Теория игр в экономике

Понятие и интерпретация теории игр. Разнообразие ситуаций и сфер жизни человека, в которых применима теория игр. Отношение потенциального проигрыша к потенциальному выигрышу. Особенность смешанных и эволюционно-стабильных стратегий в повторяющихся играх.

Рубрика Экономика и экономическая теория
Вид контрольная работа
Язык русский
Дата добавления 27.02.2016
Размер файла 349,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство связи

Сибирский Государственный Университет Телекоммуникаций и Информатики

Межрегиональный центр переподготовки специалистов

Контрольная работа

По дисциплине: Институциональная экономика

Выполнил: Лапина Е.Н.

Группа: ЭБТ-52

Вариант:4

Новосибирск, 2016 г

ВВЕДЕНИЕ

Любой человек во всем мире ежедневно совершает какие-то действия, делает для себя выбор в чем-либо. Для того чтобы совершать какие-либо действия, человеку необходимо задумываться об их последствиях, выбирать самое правильное, рациональное из всех возможных решений. Выбор необходимо осуществлять исходя из интересов собственных или групповых, в зависимости от того, к кому относится решение (к индивиду или к группе, организации в целом).

Институты создаются людьми, чтобы поддержать порядок и сократить неопределенность обмена. Они обеспечивают предсказуемость поведения людей. Институты позволяют экономить наши мыслительные способности, так как выучив правила, мы можем приспособиться к внешней среде, не пытаясь ее осмыслить и понять. Петросян Л.А, Зенкевич Н.А., Шевкопляс Е.В.: Теория игр: учебник. Издательство: BHV, 2012.-С.18.

Институты -- это «правила игры» в обществе, или, выражаясь более формально, созданные человеком ограничительные рамки, которые организуют взаимоотношения между людьми. Лабскер Л.Г., Ященко Н.А.: Теория игр в экономике. Практикум с решением задач. Учебное пособие. Издательство: Кнорус, 2014.-С.21. Институты появляются для решения проблем, возникающих при повторяющемся взаимодействии людей. При этом они не просто должны решить проблему, но и минимизировать ресурсы, затрачиваемые на ее решение.

Теорией игр называют математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за осуществление своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от своего поведения и поведения других игроков. Теория игр помогает выбрать наиболее выгодные стратегии с учётом некоторых факторов:

1. соображений о других участниках;

2. ресурсов участников;

3. предполагаемых действий участников.

В теории игр предполагается, что функции выигрыша и множество стратегий, доступных каждому из игроков, общеизвестны, т.е. каждый игрок знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а также функции выигрыша и стратегии всех остальных игроков, и в соответствии с этой информацией формирует свое поведение.

Актуальность темы состоит в широком спектре применений теории игр на практике (биология, социология, математика, менеджмент и т.д.). Конкретно в экономике - в такие моменты, когда не срабатывают теоретические основы теории выбора в классической экономической теории, заключающиеся, например, в том, что потребитель делает свой выбор рационально, он полностью осведомлен о ситуации на данном рынке и о конкретном данном товаре.

ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ ИГР

1.1 ПОНЯТИЕ ТЕОРИИ ИГР

Как уже было сказано выше, теория игр - раздел математики, изучающий формальные модели принятия оптимальных решений в условиях конфликта. При этом под конфликтом понимается явление, в котором участвуют различные стороны, наделённые различными интересами и возможностями выбирать доступные для них действия в соответствии с этими интересами. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу -- в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках

Теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение».

Игра - упрощенная формализованная модель реальной конфликтной ситуации. Математически формализация означает, что выработаны определенные правила действия сторон в процессе игры: варианты действия сторон; исход игры при данном варианте действия; объем информации каждой стороны о поведении все других сторон.

Ситуации, в которых сталкиваются интересы двух сторон и результат любой операции, осуществляемой одной из сторон, зависит от действий другой стороны, называются конфликтными.

Игрок - одна из сторон в игровой ситуации. Стратегия игрока - его правила действия в каждой из возможных ситуаций игры. Доминирование в теории игр -- ситуация, при которой одна из стратегий некоторого игрока дает больший выигрыш, нежели другая, при любых действиях его оппонентов. Протасов И.Д. Теория игр и исследование операций: учеб. пособие. - М.: Гелиос АРВ, 2013.-С.121.

Фокальная точка -- это равновесие в координационной игре, выбираемое всеми участниками взаимодействия на основе общего знания, помогающего им скоординировать свой выбор. Понятие фокальной точки было введено лауреатом Нобелевской премии 2005 года экономистом Томасом Шеллингом в статье 1957 года, которая стала третьей главой его знаменитой книги «Стратегия конфликта» (1960).

Если для одного из игроков существует строго доминирующая стратегия, он будет ее использовать в любом из равновесий Нэша в игре. Если все игроки имеют строго доминирующие стратегии, игра имеет единственное равновесие Нэша. Однако, это равновесие не обязательно будет эффективным по Парето, т.е. неравновесные исходы могут обеспечить всем игрокам больший выигрыш. Классическим примером этой ситуации является игра «Дилемма заключенного». Равновесие по Нэшу -- это набор стратегий (одна для каждого игрока) такой, что ни один из игроков не имеет стимула отклоняться от своей стратегии. Ситуация будет эффективной по Парето, если ни один из игроков не может улучшить свое положение, не ухудшив при этом положение другого игрока.

Следует так же упомянуть о равновесии по Штакельбергу. Равновесие по Штакельбергу -- ситуация, когда ни один из игроков не может увеличить свой выигрыш в одностороннем порядке, а решения принимаются сначала одним игроком и становятся известными второму игроку. В отличие от равновесия доминирующих стратегий и равновесия по Нэшу этот вид равновесия существует всегда.

Интерпретация теории игр может осуществляться двумя способами: матричным и графическим. Матричный способ будет изображен ниже, где будут рассматриваться ситуации, приводящие к возникновению институтов.

Для примера графического изображения обратимся к следующей ситуации, когда имеется одно пастбище для выпаса коров. Теперь зададим вопрос: при каком количестве коров, n, использование данного пастбища было бы оптимальным? В соответствии с маржинальным принципом оптимизации, предполагающим уравнение предельных издержек и предельного дохода, следует ответить, что оптимальным будет то количество коров, при котором ценность предельного продукта от выпаса последней коровы, VМР, будет равна стоимости одной коровы, с. В условиях частной собственности на это пастбище, данный принцип был бы соблюден, поскольку отдельный хозяин сопоставлял бы выгоды и издержки, связанные с каждой дополнительной коровой, и остановился бы на том их количестве, Ер, при котором возможности получения положительной ренты от выпаса коров на пастбище, Rp, были бы исчерпаны, и, соответственно, был бы достигнут максимум этой ренты (рис. 1). Это обобщается в нижеприведенном уравнении, согласно которому при соблюдении маржинального принципа максимизируется разница между ценностью общего продукта, VТР, и общими издержками, т. е. стоимостью коровы, умноженной на количество коров

VMP (n*) = c maxn VTP (n) - cn (1)

Рисунок 1. - График ценности предельного и среднего выпаса коров

Однако в условиях свободного доступа к пастбищу, т. е. отсутствия исключительных прав на него маржинальный принцип оптимизации не будет соблюден и количество коров на пастбище превзойдет оптимальное значение, Ер, и достигнет точки равенства ценности среднего продукта от выпаса коровы, VAP, и стоимости коровы. В результате будет иметь место новое равновесное количество коров в условиях свободного доступа, Ес. При этом положительная рента, Rp, созданная за счет выпаса коров до достижения их оптимального количества, Ер, на дополнительных коровах будет растрачиваться и при достижении точки Ес станет равна нулю в результате накопления равной ей по модулю отрицательной ренты. Это обобщается в нижеприведенных уравнениях:

VAP=VTP/n;

VTP (n')/n'=c?VTP (n')-cn'=0;

|Rp|=|Rn| (2)

1.2 РАЗНООБРАЗИЕ СИТУАЦИЙ И СФЕР ЖИЗНИ ЧЕЛОВЕКА, В КОТОРЫХ ПРИМЕНИМА ТЕОРИЯ ИГР

В жизни известно немало примеров столкновения противоположных сторон, принимающих форму конфликта с двумя действующими сторонами, преследующими противоположные интересы.

Такие ситуации возникают, например, тогда, когда речь идет о доверии. Соответствие действий контрагента ожиданиям становится особенно важным в тех ситуациях, когда риск принимаемых индивидом решений определен действиями контрагента. Модели теории игр служат лучшей иллюстрацией сказанному: выбор игроком той или иной стратегии зависит от действий другого игрока. Доверие заключается в «ожидании определенных действий окружающих, которые влияют на выбор индивида, когда индивид должен начать действовать до того, как станут известными действия окружающих». Подчеркнем связь сделок на рынке с доверием в деперсонифицированной форме (доверия в качестве нормы, регулирующей отношения между индивидами), так как круг участников сделок не должен быть ограничен лично знакомыми людьми. Убедиться в необходимости существования доверия в деперсонифицированной форме для осуществления простейшей рыночной сделки с использованием предоплаты помогает следующая модель (рис.2).

Рисунок 2

Предположим, что покупателю противостоит множество продавцов и он из своего предыдущего делового опыта знает вероятность обмана (1 -- р). Рассчитаем такую величину p, чтобы сделка состоялась, т. е. «делать предоплату» была эволюционно-стабильной стратегией.

EU (делать предоплату) = 10р -- 5(1 -- р) = 15p -- 5,

EU(не делать предоплату) = 0,15p - -5 > 0, р>1/3.

Иначе говоря, при уровне доверия покупателя к продавцам меньше 33,3% сделки с предоплатой при заданных условиях становятся невозможными. Иными словами, р= 1/3 является критическим, минимально необходимым уровнем доверия.

Для обобщения результатов заменим конкретные величины выигрыша (10) и проигрыша (--5) покупателя символами G и L. Тогда при прежней структуре игры сделка состоится при

р/1-р> L/G

чем выше величина проигрыша относительно выигрыша, тем выше должен быть уровень доверия между участниками сделки. Джеймс Коулмен следующим образом изобразил зависимость потребности в доверии от условий заключаемой сделки (рис. 3).

Рисунок 3

Расчетные данные о минимально необходимом уровне доверия подтверждаются эмпирически. Так, уровень деперсонифицированного доверия в странах с развитой рыночной экономикой, измеренный с помощью ответа на вопрос: «Исходя из Вашего личного опыта, считаете ли Вы, что окружающим людям можно доверять? », составлял 94% в Дании 24, 90 -- в ФРГ, 88 -- в Великобритании, 84 -- во Франции, 72 -- на севере Италии и 65% -- на юге. Показателен низкий уровень доверия на юге Италии, где традиционно сильна мафия. Не случайно один из исследователей мафии -- Д. Гамбетта объясняет ее возникновение критически низким уровнем доверия в южных регионах Италии и, следовательно, потребностью в заменителе доверия, принимающего форму вмешательства «третьей стороны», которой доверяют оба участника сделки.

Еще один яркий пример теории игр - контракты между инвестором и государством на разработку месторождений полезных ископаемых.

Для иллюстрации этого примера возьмем контракт о купле-продаже стульев с учетом того, что наличие в них зашитых сокровищ, находится под вопросом. Изображать пример будем с учетом того, что в рамках теории игр внешние по отношению к намерениям сторон контракта факторы учитываются с помощью введения в игру с двумя участниками третьего игрока, «природы» (рис. 4).

Рисунок 4

Как следует из представления игры в развернутой форме, вместо четырех исходов их в игре шесть. И если проблема зависимости выигрыша Остапа от действий машиниста сцены находит свое решение при наличии любого отличного от нуля уровня доверия Остапа, то проблема зависимости выигрыша Остапа от наличия в стульях сокровищ остается неразрешимой, что, впрочем, и подтверждает финал романа.

1.3 ВОЗМОЖНЫЕ СТРАТЕГИИ В ПОВТОРЯЮЩИХСЯ ИГРАХ

1. Смешанные стратегии. Когда игроки попадают в определенную ситуацию выбора неоднократно, то их взаимодействие существенным образом усложняется. Они могут позволить себе комбинировать стратегии, максимизируя общий выигрыш. Покажем это с помощью модели, описывающей отношения между Центральным банком (ЦБ) и экономическим агентом в связи с проводимой ЦБ кредитно-денежной политикой.

ЦБ ориентируется либо на жесткую кредитно-денежную политику, стремясь поддержать инфляцию на фиксированном уровне (р0), либо на эмиссию и, следовательно, повышение темпов инфляции (р1). В свою очередь, экономический агент действует на основе своих инфляционных ожиданий ре (устанавливает цены на свою продукцию, решает вопросы о приобретении товаров и услуг и т.д.), которые могут либо подтверждаться, либо не подтверждаться в результате проводимой ЦБ политики. В случае если р1 > ре, ЦБ получает прибыль от сеньоража и от инфляционного налога. Если ре = р1, то в проигрыше оказывается и ЦБ из-за сокращения поступлений от сеньоража, и экономические агенты, которые продолжают нести тяжесть инфляционного налога. Если ре = р0, то сохраняется статус-кво и в проигрыше никто не оказывается. Наконец, если ре > р0, то проигрывают только экономические агенты: производители -- из-за потери спроса на необоснованно подорожавшую продукцию, потребители -- из-за создания неоправданных запасов.

В предложенной модели при однократном взаимодействии у агентов нет доминирующих стратегий, отсутствует и равновесие по Нэшу. При повторяющемся многократно взаимодействии, а именно такое взаимодействие и характерно для реальных ситуаций, оба участника могут использовать и ту, и другую имеющуюся у них в распоряжении стратегии. Позволяет ли игрокам чередование стратегий в определенной последовательности максимизировать свою полезность, т. е. достичь равновесия по Нэшу в смешанных стратегиях: исхода, при котором ни один участник не может увеличить свой выигрыш, изменяя в одностороннем порядке свою стратегию? Предположим, что ЦБ проводит жесткую кредитно-денежную политику с вероятностью Р1 (в P1 % случаев), а с вероятностью (1 - Р1) -- инфляционную политику. Тогда при выборе экономическим агентом неинфляционных ожиданий (рe = р0) ЦБ может рассчитывать на получение выигрыша, равного

теория игра стратегия

EU(ЦБ) = Р1 0+,

1 (1 - Р1) = 1- -P1

В случае инфляционных ожиданий у экономического агента выигрыш ЦБ составит

EU(ЦБ) = Р10 + (1 - Р1)(-2) = 2Р1 - 2.

Теперь допустим, что экономический агент имеет неифляционные ожидания с вероятностью Р2 (в Р2 % случаев), а инфляционные ожидания -- с вероятностью (1 - Р2). Отсюда ожидаемая полезность ЦБ составит

EU(ЦБ) = Р2(1 - Р1) + (1 - Р2)(2Р1-2) = =ЗР2-ЗР1 Р2+2Р1 - 2 (рис. 5).

Рисунок 5

Аналогичные расчеты для экономического агента дадут

EU (э.а.) = Р1(Р2- 1) + (1 - Р1)(-Р2-2) = 2Р1Р2 + Р1- Р2-2.

Если мы перепишем данные выражения в следующей форме

EU(ЦБ) = Pl(2-3P2) + ЗР2-2

EU(э.a.)= =Р2(2Р1-1) +Р1-2,

то нетрудно заметить, что при

Р2= 2/3

выигрыш ЦБ не зависит от его собственной политики, а при

Р1= Ѕ

выигрыш экономического агента не зависит от его ожиданий.

Иными словами, равновесием по Нэшу в смешанных стратегиях будет формирование экономическим агентом в 2/3 случаев неинфляционных ожиданий и проведение ЦБ в половине случаев жесткой кредитно-денежной политики. Найденное равновесие достижимо при условии, что экономические агенты формируют ожидания рациональным образом, а не на основе инфляционных ожиданий в предыдущий период, скорректированных на ошибку прогноза предыдущего периода8. Следовательно, изменения в политике ЦБ влияют на поведение экономических агентов только в той степени, в которой они неожиданны и непредсказуемы. Стратегия ЦБ в 50% случаев проводить жесткую кредитно-денежную политику, а в 50% -- мягкую как нельзя лучше соответствует созданию атмосферы непредсказуемости.

2. Эволюционно-стабильная стратегия. Эволюционно-стабильная стратегия -- такая стратегия, что если ее использует большинство индивидов, то никакая альтернативная стратегия не может ее вытеснить посредством механизма естественного отбора, даже если последняя более эффективна по Парето.

Разновидностью повторяющихся игр являются ситуации, когда индивид многократно попадает в определенную ситуацию выбора, но его контрагент не постоянен, а в каждом периоде индивид взаимодействует с новым визави. Поэтому вероятность выбора контрагентом той или иной стратегии будет зависеть не столько от конфигурации смешанной стратегии, сколько от предпочтений каждого из контрагентов. В частности, предполагается, что из общего числа N потенциальных контрагентов n (n/N%) всегда выбирают стратегию А, а m (m/N%) -- стратегию Б. Тем самым создаются предпосылки для достижения нового типа равновесия, эволюционно-стабильных стратегий. Эволюционно-стабильной (ESS -- Evolutionary Stable Strategy) становится та стратегия, при которой если все члены определенной популяции используют ее, то никакая альтернативная стратегия не может ее вытеснить посредством механизма естественного отбора. Рассмотрим в качестве примера простейший вариант проблемы координации: разъезд на узкой дороге двух автомобилей. Предполагается, что в данной местности лево- и правосторонний стандарты движения равноправны (или же Правила дорожного движения просто не всегда выполняются). Автомобилю А движутся навстречу несколько автомобилей, с которыми ему нужно разъехаться. Если оба автомобиля принимают влево, въезжая на левую обочину по ходу движения, то они разъезжаются без проблем. То же самое происходит, если оба автомобиля принимают вправо. Когда же один автомобиль принимает вправо, а второй -- влево и наоборот, то разъехаться они не смогут (рис.6).

Рисунок 6

Итак, автомобилисту А известен приблизительный процент автомобилистов Б, систематически принимающих влево (Р), и процент автомобилистов Б, принимающих вправо (1 -- Р). Условие для того, чтобы стратегия «принять вправо» стала для автомобилиста А эволюционно-стабильной, формулируется следующим образом: EU(вправо) > EU(влево), или

0P+ 1(1 - Р) > 1Р+ 0(1 - Р),

откуда Р< 1/2. Таким образом, при превышении доли автомобилистов во встречном потоке, принимающих вправо, уровня 50% эволюционно-стабильной стратегией становится «принять вправо» -- сворачивать на правую обочину при каждом разъезде.

В общем виде требования к эволюционно-стабильной стратегии записываются следующим образом. Стратегия I, используемая контрагентами с вероятностью p, является эволюционно-стабильной для игрока тогда и только тогда, когда выполняются следующие условия

EU(I, p) > EU{J, p),

что тождественно

pU(I, I) + (l -p)U(I,J)>pU(J,I) + (1 - p)U(J,J) (3)

Из чего следует:

U(I, I)> U(J, I)

U(I, I) = U(J, I )

U(I, J) > U(J, J),

где -- U(I, I) выигрыш игрока при выборе стратегии I, если контрагент выбирает стратегию I; U(J, I) -- выигрыш игрока при выборе стратегии J, если контрагент выбирает стратегию I, и т. д.

Рисунок 7

Можно представить эти условия и в графической форме. Отложим по вертикальной оси ожидаемую полезность выбора той или иной стратегии, а по горизонтальной -- долю индивидов в общей популяции игроков, выбирающих обе стратегии. Тогда мы получим следующий график (значения взяты из модели разъезда двух автомобилей), изображенный на рис. 7.

Из рисунка следует, что и «принять влево», и «принять вправо» имеют равные шансы на то, чтобы стать эволюционно-стабильной стратегией до тех пор, пока ни одна из них не охватила больше половины «популяции» водителей. Если же стратегия перешагивает этот рубеж, то она постепенно, но неизбежно вытеснит другую стратегию и охватит всю популяцию водителей. Дело в том, что, если стратегия перешагивает рубеж 50%, для любого водителя становится выгодным использовать ее в маневрах, что, в свою очередь, еще больше увеличивает привлекательность данной стратегии для остальных водителей. В строгой форме данное утверждение будет выглядеть следующим образом

dp/dt = G [EU(I, p) -- EU(J, p)], G'>0 (4)

Главным результатом анализа повторяющихся игр является увеличение числа точек равновесия и решение на этой основе проблем координации, кооперации, совместимости и справедливости. Даже в дилемме заключенных, переход к повторяющемуся взаимодействию позволяет достичь оптимального по Парето результата («отрицать вину»), не выходя за рамки нормы рациональности и запрета на обмен информацией между игроками. Именно в этом смысл «всеобщей теоремы»: любой исход, устраивающий индивида индивидуально, может стать при переходе к структуре повторяющейся игры равновесным. В ситуации дилеммы заключенных равновесным исходом при определенных условиях может стать и простая стратегия «не признавать», и множество смешанных стратегий. В числе смешанных и эволюционных стратегий, отметим следующие: Tit-For-Two-Tats -- начинать с отрицания вины и признавать вину, только если в два предшествующих периода кряду контрагент признавал вину; DOWING -- стратегия, исходящая из предположения о равновероятном использовании контрагентом стратегий «отрицать вину» и «признавать» в самом начале игры. Далее каждое отрицание вины со стороны контрагента поощряется, а каждое признание -- наказывается выбором стратегии «признавать вину» в следующий период; TESTER -- начинать с признания вины, и если контрагент тоже признает вину, то в следующем периоде отрицать вину.

ЗАКЛЮЧЕНИЕ

В заключение эссе можно сделать вывод о необходимости использования теории игр в современных экономических условиях.

В условиях альтернативы (выбора) очень часто нелегко принять решение и выбрать ту или иную стратегию. Исследование операций позволяет с помощью использования соответствующих математических методов принять обоснованное решение о целесообразности той или иной стратегии. Теория игр, имеющая в запасе арсенал методов решения матричных игр, позволяет эффективно решать указанные задачи несколькими методами и из их множества выбрать наиболее эффективные, а также упрощать исходные матрицы игр.

В эссе были проиллюстрированы практическое применение основных стратегий теории игр и сделаны соответствующие выводы, изучены самые используемые и часто применяемые стратегии и основные понятия.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Петросян Л.А, Зенкевич Н.А., Шевкопляс Е.В.: Теория игр: учебник. Издательство: BHV, 2012.-212с.

2. Лабскер Л.Г., Ященко Н.А.: Теория игр в экономике. Практикум с решением задач. Учебное пособие. Издательство: Кнорус, 2014.-125с.

3. Нейлбафф, Диксит: Теория игр. Искусство стратегического мышления в бизнесе и жизни. Издательство: Манн, Иванов и Фербер, 2015 .- 99с.

4. Олейник А.Н.. Институциональная экономика. Учебное пособие, Москва ИНФРА-М, 2013.-78с.

5. Протасов И.Д. Теория игр и исследование операций: учеб. пособие. - М.: Гелиос АРВ, 2013.-100с.

6. Самаров К.Л. Математика. Учебно-методическое пособие по разделу «Элементы теории игр», ООО «Резольвента»,2011.-211с.

7. Шикин Е.В. Математические методы и модели в управлении: учеб. пособие для студентов упр. спец. вузов. - М.: Дело, 2014.-201с.

Размещено на Allbest.ru

...

Подобные документы

  • Разнообразие ситуаций и сфер жизни человека, в которых применима теория игр. Необходимость использования теории игр в современных экономических условиях. Доказательста необходимости институтов с помощью теории игр. Эволюционно-стабильная стратегия.

    курсовая работа [765,6 K], добавлен 28.11.2013

  • Характеристика сущности игр - ситуаций, в которых есть несколько субъектов, сознающих, что их действия влияют на поведение других субъектов. Цели теории игр. Выработка рекомендаций для рационального поведения игроков, определения оптимальной стратегии.

    презентация [238,0 K], добавлен 31.03.2011

  • Теория международной торговли Хекшера–Олина. Теорема выравнивания цен на факторы производства Самуэльсона. Теория «цикла жизни продукта». Теория Майкла Портера: теория конкурентных преимуществ. Эклектическая теория интернационализации производства услуг.

    контрольная работа [34,6 K], добавлен 12.05.2009

  • Макроэкономика. Теория потребления. Обоснование теории. Объективные и субъективные факторы потребления. Кейнсианская теория потребления. Графическая интерпретация функции потребления. Формирование спроса на товары и услуги.

    контрольная работа [31,8 K], добавлен 23.06.2007

  • Расхождение кейнсианской и монетаристской теории. Внутренняя стабильность в рыночной экономике. Влияние финансовой политики и роли денег в экономике. Изменения цены на товары и услуги. Определение скорости обращения денег. Количественная теория денег.

    контрольная работа [33,2 K], добавлен 16.01.2011

  • Понятие международной торговли. Классическая теория международной торговли. Теория сравнительных преимуществ. Меркантилиститская теория международной торговли. Теория абсолютных преимуществ. Тeopuя Хекшера - Олина - Самуэльсона. Теория Леонтьева.

    реферат [38,6 K], добавлен 16.01.2008

  • Возникновение экономической теории. История экономики как наука. Предмет и метод экономической теории. Экономическая теория - наука в своей основе эмпирическая, то есть основана на фактах реальной жизни. Экономическая теория: функции, методы исследования.

    курсовая работа [21,5 K], добавлен 16.12.2003

  • Разнообразие экономических теорий отечественных и зарубежных учёных-экономистов, которые были рождены в различных исторических эпохах, плюсы, минусы каждой теории. Этапы развития экономического мышления человека. Особенности развития экономической теории.

    контрольная работа [43,0 K], добавлен 22.12.2009

  • Понятие труда, его сущность и особенности, роль в становлении человека и место в экономике. Место человека в современной экономической теории. Хозяйственные системы, их разновидности и координация выбора. Предмет и методы изучения микроэкономики.

    курс лекций [111,6 K], добавлен 10.02.2009

  • Человек как потребитель, производитель, управленец в системе экономических отношений. Сравнение экономического, психологического и социологического подхода к изучению поведения человека в экономике. Разнообразие моделей человека в экономической теории.

    курсовая работа [41,8 K], добавлен 22.09.2012

  • Экономическая теория: предмет и метод. Категории и законы. Товар, его сущность и возможности. Стоимость как общественное отношение. Свойства товара. Развитие отношений обмена. Маркетинг, его сущность и проблема маркетинга в Украине. Теории потребления.

    контрольная работа [23,7 K], добавлен 13.02.2009

  • Понятие безработицы. Виды безработицы. Уровень безработицы. Теории безработицы. Классическая теория занятости. Неоклассическая концепция безработицы. Кейнсианская теория занятости. Неокейнсианская теория. Основные причины безработицы.

    курсовая работа [66,8 K], добавлен 02.06.2007

  • Понятие "олигополия", ее признаки и становление. Модель олигополии с ломанной кривой спроса, модели дуополии Курно, Бертрана, ценового лидерства, картеля. Основные олигополистические рынки. Применение теории игр для принятия управленческих решений.

    курсовая работа [512,5 K], добавлен 16.11.2012

  • Теория стоимости. Понятие стоимости и ценности. Основных подходы к вопросу о стоимости. Преимущества и недостатки теории стоимости. Теория предельной полезности. Предельная полезность: понятие и функции. Теория предельной полезности.

    реферат [49,1 K], добавлен 22.02.2007

  • Особенности теории предпочтения, стандартные типы закономерностей процессов обнаружения данных. Разнообразие задач классификации, процедура ее описания. Методы исследования и виды структур данных. Основные положения и методики статистического анализа.

    курсовая работа [218,0 K], добавлен 24.06.2009

  • Трудовая теория стоимости по А. Смиту и по К. Марксу. Теория предельной полезности. Теория предельной полезности и субъективная ценность блага. Основные направления критики трудовой теории стоимости. Теория предельной полезности по К. Менгеру.

    реферат [19,8 K], добавлен 24.05.2002

  • Металлическая теория денег. Номиналистическая теория денег. Количественная теория денег. Монетаризм. Количественная теория денег Фишера. Современный монетаризм. Кембриджский вариант количественной теории денег. Различие формул И. Фишера и А. Пигу.

    реферат [13,4 K], добавлен 03.06.2008

  • Экономическая теория как наука, её метод и функции. Индукция как выведение теории из фактов. Позитивная и нормативная экономическая теория. Микро- и макроэкономика как часть экономической теории. Сущность основных экономических моделей и экспериментов.

    контрольная работа [31,2 K], добавлен 08.09.2010

  • Понятие маркоэкономического равновесия, частичное, общее и реальное экономическое равновесие. Макроэкономический идеал. Классическая теория макроэкономического равновесия. Кейнсианская теория. Макроэкономическое равновесие в кейнсианской теории.

    курсовая работа [98,2 K], добавлен 22.07.2008

  • Сущность и функции мировой торговли. Меркантилиститская теория международной торговли. Теория абсолютных преимуществ Смита и сравнительных преимуществ Рикардо. Теория международной торговли Леонтьева. Теория международной конкурентоспособности нации.

    реферат [30,7 K], добавлен 27.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.