Экономическое моделирование финансово-экономических крахов методами теории поля и теории игр

Анализ модели Сорнетта и моделей миноритарных игр на предмет их соответствия реальным экономическим условиям. Статистический анализ модели на предмет соответствия статистическим параметрам реальных финансовых рынков для прогнозирования динамики крахов.

Рубрика Экономика и экономическая теория
Вид автореферат
Язык русский
Дата добавления 28.03.2018
Размер файла 428,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ финансово-экономических крахов методами ТЕОРИИ поля и теории игр

Специальность 05.13.18 - Математическое моделирование,

численные методы и комплексы программ

АВТОРЕФЕРАТ диссертации на соискание ученой степени

кандидата физико-математических наук

Шахмуратов Тимур Рустэмович

Казань 2009

Работа выполнена в Научно-исследовательском институте математики и механики им. Н. Г. Чеботарева Казанского государственного университета

Научный руководитель: доктор физ.-мат. наук, профессор, заслуженный деятель науки РТ Елизаров Александр Михайлович

Официальные оппоненты: доктор физ.-мат. наук, профессор Николаев Михаил Леонидович

доктор технических наук, профессор Емалетдинова Лилия Юнеровна

Ведущая организация: Центральный экономико-математический институт РАН (г. Москва)

Защита состоится «18» декабря 2009 года в 14-00 часов на заседании Диссертационного совета Д 212.079.01 в Казанском государственном техническом университете им. А. Н. Туполева по адресу: 420111, Казань, ул. К. Маркса, д. 10. Автореферат диссертации размещен на сайте КГТУ им. А.Н. Туполева www.kai.ru.

С диссертацией можно ознакомиться в научной библиотеке Казанского государственного технического университета им. А. Н. Туполева

Автореферат разослан «16» ноября 2009 г.

Ученый секретарь диссертационного совета

доктор физ.-мат. наук, профессор П. Г. Данилаев

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Крахи финансовых рынков - важные события, которые интересны как для академической науки, так и для практиков. Согласно взглядам академического мира, рынки эффективны, и только появление критической информации может вызвать их падение. Но в действительности даже наиболее тщательные исследования обычно не дают заключения относительно того, что это за информация.

В настоящее время одно из направлений исследования крахов финансовых рынков исходит из предположения, что их основополагающей причиной является нестабильность позиции игроков рынка, а конкретная причина краха вторична. В то же время рост чувствительности игроков к изменениям и увеличение неустойчивости рынка вблизи такой критической точки могут объяснить первопричины крахов. Как известно, малейшее воздействие на неустойчивую систему может вызвать ее крушение. Исследуя причины такой нестабильности, можно не только предсказывать финансовые крахи, но и предупреждать их. Модели, описывающие нестабильности в системах взаимодействующих людей, могут быть использованы не только при исследовании финансовых крахов, но и при моделировании различных экономических и социальных систем. Знания, полученные в результате подобного моделирования, способны предоставить исследователю математический аппарат для прогнозирования переходов системы из одного состояния в другое, а также дать возможность управлять системой, воздействуя на нее в критических точках. Данная тема важна не только для регулирующих органов, но и для всех участников финансовой системы, включая предприятия и граждан.

Известно лишь небольшое число математических моделей крахов финансовых рынков. Среди них наиболее известными являются модели Сорнетта Сорнетт Д. Как предсказывать крахи финансовых рынков. Критические события в сложных финансовых системах. - М.: SmartBook, И-Трейд, 2008. - 400 c. (см. также Johansen A., Ledoit O., Sornette D. Crashes at critical points // Int. J. of Theoretical and Applied Finance. - 2000. - V. 3. - P. 219-255) и Шалетта и Жанга Challet D., Zhang Y.C. Emergence of cooperation and organization in an evolutionary game // Physica A. - 1997. - No 246. - P. 407, которые были апробированы с использованием характеристик реальных экономических систем (см.? например, Johnson N.F., Lamper D., Jefferies P., Hart M.L. and Howison S. Application of multi-agent games to the prediction of financial time-series // Physica A. - 2001. - No 299. - P. 222-227 и A. Johansen, D. Sornette and O. Ledoit. Predicting financial crashes using discrete scale invariance // J. Risk. - 1999. - No 1. - P. 5-32). Вместе с тем вопросы обоснования адекватности названных моделей реальным экономическим ситуациям и определения границ применимости таких моделей остаются открытыми. Поэтому актуальными являются не только анализ известных математических моделей крахов финансовых рынков, но и построение новых моделей, лучше учитывающих особенности конкретных экономических систем и имеющиеся ограничения. В перспективе построение подобных моделей способно привести к созданию моделей устойчивого роста либо, по крайней мере, минимизировать воздействие глобальных перестроений на повседневную жизнь.

Основной целью диссертационной работы является получение более детальной информации о финансовых крахах на основе методов математического моделирования, теории игр, теории поля и различных статистических методов. Целью работы является также поиск связи между микро- и макроуровневыми моделями экономических систем.

Задачи исследования:

· провести анализ модели Сорнетта и моделей миноритарных игр на предмет их соответствия реальным экономическим условиям;

· обобщить модель Шалетта и Жанга с целью учета взаимодействия участников экономических систем, а также внутренних ограничений в таких системах; провести статистический анализ новой модели на предмет соответствия статистическим параметрам реальных финансовых рынков и предложить метод прогнозирования динамики крахов, основанный на разработанной модели;

· создать программный комплекс, который позволял бы использовать названные модели для моделирования реальных экономических ситуаций, а также модифицировать эти модели в дальнейшем.

Методы исследования. Для решения поставленных задач использовались методы математического моделирования, теории систем, системного анализа, теории поля и статистического анализа временных рядов. модель экономический миноритарный игра

Научная новизна диссертационного исследования состоит в следующем:

1. С использованием данных об изменениях композитных индексов различных фондовых рынков проведен анализ модели Сорнетта и моделей миноритарных игр на предмет их соответствия реальным экономическим условиям.

2. Разработана новая модель на базе класса моделей агентов - участников рынка (игроков), которая учитывает взаимодействие участников экономических систем, а также внутренние ограничения этих систем; проведен статистический анализ этой модели на предмет соответствия статистическим параметрам реальных финансовых рынков.

3. Создан программный комплекс, позволяющий использовать исследованные модели для моделирования реальных экономических ситуаций и модифицировать эти модели в дальнейшем. На базе этого комплекса реализован метод прогнозирования динамики крахов, основанный на разработанной модели.

Основные положения диссертации, выносимые на защиту:

1. С использованием базы данных об изменениях композитных индексов российского фондового рынка (ММВБ) с 1999 года и фондового рынка США (S&P500) с 1960 года установлено, что модель Сорнетта не всегда корректно описывает крахи фондовых рынков и требует развития и обобщения.

2. Разработана новая математическая модель финансовых крахов, базирующаяся на введении аукциона по цене в миноритарную модель рынка и изменении стратегии игроков рынка с миноритарной на мажоритарную. На основе вычислительных экспериментов доказано, что эта модель приводит к значительному улучшению приближения рассчитанных характеристик к характеристикам реального рынка.

3. Создан программный комплекс, реализующий разработанную математическую модель финансовых крахов и дающий метод прогнозирования динамики крахов.

Практическая значимость диссертации состоит в следующем:

· установлено, что математическая модель финансовых крахов, разработанная в диссертации, лучше, чем известные, описывает, что происходит в периоды финансовой и экономической нестабильности;

· реализация всех рассмотренных моделей в виде программного комплекса позволяет использовать их для моделирования реальных экономических ситуаций, а также модифицировать эти модели в дальнейшем.

Достоверность полученных результатов определяется использованием математически достоверных методов описания и проверки результатов, а также непротиворечивостью полученных результатов и их связью с предыдущими работами других авторов. Все полученные результаты имеют простое качественное объяснение и в предельных случаях совпадают с известными результатами предыдущих исследований.

Апробация работы. Результаты исследования докладывались и обсуждались на:

· VI Международной научно-практической конференции «Инфокоммуникационные технологии Глобального информационного общества» (Казань, сентябрь 2008 года);

· VIII Всероссийской молодежной научной школе-конференции «Лобачевские чтения-2009» (Казань, ноябрь 2009 года);

· научных семинарах кафедры математических методов в экономике Казанского государственного университета (КГУ) (2005 - 2008 гг.);

· научных семинарах Отделения математического моделирования НИИММ им. Н.Г. Чеботарева КГУ (2006 - 2009 гг.);

· семинаре кафедры математического анализа и теории функций Марийского государственного университета (г. Йошкар-Ола), руководимом проф. М.Л. Николаевым (сентябрь 2009 г.);

· семинаре кафедры динамики процессов и управления Казанского государственного технического университета им. А.Н. Туполева, руководимом акад. АН РТ Т. К. Сиразетдиновым (октябрь 2009 г.).

Публикации. Основные результаты исследования опубликованы в двух статьях в журналах из списка, рекомендованного ВАК РФ, и в трех статьях в сборниках материалов конференций. Список публикаций приведен в конце автореферата.

Структура и объем диссертации

Диссертация состоит из введения, 4 глав, заключения и списка цитируемой литературы. Общий объем диссертации составляет 111 страниц машинописного текста, включая 37 рисунков и список цитированной литературы из 92 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность проблемы, а также приведены основные научные положения и результаты, выносимые на защиту.

Первая глава дает краткий обзор современных методов исследования финансовых крахов.

Изложены основные положения теории положительных и отрицательных обратных связей. Кроме того, описано возникновение положительных обратных связей в теории игр. В отличие от отрицательных обратных связей положительные обратные связи способны увеличивать амплитуду колебаний динамики цен, что может приводить к крахам.

Далее рассмотрены различные физико-математические модели в экономике. Эти модели иногда объединяют в один класс, называемый «моделями эконофизики» (см., например, Mantegna R.N., Stanley H.E. An introduction to econophysics: correlations and complexity in finance. - Cambridge: Cambridge University Press, 2000. - 158 p.). Эконофизика использует современный математический аппарат нелинейной динамики и статистической физики, чем принципиально отличается от эконометрики, основанной на линейных моделях. Кратко изложена история возникновения эконофизики и описаны модели: «пузырей» и рациональных ожиданий; фундаментальной оценки активов; модель, управляемая риском, и модель, управляемая ценой. Далее проведен анализ моделей, описывающих сети взаимодействия агентов, и рассмотрена теория размерности фондового рынка.

Во второй главе проанализированы модель Сорнетта и ее применение для описания российского фондового рынка.

В основе подхода Сорнетта лежит модель, управляемая риском. В ней вводится условие, что рациональные ожидания по стоимости данного актива изменяются согласно мартингалу

, (1)

где обозначает цену актива в момент времени t, а - математическое ожидание при условии, что все цены вплоть до момента уже определены. Одной из особенностей модели, управляемой ценой, является наличие переменной h(t) - вероятности того, что крах произойдет в следующий момент времени, при условии, что он еще не произошел. Она определяется по формуле

, (2)

где - функция распределения моментов времени появления краха, а - плотность распределения времени краха. Далее вводится функция

где - момент возникновения краха. Предположим также, что в момент краха цена падает на фиксированный процент от разности между ценой непосредственно перед крахом и некоторой ценой ниже этого значения, которую мы обозначим как . Предположим также, что динамика цены до краха определяется случайным процессом

, (3)

где зависящий от времени процесс выбирается таким образом, что , - константа, c - некоторая цена ниже той, что формируется непосредственно перед крахом.

В итоге после применения уравнений (1), (2) и (3) получается следующее уравнение для описания поведения цены:

,

где значение - вероятность краха до момента .

Далее рассматривается дискретная масштабная инвариантность, которая уже давно применяется в физике конденсированных сред для описания флуктуаций критического параметра вблизи фазового перехода и в последнее время начинает использоваться для описания критических явлений (например, крахов) на финансовых рынках. В непрерывной масштабной инвариантности для критического параметра используется решение в виде степенной зависимости

.

Для дискретной масштабной инвариантности известно Sornette D. Discrete scale invariance and complex dimensions // Physics Reports. - 1998. - No 297. - P. 239-270 обобщение, в котором, кроме степенной зависимости, присутствуют логопериодические осцилляции:

,

где ,, - константы.

Для наглядного понимания идеи, как из дискретной масштабной инвариантности получаются логопериодические осцилляции, используется известное понятие хаусдорфовой размерности и рассматривается появление дискретной масштабной инвариантности на примере канторова множества - подмножества, возникающего при определенном делении единичного отрезка вещественной прямой, - которое является одним из простейших фракталов. Как известно, оно строится следующим образом: на первом шаге мы делим единичный отрезок на три равных интервала длиной и удаляем среднюю часть. На втором шаге две оставшиеся части длины мы делим еще на 3 равные части длиной уже и удаляем средние части у более мелких интервалов, таким образом, оставляя 4 отрезка. Этот процесс продолжается бесконечное число раз.

Для канторова множества вводится величина - количество полученных интервалов на n-м этапе построения, где x - кратность увеличения числа интервалов (отрезков). Далее путем введения периодической функции и разложения ее в ряд Фурье получается выражение

,

которое приводит нас к возникновению логопериодических осцилляций из дискретной масштабной инвариантности.

В качестве конкретного примера, непосредственно связанного с физикой фазовых переходов, рассматривается появления логопериодических осцилляций в ренормализационной группе Wilson K.G. The renormalization group: critical phenomena and the Kondo problem // Rev. Mod. Phys. - 1975. - No 47. - P. 773. Ренормализационная группа представляет собой группу преобразований узловой кристаллической решетки с постоянным периодом, равным, например, единице, и гамильтонианом H, описывающим взаимодействие между узлами, в блочную кристаллическую решетку с постоянным периодом, равным L, и гамильтонианом, равным , без изменения статистической суммы:

,

где N/Ld - число узлов N в объёме Ld. В итоге мы имеем следующее уравнение:

, (4)

где K - сила взаимодействия между узлами, а R - отображение ренормализационной группы между двумя успешными итерациями дискретного фрактала, - свободная энергия узла решетки или связи, - регулярная функция, которая состоит из свободной энергии степеней свободы, просуммированной на интервале двух успешных ренормализаций, - отношение числа степеней свободы двух успешных ренормализаций. Рекурсивное решение (4) после определенных преобразований дает следующее решение:

,

где , , из чего можно сделать вывод, что логопериодические осцилляции появляются в ренормализационной группе.

Далее рассматривается микроскопическое моделирование фондового рынка Liggett T.M. Interacting particle systems. - New York: Springer-Verlag, 1985. - 488 p., приводящее к логопериодическим осцилляциям. В частности, рассматривается общая микроскопическая модель рынка, которая описывается уравнением

,

где - состояние каждого агента системы игроков на рынке, описывающее его решение продать () или купить () активы, - функция, которая равна () для положительного (отрицательного) аргумента; - некая положительная константа, определяющая чувствительность игроков к флуктуациям на рынке, а - независимая случайная величина, имеющая нормальное распределение; - общее воздействие, которое склоняет систему к состоянию (), если (). В этой модели вводятся две характеристики: среднее состояние системы

,

которое при дает ; и чувствительность системы, определяемую по формуле

.

Параметр ч характеризует чувствительность среднего состояния М к небольшому общему воздействию в виде определенного тренда.

Приведенные выше характеристики модели зависят от структуры сети взаимодействия игроков. Рассматриваются две возможные структуры сети: в виде двумерной решетки и иерархической ромбовидной решетки. Показано, что в двумерной решетке отсутствуют комплексные критические экспоненты, и это приводит к обычному степенному закону без логопериодических осцилляций. Далее показывается, что в иерархических решетках, в отличие от плоских решеток, возникает дискретная масштабная инвариантность. Приведен конечный вид уравнения для движения цены в модели Сорнетта для одного из видов иерархических ромбовидных решеток:

. (5)

Далее рассматривается применение модели Сорнетта к российскому рынку. В начале по итогам последних 10 лет вычисляются даты крахов на российском фондовом рынке. После этого по каждому краху берутся данные, ему предшествующие, и методом нелинейной регрессии находятся коэффициенты уравнения (5). С помощью этих коэффициентов по модели определяется - дата краха. Она сравнивается с реальной датой краха. В соответствии со свойствами модели крах происходит не позднее получаемой величины , и чем ближе к , тем выше вероятность краха, т. е. его вероятность растет при t > tc.

В итоге после тестирования модели на четырех известных крахах выяснилось, что в двух случаях крахи происходили в соответствии с моделью, а в двух других случаях выходили за рамки модели.

Таким образом, показано, что модель Сорнетта не всегда корректно описывает крахи фондовых рынков и требует развития и обобщения.

В третьей главе описано математическое моделирование крахов с точки зрения теории игр.

В начале главы рассматривается основная каноническая миноритарная модель (ОКММ), разработанная Д. Шаллетом и И. Ч. Жангом. Суть ее заключается в следующем.

Берется N агентов. Каждый агент помнит предыдущие m бит информации о рынке. Кроме того, каждый агент имеет s стратегий из общего числа доступных стратегий. Стратегия - это функция, которая по состоянию рынка в прошлом на m шагов выдает прогноз на следующий шаг: 1, если прогнозирует рост, и , если прогнозирует падение.

Агенты наблюдают за состоянием рынка, но помнят только последние m бит. Этот процесс можно описать как наблюдение агентами некоторого двоичного источника информации в момент времени t. Будем считать, что t принадлежит множеству натуральных чисел. Тогда информация из источника на шаге t представляет собой некое число в двоичной системе, которое состоит из 0 и 1 и описывает состояние рынка от момента времени до t. В десятичном виде информация принимает значения , где . Каждая стратегия , где R - номер стратегии у i-го агента, содержит в качестве элементов , т. е.

.

Эти элементы определяют решение агента, которое он принимает в ответ на поступившую информацию .

Элементы принимают только два возможных значения {-1,1} для каждого из P значений глобальной информации . Поэтому множество стратегий имеет размер . Изначально агенты случайным образом выбирают подмножество s стратегий из этого множества, и впоследствии им не разрешено менять подмножество своих стратегий. Агенты также помнят очки своих стратегий , отражающие предыдущий успех стратегий, в том числе и виртуальный успех, то есть, даже если стратегия не используется, агент каждый раз ее оценивает.

Общее действие всех агентов на рынке подсчитывается по формуле

,

где - действие i-го агента, игравшего по своей лучшей стратегии , при условии, что имеется информация . Предполагается, что агенты всегда играют по самой результативной стратегии, то есть по стратегии с максимальным количеством очков . Очки стратегий обновляются по формуле

,

где - функция, показывающая, насколько хорошо или насколько плохо сыграла стратегия, а Т - время, за которое предыдущие очки стратегии забываются. Согласно миноритарной модели успех стратегии оценивается игроком по тому, насколько он был близок к меньшинству. Поэтому естественно задать функцию следующим образом:

, (6)

где - неубывающая функция. Обычно в качестве выбирают или . Влияние прошлого в миноритарных играх проявляется благодаря глобальной информации , в которой самая недавняя информация определяется знаком общего действия :

,

где %P - это остаток от деления на P, а H[x] - функция Хевисайда.

Таким образом, в модели определяется поведение отдельного агента.

На макроэкономическом уровне модель, учитывающая вклад всех игроков, содержит следующие дополнительные элементы.

Во-первых, это общее действие , которое формирует превышающий (недостаточный) спрос, толкающий цену вверх (вниз). Поэтому логично, что цена актива p[t] формируется следующим образом:

,

где - ликвидность рынка (показатель, характеризующий, насколько рынок чувствителен к дисбалансу между ордерами на покупку и продажу).

Также в модели введен параметр r - пороговое значение , ниже которого агенты не будут участвовать в игре ().

Далее в третьей главе построена новая модель, разработанная на основе ОКММ, - модель с аукционом по цене. Во-первых, вводится дополнительная возможность для агента изменять стратегию в случае, если ее становится меньше . В алгоритме этой модели на первом шаге итераций «деньги» (финансовый ресурс) и «бумаги» (покупаемый или продаваемый актив) распределяются по всем агентам равномерно. Таким образом, у каждого агента есть «денег» и «бумаг». Для первого шага игроков рынка устанавливается цена активов, равная . На каждом шаге агент в соответствии со своей наиболее успешной стратегией выбирает, продать или купить актив. Также вводится - уровень агрессивности i-го участника аукциона, использующего R-ю стратегию. Эта величина определяет, на сколько цена заявки агента на аукционе будет отличаться от последней известной цены, т. е. цена в его заявке будет равна

.

В предлагаемом алгоритме первоначально равномерно распределяется внутри эмпирически выбранного отрезка .

Вводится следующая стратегия для агентов. В случае, если агент решил продать актив (т. е. когда ), он выставляет весь объем бумаг по цене . В случае, если агент решил купить актив (т. е. когда ), объем заявляемой им покупки равен , где - объем денежных средств i-го игрока в момент времени t. При такой стратегии агент полностью обновляет свои активы, которыми он торгует, т. е. продает всё или покупает активы на все имеющиеся у него деньги.

Основным элементом предлагаемой модели является аукцион. Он организован следующим образом. На первом шаге осуществляется сортировка покупателей и продавцов по ценам представленных ими заявок - в порядке убывания цены для покупателей и в порядке возрастания цены для продавцов. Затем выбираются лучший продавец и лучший покупатель: продавец по самой низкой цене и покупатель по самой высокой цене. Между ними совершается сделка в случае, если цена, предложенная продавцом, ниже или равна цене, предложенной покупателем. Объём сделки определяется по меньшему объему (обозначим его ) из объема заявки покупателя и объема заявки продавца, по средней арифметической цене (обозначим ее ) между ценой продавца и ценой покупателя. Таким образом, объем сделки определяется по формуле

,

где k - номер продавца, l - номер покупателя, а [] - округление до целого вниз.

После этого из очереди удаляются покупатели и продавцы, у которых в результате сделок оказались нулевые объемы. Затем берутся следующий лучший продавец и следующий лучший покупатель. Процесс продолжается до тех пор, пока либо все заявки удовлетворятся, либо пока у лучшего продавца цена не станет выше цены у лучшего покупателя. После этого итоговая цена формируется как средняя из цен всех сделок, совершенных на данном шаге, т. е.

.

Такой способ подсчета исключает возможность одного участника исказить общие данные путем подачи заявки с сильным отклонением по цене.

В конце аукциона при подсчете очков стратегий также пересчитывается и . В случае, если цена хуже (в данном случае понятие «хуже» для продавцов и покупателей разное), чем , то уменьшается, а в противном случае увеличивается на 1%. Также существует ограничение .

В предложенной модели с аукционом по цене появляется ряд преимуществ. Во-первых, появляются ограничения на количество денег и бумаг. Во-вторых, несмотря на то, что первоначально деньги и бумаги распределяются равномерно, после определенного количества итераций они распределяются по закону Парето. В-третьих, за счет ограниченности ресурсов появляется возможность протестировать мажоритарные игры.

Далее в третьей главе предлагается новая модель - мажоритарные игры с аукционом по цене. Отличие мажоритарных игр от миноритарных состоит в оценке стратегий на успешность: формула (6) в миноритарных играх с аукционом по цене заменяется формулой

.

В мажоритарных играх с аукционом по цене относительное изменение цен распределено по степенному закону. Гистограмма распределения показана на рис. 1.

Рис. 1 Гистограмма распределения относительных изменений цен в мажоритарных играх с аукционом по цене

Это значит, что у функции распределения относительного изменения цен имеются «длинные хвосты» Nassim N.T. The black swan: the impact of the highly improbable. - New York: Random House, 2007. - 366 p., то есть в модели случаются крахи. Также в работе подчеркивается, что полученная функция распределения по статистическим параметрам достаточно близка к реальному рынку.

Четвертая глава посвящена разработке метода прогнозирования крахов, базирующегося на мажоритарных играх с аукционом по цене.

Сначала рассматривается денежная система РФ, так как в ней существуют такие характеристики, как денежная масса и внутренняя цена, - те параметры, которые естественным образом появились в модели рынка при введении в нее аукциона по цене. Описание денежной системы РФ начинается со статистики, собираемой Центральным банком, которая включает состояние денежных агрегатов М0, М1, М2, М3, М4.

Агрегат М0 - это наличные деньги, М1 - это наличные деньги, обращающиеся вне банков, а также деньги на текущих счетах в банках, М2 - это М1 + срочные и сберегательные депозиты в коммерческих банках, М3 - это М2 + крупные срочные вклады в специализированных кредитных учреждениях, а также ценные бумаги, обращающиеся на денежном рынке, в т. ч. коммерческие векселя, выписываемыми предприятиями, М4 - это М3 + различные формы депозитов в крупных кредитных учреждениях.

Далее в работе описаны методы регулирования объема денежной массы центральными банками. Таким образом, показано, что денежная масса является регулируемым параметром.

Затем описан алгоритм метода прогнозирования крахов. Так как в модели с аукционом по цене появились денежные средства и их объём, то возникла необходимость сопоставить объем этих денежных средств с реальными данными. В качестве реальных данных был взят денежный агрегат М2. Таким образом, на каждом шаге алгоритма модели денежная масса изменяется пропорционально изменению денежного агрегата М2 реального рынка.

Суть метода заключается в следующем: агенты для оценки своих стратегий и уровня своей агрессивности используют реальные значения изменения индекса ММВБ, за счет чего происходит настройка параметров агентов под реальные данные, т. е. их стратегия и агрессивность подстраиваются так, чтобы они были близки к параметрам игроков реального рынка. Подобное обучение происходит до ближайшего локального максимума , имеющего место на реальном рынке непосредственно перед крахом. Далее агенты, начиная от локального максимума вплоть до локального минимума после серии крахов , действуют самостоятельно, используя данные, которые они сами сгенерировали в процессе торговли. В итоге получается некоторое конкретное значение . Подобный алгоритм запускается около 1000 раз. В итоге мы имеем около 1000 точек , из которых строим гистограмму и исследуем статистику.

Денежные средства в модели изменяются согласно следующим формулам:

,

если , и

,

если , где - значение денежного агрегата М2 в момент времени , - дата, на которую измерялся денежный агрегат М2 по итогам прошлого месяца (первое число текущего месяца), - дата, на которую измерялся денежный агрегат М2 по итогам этого месяца (первое число следующего месяца), - дата следующего значения индекса ММВБ, - дата текущего значения индекса ММВБ.

Начальные значения задавались таким образом, чтобы соответствовать реальным данным. Например, если начальная цена реальных данных равнялась 100 пунктам, то также приравнивалась к 100 пунктам, причем и задаются таким образом, что

, (7)

где E - математическое ожидание. Так как функция распределения денег и бумаг для каждого агента одинакова, то i в формуле (7) можно взять любым.

В конце главы приведены результаты применения метода на характеристиках крахов, исследованных во второй главе с помощью метода Сорнетта.

Рис. 2 Гистограмма распределения данных, полученных моделированием краха 30.10.2003 по индексу ММВБ

Рис. 4 Гистограмма распределения данных, полученных моделированием краха 13.06.2006 по индексу ММВБ

Рис. 3 Гистограмма распределения данных, полученных моделированием краха 21.01.2008 по индексу ММВБ

Рис. 5 Гистограмма распределения данных, полученных моделированием краха 19.05.2008 по индексу ММВБ

Результаты моделирования крахов по индексу ММВБ показаны на рис. 2-5. В отличие от метода Сорнетта разработанный метод спрогнозировал три из четырех известных крахов, т. е. показал лучший результат.

Также были проанализированы данные по американскому индексу акций S&P500, начиная с 1960 года. Было обнаружено, что с 1960 по 2009 годы на этом рынке произошло 9 крахов. Результаты моделирования крахов по индексу S&P500 показаны на рис. 6 - 14.

Рис. 6 Гистограмма распределения данных, полученных моделированием краха 1962 года по индексу S&P500

Рис. 8 Гистограмма распределения данных, полученных моделированием краха 1966 года по индексу S&P500

Рис. 7 Гистограмма распределения данных, полученных моделированием краха 1970 года по индексу S&P500

Рис. 9 Гистограмма распределения данных, полученных моделированием краха 1974 года по индексу S&P500

Рис. 10 Гистограмма распределения данных, полученных моделированием краха 1987 года по индексу S&P500

Рис. 12 Гистограмма распределения данных, полученных моделированием краха 1989 года по индексу S&P500

Рис. 11 Гистограмма распределения данных, полученных моделированием краха 1998 года по индексу S&P500

Рис. 13 Гистограмма распределения данных, полученных моделированием краха 2002 года по индексу S&P500

Рис. 14 Гистограмма распределения данных, полученных моделированием краха 2009 года по индексу S&P500

Разработанный метод смог спрогнозировать восемь крахов из девяти известных. Кроме качественного прогноза вероятности краха предложенный метод позволил предсказать глубину падения финансового рынка, т. е. его количественный показатель, что отсутствовало в модели Сорнетта.

Основное содержание диссертации изложено

В изданиях, рекомендованных ВАК:

1. Шахмуратов Т.Р. Миноритарная модель финансового рынка с аукционом по цене // Вестник КГТУ им. А.Н. Туполева. 2009. №3. С. 103-106.

2. Шахмуратов Т.Р. Статистическая мажоритарная модель финансового рынка с использованием аукциона по цене // Ученые записки Казанского университета. Серия физико-математическая. 2009. №3. С. 117-126.

В других изданиях:

3. Шахмуратов Т.Р. Миноритарная модель, основанная на агентах, при условии взаимодействия агентов // Инфокоммуникационные технологии глобального информационного сообщества. Сб. трудов 6-й ежегодной межд. науч.-практ. конференции, Казань, 4 - 5 сентября 2008 г. Казань: Изд-во ООО «Центр Оперативной Печати», 2008. С. 383-393.

4. Шахмуратов Т.Р. Миноритарная модель, основанная на агентах, при условии взаимодействия агентов // Инфокоммуникационные технологии глобального информационного сообщества. Тез. докл. 6-й ежегодной межд. науч.-практ. конференции, Казань, 4 - 5 сентября 2008 г. Казань: Изд-во ООО «Центр Оперативной Печати», 2008. С. 339-342.

5. Шахмуратов Т.Р. Метод, прогнозирующий финансовые крахи на основе мажоритарных игр с аукционом по цене // Тр. Математического центра им. Н.И. Лобачевского: Материалы Восьмой молодежной науч. шк.-конф. «Лобачевские чтения-2009»; Казань, 1 - 6 ноября 2009 г.; Казан. матем. об-во. Казань: Изд-во Казан. матем. об-во, 2009. Т. 39. С. 397-400.

Размещено на Allbest.ru

...

Подобные документы

  • Роль идей экономистов и политических мыслителей в управлении миром. Модели человека в экономической теории как унифицированное представление о человеке, действующем в определенной системе социально-экономических координат. Предмет экономической теории.

    презентация [1,4 M], добавлен 09.11.2013

  • Обзор математических моделей финансовых пирамид. Анализ модели динамики финансовых пузырей Чернавского. Обзор модели долгосрочного социально-экономического прогнозирования. Оценка приоритета простых моделей. Вывод математической модели макроэкономики.

    курсовая работа [1,7 M], добавлен 27.11.2017

  • История развития экономической теории. Предмет экономической теории, ее функции и место в системе экономических наук. Методы познания экономических явлений. Понятие экономических агентов, их интересы и потребности. Система экономических интересов.

    лекция [918,1 K], добавлен 28.10.2014

  • Место экономической теории в ряду других наук, взаимосвязь с экономикой и мировым хозяйством. Объект, предмет экономической теории. Общая структура производительных сил общества. История развития различных экономических школ. Функции экономической теории.

    контрольная работа [666,2 K], добавлен 10.02.2010

  • Предмет экономической теории. Зарождение и развитие экономической теории. Экономические законы и экономические категории. Различные подходы к анализу экономической динамики. Основные функции и методы исследования экономической теории.

    курсовая работа [33,3 K], добавлен 21.04.2006

  • Понятие экономической системы. Элементы экономической системы. Предмет изучения экономической теории-элементы экономической системы. Типы экономических систем. Альтернативные модели в рамках экономических систем. Модели смешанной экономической системы.

    курсовая работа [36,0 K], добавлен 21.11.2008

  • Предмет экономической теории, её философские и методологические основы. Теория производства. Общественное производство-основа развития общества. Экономические институты и собственность. Модели организации экономических систем. Теория рыночной экономики.

    методичка [38,4 K], добавлен 23.11.2008

  • Уровень жизни населения как объект прогнозирования, современные подходы и критерии его оценки, используемые методы и модели. Анализ динамики экономических показателей населения РФ и этапы их прогнозирования, экономическое обоснование и значение.

    контрольная работа [63,3 K], добавлен 15.04.2015

  • Причины развития экономических связей между странами. Сущность основных неотехнологических теорий: меркантилистской теории; теории соотношения факторов производства; парадокса Леонтьева; теории модели прямых инвестиций; теории передачи технологии.

    контрольная работа [22,8 K], добавлен 17.10.2010

  • Экономика и система экономических наук. Предмет и функции экономической теории. Экономические законы и их классификация, экономические категории. Методы экономического исследования. Эффективное использование ограниченных производственных ресурсов.

    курсовая работа [24,2 K], добавлен 14.12.2005

  • Моделирование односекторной экономической системы. Построение графической, статистической и динамической моделей. Графики погашения внешних инвестиций. Моделирование двухсекторной экономической системы. Архитектура системы. Спецификация данных модели.

    дипломная работа [1023,8 K], добавлен 16.12.2012

  • Возникновение и развитие экономической теории. Школы экономической теории. Предмет и функции экономической теории. Методы экономических исследований. Экономические законы. Проблемы экономической организации общества.

    реферат [27,2 K], добавлен 15.02.2004

  • Зарождение и развитие экономической теории. Теоретическое учение физиократов. Предмет и объект исследования общей экономической теории. Основные проблемы макроэкономики. Основные методы экономических исследований и функции экономической теории.

    курсовая работа [33,6 K], добавлен 15.05.2009

  • Возникновение и развитие экономических знаний. Предмет изучения и основные методы исследования экономической теории. Аспекты функционирования экономической системы. Экономические явления, процессы и механизмы и их взаимосвязь в пространстве и времени.

    реферат [26,2 K], добавлен 15.05.2009

  • Первые политэкономические теории. Классическая политическая экономия. Принципы марксистской политэкономии. Современные экономические теории. Предмет политэкономии и основные методы экономических исследований. Современные проблемы экономики Украины.

    курсовая работа [39,6 K], добавлен 09.11.2010

  • Центральные элементы экономической теории К. Маркса, общие положения модели социализма. Особенности периода бурного построения социализма (1929–1954 годы). Исследование наличия соответствия советской экономики и экономики, описанной Карлом Марксом.

    эссе [15,7 K], добавлен 26.05.2014

  • Теоретические основы, предмет и методы экономической теории. Анализ предмета и метода экономики. Эффективное использование редких ресурсов и их ограниченность. Макроэкономический и микроэкономический анализ. Методы математического моделирования.

    реферат [23,8 K], добавлен 17.11.2008

  • Что является предметом исследования экономической теории, кто и как связан посредством экономических отношений. Виды хозяйственных связей, типы и виды экономических связей между людьми. Основные этапы исторического развития предмета экономической теории.

    курсовая работа [25,5 K], добавлен 07.10.2010

  • Теории государственного регулирования экономики. Экономическое учение Дж.М. Кейнса. Новизна главной идеи "Общей теории". Предмет и метод изучения Дж.М. Кейнса. Меры государственного регулирования экономики. Период господства кейнсианской теории.

    курсовая работа [225,7 K], добавлен 18.12.2009

  • Предмет и метод экономической теории. Виды экономических ресурсов. Особенности факторов производства. Преимущества использования принципа разделения труда. Общие закономерности экономического развития. Развитие и функционирование экономических систем.

    лекция [53,9 K], добавлен 22.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.