистической совокупности по факторному признаку. Расчет средних значений, моды и медианы, показателей вариации. Направление связи между факторной и результативной переменными. Определение вероятности ошибки выборки.

    контрольная работа [634,5 K], добавлен 19.05.2014

  • Характеристика используемых статистических показателей. Графическое представление распределения значений (гистограмма, куммулята). Оценка структурных средних (моды, медианы) на основе структурной группировки. Выравнивание ряда методом скользящей средней.

    контрольная работа [464,1 K], добавлен 29.10.2014

  • Абсолютная величина как объем или размер изучаемого события. Виды абсолютных величин: абсолютная и суммарная. Группы величин: моментная и интервальная единицы измерения. Виды относительных величин. Виды средних величин: степенные и структурные.

    презентация [173,3 K], добавлен 22.03.2012

  • Виды и применение абсолютных и относительных статистических величин. Сущность средней в статистике, виды и формы средних величин. Формулы и техника расчетов средней арифметической, средней гармонической, структурной средней. Расчет показателей вариации.

    лекция [985,6 K], добавлен 13.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.