Сущность и показатели рядов динамики

Изучение изменений анализируемых показателей во времени, их динамики как одна из важнейших задач статистики. Понятие и виды рядов динамики (временных рядов). Основные признаки, по которым классифицируются ряды. Показатели изменения уровней ряда динамики.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 03.05.2016
Размер файла 56,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Понятие рядов динамики (временных рядов)

Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).

Ряд динамики (или временной ряд) - это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называютуровнями ряда и обычно обозначают буквой y. Первый член ряда y1 называют начальным или базисным уровнем, а последний yn - конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t.

Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t, а по оси ординат - шкала уровней ряда y.

Пример ряда динамики

Таблица. Число жителей России в 2004-2009 гг. в млн.чел, на 1 января

Год

2004

2005

2006

2007

2008

2009

Число жителей

144,2

143,5

142,8

142,2

142,0

141,9

График ряда динамики числа жителей России в 2004-2009 гг. в млн.чел, на 1 января

Данные таблицы и графика наглядно иллюстрируют ежегодное снижение числа жителей России в 2004-2009 годах.

2. Виды рядов динамики

Ряды динамики классифицируются по следующим основным признакам:

1. По времени -- ряды моментные и интервальные (периодные), которые показывают уровень явления на конкретный момент времени или на определенный его период. Сумма уровней интервального ряда дает вполне реальную статистическую величину за несколько периодов времени, например, общий выпуск продукции, общее количество проданных акций и т.п. Уровни моментного ряда, хотя и можно суммировать, но эта сумма реального содержания, как правило, не имеет. Так, если сложить величины запасов на начало каждого месяца квартала, то полученная сумма не означает квартальную величину запасов.

2. По форме представления -- ряды абсолютных, относительных и средних величин.

3. По интервалам времени -- ряды равномерные и неравномерные (полные и неполные), первые из которых имеют равные интервалы, а у вторых равенство интервалов не соблюдается.

4. По числу смысловых статистических величин -- ряды изолированные и комплексные (одномерные и многомерные). Первые представляют собой ряд динамики одной статистической величины (например, индекс инфляции), а вторые -- нескольких (например, потребление основных продуктов питания).

В нашем примере про число жителей России ряд динамики: 1) моментный (приведены уровни на 1 января); 2) абсолютных величин (в млн.чел.); 3) равномерный (равные интервали в 1 год); 4) изолированный.

3. Показатели изменения уровней ряда динамики

Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики:

· абсолютное изменение (абсолютный прирост);

· относительное изменение (темп роста или индекс динамики);

· темп изменения (темп прироста).

Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом - когда сравниваются два уровня соседних периодов.

Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда, определяется по формуле

Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше первого (базисного) уровня, и, следовательно, может иметь знак «+» (при увеличении уровней) или «-» (при уменьшении уровней).

Цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда, определяется по формуле

Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше предыдущего уровня, и может иметь знак «+» или «-».

В следующей расчетной таблице в столбце 3 рассчитаны базисные абсолютные изменения, а в столбце 4 - цепные абсолютные изменения.

Год

y

, %

,%

2004

144,2

2005

143,5

-0,7

-0,7

0,995

0,995

-0,49

-0,49

2006

142,8

-1,4

-0,7

0,990

0,995

-0,97

-0,49

2007

142,2

-2,0

-0,6

0,986

0,996

-1,39

-0,42

2008

142,0

-2,2

-0,2

0,985

0,999

-1,53

-0,14

2009

141,9

-2,3

-0,1

0,984

0,999

-1,60

-0,07

Итого

-2,3

0,984

-1,60

Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть

.

В нашем примере про число жителей России подтверждается правильность расчета абсолютных изменений:

= - 2,3 рассчитана в итоговой строке 4-го столбца, а = - 2,3 - в предпоследней строке 3-го столбца расчетной таблицы.

Базисное относительное изменение (базисный темп роста или базисный индекс динамики) представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле

Цепное относительное изменение (цепной темп роста или цепной индекс динамики) представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле

.

Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при i>1) или какую его часть составляет (при i<1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%.

В нашем примере про число жителей России в столбце 5 расчетной таблицы найдены базисные относительные изменения, а в столбце 6 - цепные относительные изменения.

Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть

В нашем примере про число жителей России подтверждается правильность расчета относительных изменений: = 0,995*0,995*0,996*0,999*0,999 = 0,984 - рассчитано по данным 6-го столбца, а = 0,984 - в предпоследней строке 5-го столбца расчетной таблицы.

Темп изменения (темп прироста) уровней - относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле:

,

или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле:

.

В нашем примере про число жителей России в столбце 7 расчетной таблицы найдены базисные темпы изменения, а в столбце 8 - цепные. Все расчеты свидетельствуют о ежегодном снижении числа жителей в России за период 2004-2009 гг.

4. Средние показатели ряда динамики

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда. Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный).

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е.

=

Если имеется моментный ряд, содержащий n уровней (y1, y2, …, yn) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет . Как указывалось ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической. Следовательно, можно записать

.

После преобразования числителя получаем

,

где Y1 и Yn -- первый и последний уровни ряда; Yi -- промежуточные уровни.

Эта средняя известна в статистике как средняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей.

В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е.

.

В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi+1) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода.

Если же предполагается, что каждое значение yi остается неизменным до следующего (i+1)-го момента, т.е. известна точная дата изменения уровней, то расчет можно осуществлять по формуле средней арифметической взвешенной:

,

где - время, в течение которого уровень оставался неизменным.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели - среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения.

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Б =

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть

Ц =

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Базисное среднее относительное изменение определяется по формуле

временной ряд динамика статистика

Б==

Цепное среднее относительное изменение определяется по формуле

Ц=

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность.

Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

Размещено на Allbest.ru

...

Подобные документы

  • Статистический анализ рядов динамики. Показатели изменения уровней ряда динамики. Связный анализ рядов динамики. Корреляционный анализ рядов динамики. Элементы интерполяции и экстраполяции. Встроенные функции MS Excel для анализа рядов динамики.

    курсовая работа [1,0 M], добавлен 17.12.2015

  • Анализ динамических рядов и выбор исходных данных. Графическое представление динамического ряда, расчет показателей изменения уровней динамических рядов и средних показателей. Периодизация динамических рядов и анализ основной тенденции динамики ряда.

    курсовая работа [2,8 M], добавлен 16.09.2010

  • Анализ системы статистических показателей, характеризующих аналитические показатели рядов динамики. Статистические методы, применяемые при изучении рядов динамики. Исследование структуры совокупности. Определение ошибки выборки. Расчет объема оборота.

    курсовая работа [569,2 K], добавлен 03.10.2010

  • Методика проведения анализа динамических рядов социально-экономических явлений. Компоненты, формирующие уровни при анализе рядов динамики. Порядок составления модели экспорта и импорта Нидерландов. Уровни автокорреляции. Корреляция рядов динамики.

    курсовая работа [583,6 K], добавлен 13.05.2010

  • Ряды динамки: тренд, методы выравнивания рядов динамики. Приведение рядов динамики в сопоставимый вид. Разно великие интервалы времени, изменение даты, методологии или расчета показателя, единицы измерения. Длительность интервала времени между уровнями.

    реферат [24,1 K], добавлен 08.03.2009

  • Система производственных показателей выпуска продукции. Ряды динамики: общее понятие и значение. Теория определения и построения тренда. Использование метода сглаживания временных рядов в изучении динамики выпуска продукции на примере ООО "Прогресс".

    курсовая работа [1,8 M], добавлен 23.12.2013

  • Виды временных рядов. Требования, предъявляемые к исходной информации. Описательные характеристики динамики социально-экономических явлений. Прогнозирование по методу экспоненциальных средних. Основные показатели динамики экономических показателей.

    контрольная работа [84,3 K], добавлен 02.03.2012

  • Понятие и значение временного ряда в статистике, его структура и основные элементы, значение. Классификация и разновидности временных рядов, особенности сферы их применения, отличительные характеристики и порядок определения в них динамики, стадии, ряды.

    контрольная работа [30,9 K], добавлен 13.03.2010

  • Сущность и отличительные черты статистических методов анализа: статистическое наблюдение, группировка, анализа рядов динамики, индексный, выборочный. Порядок проведения анализа рядов динамики, анализа основной тенденции развития в рядах динамики.

    курсовая работа [1,0 M], добавлен 09.03.2010

  • Изучение динамики общественных явлений. Классификация рядов динамики, правила их построения и показатели анализа. Основные показатели вариации курса акций АО "Газпром". Расчетная таблица для определения параметров линейной функции. Анализ тенденции.

    курсовая работа [184,1 K], добавлен 10.02.2013

  • Средние показатели в рядах динамики. Проверка ряда на наличие тренда. Непосредственное выделение тренда. Анализ сезонных колебаний. Анализ взаимосвязанных рядов динамики. Статистико-детерминированный характер социально-экономических явлений.

    реферат [98,1 K], добавлен 07.12.2006

  • Понятие временного ряда, компоненты. Сглаживание, анализ периодических колебаний. Сезонность, аддитивная и мультипликативная модели. Понятие белого шума в моделях динамики рядов. Оператор лагового сдвига. Оценка и вывод автокорреляционной функции.

    курсовая работа [659,4 K], добавлен 13.09.2015

  • Анализ понятий о диаграммах динамики и диаграммах рядов распределения, линейные диаграммы с равномерными шкалами и на полулогарифмической сетке, радиальные диаграммы. Диаграммы рядов распределения: полигон, гистограмма, кумулята, огива, график Лоренца.

    контрольная работа [4,6 M], добавлен 07.08.2010

  • Инвестиции как объект статистического изучения, Система статистических показателей, их характеризующих. Применение метода анализа рядов динамики в изучении инвестиций. Аналитические показатели ряда динамики инвестиций в основной капитал Курской области.

    курсовая работа [704,1 K], добавлен 10.02.2011

  • Рассмотрение особенностей моментных и интервальных рядов динамики. Установка вида ряда динамики и приведение динамики к сопоставимому виду. Определение общей тенденции развития и прогнозирование динамики доходов населения в России за период 2004-2013.

    курсовая работа [844,4 K], добавлен 19.12.2014

  • Построение и анализ рядов динамики для выявления и измерения закономерности развития общественных явлений во времени. Характеристика степени занятости населения в сфере транспорта и связи по системе цепных показателей: фактору полноты и выражению уровня.

    контрольная работа [44,5 K], добавлен 12.11.2010

  • Определение среднего процента выполнения плана погрузки станциями дороги по представленным данным. Основные аналитические показатели рядов динамики. Распределение населения по возрастным группам. Система национальных счетов, расчет национального дохода.

    курсовая работа [546,2 K], добавлен 17.05.2015

  • Проведение расчета абсолютных, относительных, средних величин, коэффициентов регрессии и эластичности, показателей вариации, дисперсии, построение и анализ рядов распределения. Характеристика аналитического выравнивания цепных и базисных рядов динамики.

    курсовая работа [351,2 K], добавлен 20.05.2010

  • Методика составления ранжированного и интервального ряда магазинов по товарообороту. Расчет частоты и частости, размера оборота и издержек обращения. Определение прироста и динамики населения, показателей ряда динамики по цепной и базисной системе.

    контрольная работа [270,5 K], добавлен 19.12.2009

  • Динамика объема платных услуг населения. Первичный анализ исходных данных, расчет показателей их динамики. Средние показатели динамики. Анализ трендадинамического, сезонных колебаний динамического рядов. Экстраполяция в рядах динамики и прогнозирование.

    реферат [46,1 K], добавлен 17.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.