Критерий ранговой корреляции Спирмена

Назначение рангового коэффициента корреляции, определение силы и направления корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков. Графическое представление метода ранговой корреляции, расчет эмпирического значения.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 27.01.2017
Размер файла 115,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Критерий ранговой корреляции Спирмена

Критерий ранговой корреляции Спирмена (коэффициент корреляции рангов), предложенный К. Спирменом, относится к непараметрическим показателям связи между переменными, измеренными в ранговой шкале. При расчете этого коэффициента не требуется никаких предположений о характере распределений признаков в генеральной совокупности. Этот коэффициент определяет степень тесноты связи порядковых признаков, которые в этом случае представляют собой ранги сравниваемых величин.

Величина коэффициента корреляции Спирмена также лежит в интервале +1 и -1. Он, как и коэффициент Пирсона, может быть положительным и отрицательным, характеризуя направленность связи между двумя признаками, измеренными в ранговой шкале.

В принципе число ранжируемых признаков (качеств, черт и т.п.) может быть любым, но сам процесс ранжирования большего, чем 20 числа признаков - затруднителен. Возможно, что именно поэтому таблица критических значений рангового коэффициента корреляции рассчитана лишь для сорока ранжируемых признаков (n < 40, табл. 20 приложения 6).

Ранговый коэффициент корреляции Спирмена подсчитывается по формуле:

где n - количество ранжируемых признаков (показателей, испытуемых);

D - разность между рангами по двум переменным для каждого испытуемого;

- сумма квадратов разностей рангов.

Используя ранговый коэффициент корреляции, рассмотрим следующий пример.

Пример: Психолог выясняет, как связаны между собой индивидуальные показатели готовности к школе, полученные до начала обучения в школе у 11 первоклассников и их средняя успеваемость в конце учебного года.

Для решения этой задачи были проранжированы, во-первых, значения показателей школьной готовности, полученные при поступлении в школу, и, во-вторых, итоговые показатели успеваемости в конце года у этих же учащихся в среднем. Результаты представим в табл. 1.

Таблица 1

№ учащихся

1

2

3

4

5

6

7

8

9

10

11

Ранги показателей школьной готовности

3

5

6

1

4

11

9

2

8

7

10

Ранги среднегодовой успеваемости

2

7

8

3

4

6

11

1

10

5

9

1

-2

-2

-2

0

5

-2

1

-2

2

1

1

4

4

4

0

25

4

1

4

4

1

Подставляем полученные данные в формулу и производим расчет. Получаем:

Для нахождения уровня значимости обращаемся к табл. 20 приложения 6, в которой приведены критические значения для коэффициентов ранговой корреляции.

Подчеркнем, что в табл. 20 приложения 6, как и в таблице для линейной корреляции Пирсона, все величины коэффициентов корреляции даны по абсолютной величине. Поэтому, знак коэффициента корреляции учитывается только при его интерпретации.

Нахождение уровней значимости в данной таблице осуществляется по числу n, т. е. по числу испытуемых. В нашем случае n = 11. Для этого числа находим :

0,61 для P 0,05

0,76 для P 0,01

Строим соответствующую ``ось значимости'':

Полученный коэффициент корреляции совпал с критическим значением для уровня значимости в 1%. Следовательно, можно утверждать, что показатели школьной готовности и итоговые оценки первоклассников связаны положительной корреляционной зависимостью - иначе говоря, чем выше показатель школьной готовности, тем лучше учится первоклассник. В терминах статистических гипотез психолог должен отклонить нулевую (Н гипотезу о сходстве и принять альтернативную (Н о наличии различий, которая говорит о том, что связь между показателями школьной готовности и средней успеваемостью отлична от нуля.

Случай одинаковых (равных) рангов

При наличии одинаковых рангов формула расчета коэффициента линейной корреляции Спирмена будет несколько иной. В этом случае в формулу вычисления коэффициентов корреляции добавляются два новых члена, учитывающие одинаковые ранги. Они называются поправками на одинаковые ранги и добавляются в числитель расчетной формулы.

где n - число одинаковых рангов в первом столбце,

k - число одинаковых рангов во втором столбце.

Если имеется две группы одинаковых рангов, в каком-либо столбце то формула поправки несколько усложняется:

где n - число одинаковых рангов в первой группе ранжируемого столбца, корреляция ранговый эмпирический

k - число одинаковых рангов в второй группе ранжируемого столбца. Модификация формулы в общем случае такова:

Пример: Психолог, используя тест умственного развития (ШТУР) проводит исследование интеллекта у 12 учащихся 9 класса. Одновременно с этим, но просит учителей литературы и математики провести ранжирование этих же учащихся по показателям умственного развития. Задача заключается в том, чтобы определить, как связаны между собой объективные показатели умственного развития (данные ШТУРа) и экспертные оценки учителей.

Экспериментальные данные этой задачи и дополнительные столбцы, необходимые для расчета коэффициента корреляции Спирмена, представим в виде табл. 2.

Таблица 2

№ учащихся

Ранги тестирования с помощью ШТУРа

Экспертные оценки учителей по математики

Экспертные оценки учителей по литературе

D (второго и третьего столбцов)

D (второго и четвертого столбцов)

(второго и третьего столбцов)

(второго и четвертого столбцов)

1

6

5

5

1

1

1

1

2

7

10

8

-3

-1

9

1

3

4

8

7

-4

-3

16

9

4

5

4

11

1

-6

1

36

5

9

6

3

3

6

9

36

6

12

8

6

4

6

16

36

7

2,5

2

11

0,5

-8,5

0,25

77,25

8

2,5

3

11

-0,5

-8,5

0,25

77,25

9

10

8

1

2

9

4

81

10

8

11

3

-3

5

9

25

11

11

12

3

-1

8

1

64

12

1

1

9

0

-8

0

64

Суммы

78

78

78

0

0

66,5

471,5

Поскольку при ранжировании использовались одинаковые ранги, то необходимо проверить правильность ранжирования во втором, третьем и четвертом столбцах таблицы. Суммирование в каждом из этих столбцов дает одинаковую сумму - 78.

Проверяем по расчетной формуле. Проверка дает:

В пятом и шестом столбцах таблицы приведены величины разности рангов между экспертными оценками психолога по тесту ШТУР для каждого ученика и величинами экспертных оценок учителей, соответственно по математике и литературе. Сумма величин разностей рангов должна быть равна нулю. Суммирование величин D в пятом и шестом столбцах дало искомый результат. Следовательно, вычитание рангов проведено правильно. Подобную проверку необходимо делать каждый раз при проведении сложных видов ранжирования.

Прежде, чем начать расчет по формуле необходимо рассчитать поправки на одинаковые ранги для второго, третьего и четвертого столбцов таблицы.

В нашем случае во втором столбце таблицы два одинаковых ранга, следовательно, по формуле величина поправки D1 будет:

В третьем столбце три одинаковых ранга, следовательно, по формуле величина поправки D2 будет:

В четвертом столбце таблицы две группы по три одинаковых ранга, следовательно, по формуле величина поправки D3 будет:

Прежде, чем преступить к решению задачи, напомним, что психолог выясняет два вопроса - как связаны величины рангов по тесту ШТУР с экспертными оценками по математике и литературе. Именно поэтому расчет проводится дважды.

Считаем первый ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

Как видим, разница в величинах коэффициентов корреляции оказалась очень незначительной.

Считаем второй ранговый коэффициент с учетом добавок по формуле. Получаем:

Подсчитаем без учета добавки:

И опять, различия оказались очень незначительны. Поскольку число учащихся в обоих случаях одинаково, по табл. 20 приложения 6 находим критические значения при n = 12 сразу для обоих коэффициентов корреляции.

0,58 для P 0,05

0,73 для P 0,01

Откладываем первое значение на ``оси значимости'':

В первом случае полученный коэффициент ранговой корреляции находится в зоне значимости. Поэтому психолог должен отклонить нулевую Н гипотезу о сходстве коэффициента корреляции с нулем и принять альтернативную Н о значимом отличии коэффициента корреляции от нуля. Иными словами, полученный результат говорит о том, что чем выше экспертные оценки учащихся по тесту ШТУР, тем выше их экспертные оценки по математике.

Откладываем второе значение на ``оси значимости'':

Во втором случае коэффициент ранговой корреляции находится в зоне неопределенности. Поэтому психолог может принять нулевую Н гипотезу о сходстве коэффициента корреляции с нулем и отклонить альтернативную Но значимом отличии коэффициента корреляции от нуля. В этом случае полученный результат говорит о том, что экспертные оценки учащихся по тесту ШТУР не связаны с экспертными оценками по литературе.

Для применения коэффициента корреляции Спирмена, необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть получены в порядковой (ранговой) шкале, но могут быть измерены также в шкале интервалов и отношений.

2. Характер распределения коррелируемых величин не имеет значения.

3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Например, таблицы для определения критических значений коэффициента корреляции Спирмена рассчитаны от числа признаков равных n = 5 до n = 40 и при большем числе сравниваемых переменных следует использовать таблицу для пирсоновского коэффициента корреляции. Нахождение критических значений осуществляется при k = n.

Список источников

1. Коэффициент корреляции рангов Спирмена // http://medstatistic.ru/theory/spirmen.html.

2. Коэффициент корреляции рангов Спирмена// http://cito-web.yspu.org/link1/metod/met125/node36.html.

3. Условия применения коэффициента ранговой корреляции Спирмена// http://allrefs.net/c14/4bje8/p28/ http://allrefs.net/c14/4bje8/p28/ .

Размещено на Allbest.ru

...

Подобные документы

  • Назначение рангового коэффициента корреляции, определение силы и направления корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков. Графическое представление метода ранговой корреляции, расчет эмпирического значения rs.

    презентация [46,5 K], добавлен 12.11.2010

  • Расчет коэффициентов корреляции Пирсона и ранговой корреляции Спирмена по регионам Российской Федерации для заданных показателей. Построение линейной и нелинейной (квадратической) модели регрессии. Проведение проверки значимости для полученных данных.

    контрольная работа [464,0 K], добавлен 28.05.2012

  • Основные черты, задачи и предпосылки применения корреляционно-регрессионного метода. Методы корреляционного и регрессионного анализа. Коэффициент ранговой корреляции Кендалла, Спирмена, Фехнера. Определение тесноты взаимосвязи между показателями.

    контрольная работа [558,5 K], добавлен 08.04.2013

  • Этапы корреляционно-регрессионного анализа, построение корреляционной модели и определение функции, отражающей механизм связи между факторным и результативным признаками. Измерение тесноты корреляционной связи, расчет индекса корреляции и дисперсии.

    лекция [38,1 K], добавлен 13.02.2011

  • Классификация показателей тесноты связи. Основные способы расчета показателей и определение их значимости. Линейный коэффициент корреляции для несгруппированных данных. Принятие решений о тесноте связи на основе линейного коэффициента корреляции.

    презентация [146,4 K], добавлен 16.03.2014

  • Заработная плата работника предприятия. Фондоотдача основных фондов. Определение тесноты взаимосвязи между показателями с помощью коэффициента ранговой корреляции. Проверка статистической совокупности на однородность. Сравнение и анализ расчетов.

    курсовая работа [161,0 K], добавлен 03.12.2010

  • Изучение понятия и сущности коэффициента корреляции, который является одним из методов статистического анализа взаимосвязи нескольких признаков. Отличительные черты экономики Сингапура и Перу. Анализ основных показателей прироста иностранных инвестиций.

    курсовая работа [168,5 K], добавлен 25.06.2010

  • Коэффициент корреляции, его значение и основные характеристики. Связь между двумя переменными. Динамика уровней ряда. Исследование временного ряда. Последовательность коэффициентов автокорреляции уровней первого, второго и последующих порядков.

    курсовая работа [295,7 K], добавлен 06.05.2015

  • Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.

    контрольная работа [513,5 K], добавлен 02.05.2015

  • Понятие, виды производственных средств. Расчет линейного коэффициента корреляции. Аналитическое выражение связи между факторным и результативным показателем на основе регрессионного анализа. Расчет параметров уравнения тренда методом наименьших квадратов.

    курсовая работа [80,9 K], добавлен 07.03.2016

  • Средние статистические величины и аналитическая группировка данных предприятия. Результаты расчета коэффициента Фехнера по цехам. Измерение степени тесноты связи в статистике с помощью показателя корреляции. Поля корреляции и уравнения регрессии для цеха.

    практическая работа [495,9 K], добавлен 26.11.2012

  • Анализ экспертной информации на базе расчета непараметрических показателей связи. Вычисление рангового коэффициента корреляции Кендалла. Обзор зависимости между балансовой прибылью и объемом реализованной продукции. Использование данных экспертных оценок.

    курсовая работа [68,6 K], добавлен 28.11.2014

  • Оценка силы вариации признака. Построение регрессионной модели. Парный линейный коэффициент корреляции. Оценка статистической надежности результатов. Значение коэффициента детерминации. Оценка силы связи признаков. Фактическое значение критерия Фишера.

    контрольная работа [165,8 K], добавлен 27.05.2015

  • Критерий Колмогорова-Смирнова как наиболее эффективный критерий проверки нормальности распределения. Построение диаграммы рассеяния. Значение коэффициента корреляции. Особенности связи последовательности в принятии решений и открытости, искренности.

    контрольная работа [92,1 K], добавлен 01.03.2017

  • Средний абсолютный прирост за год в Хабаровском крае. Коэффициент корреляции рангов Спирмена. Расчет среднегодовой численности населения. Определение общего и специального коэффициента рождаемости. Медиана предстоящей продолжительности жизни населения.

    контрольная работа [115,7 K], добавлен 17.09.2013

  • Анализ эффективности деятельности организационной системы предприятия ОАО "ЗиЛ". Формализация экспертной информации и ее статистический анализ. Построение экспертной модели методом ранговой корреляции. Разработка сценария развития организационной системы.

    курсовая работа [161,2 K], добавлен 07.08.2013

  • Основные этапы многофакторного корреляционного анализа и интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэффициентов. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента.

    контрольная работа [605,2 K], добавлен 29.07.2010

  • Методика построения графика зависимости между величиной капитала и чистыми активами банков, определение уравнения регрессии зависимости чистых активов и капитала коммерческих банков. Вычисление показателей тесноты связи между изучаемыми признаками.

    контрольная работа [89,5 K], добавлен 04.02.2009

  • Расчет обобщающих показателей деятельности промышленных предприятий: относительных, средних и показателей вариации. Определение взаимосвязи между исследуемыми признаками с использованием диспепсий. Парные и частные коэффициенты корреляции и конкордации.

    курсовая работа [495,4 K], добавлен 29.09.2012

  • Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.

    контрольная работа [1,3 M], добавлен 24.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.