Проведение корреляционного анализа
Особенность нахождения корреляционной связи и ее основных характеристик. Главный анализ функциональной и статистической зависимостей между величинами. Использование коэффициента корреляции для определения наличия взаимосвязи между двумя свойствами.
Рубрика | Экономика и экономическая теория |
Вид | статья |
Язык | русский |
Дата добавления | 17.07.2018 |
Размер файла | 35,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Башкирский государственный аграрный университет
Корреляционный анализ
Дашкина Дарья Владимировна
В статье рассматриваются определения корреляции,корреляционного анализа и коэффициента корреляции. Дается определение корреляционной связи и ее основных характеристик.
Похожие материалы
· Корреляционно-регрессионный анализ в исследовании факторов рождаемости
· Оценка факторов рождаемости в Республике Башкортостан
· Прожиточный минимум и его влияние на доходы населения
· Моделирование в анализе уровня жизни населения
· Управление ценообразованием на рынке туризма
Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.
В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.
Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.
При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.
При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.
Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.
Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.
Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.
Корреляционный анализ решает две основные задачи:
· Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
· Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.
Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.
Методами корреляционного анализа решаются следующие задачи:
1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.
Корреляция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.
Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.
Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (xi, yi), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.
К основным свойствам коэффициента корреляции относятся:
1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
2. Значения коэффициентов корреляции - это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
3. При независимом варьировании признаков, когда связь между ними отсутствует, r = 0 .
4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (-) знаком и находится в пределах от 0 до -1, т.е. -1 < r <0.
6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к ф1ф. Если r = ± 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n -2, где: n - число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.
Рассчитывается коэффициент корреляции по следующей формуле:
где x - значение факторного признака; y - значение результативного признака; n - число пар данных.
Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения xi,yi двух признаков x,y. Если экспериментальных данных сравнительно немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений xi,yi . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.
Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал, то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x и y графически в виде геометрического места точек в системе прямоугольных координат. Эта графическая зависимость называется диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров:
· математических ожиданий E[x], E[y] величин x,y;
· стандартных отклонений px, py случайных величин x,y ;
· коэффициента корреляции p , который является мерой связи между случайными величинами, х и у. Приведем примеры корреляционных полей.
Если р = 0, то значения xi,yi, полученные из двумерной нормальной совокупности, располагаются на графике в пределах области, ограниченной окружностью. В этом случае между случайными величинами x и y отсутствует корреляция, и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин x и y.
Если р = 1 или р = -1, то говорят о полной корреляции, то есть между случайными величинами x и y существует линейная функциональная зависимость. статистический коэффициент корреляция величина
При р = 1 значения xi,yi определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением xiзначения yi также увеличиваются).
При р = -1 прямая имеет отрицательный наклон.
В промежуточных случаях, когда -1< p <1, определяемые значениями xi,yi точки попадают в область, ограниченную некоторым эллипсом, причём при p>0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p<0 корреляция отрицательная. Чем ближе p к ±1, тем уже эллипс и тем теснее точки, определяемые экспериментальными значениями, группируются около прямой линии.
Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях рассматривают нелинейную корреляцию.
Корреляционную зависимость между признаками можно описывать разными способами, в частности, любая форма связи может быть выражена уравнением общего вида y=f(x), где признак y - зависимая переменная, или функция от независимой переменной x, называемой аргументом.
Таким образом, визуальный анализ корреляционного поля помогает определить не только наличие статистической связи (линейной или нелинейной) между исследуемыми признаками, но и ее тесноту и форму.
По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).
При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - более низкие значения другого. При отрицательной корреляции соотношения обратные.
Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.
При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в действительности на изменение результативного признака влияет множество факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий роль решающего фактора может перейти к другому признаку.
При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. Также с учетом степени тесноты связи оценивается необходимость более подробного изучения конкретной данной связи и значение практического ее использования.
В общем, знание количественной оценки тесноты корреляционной связи позволяет решить следующую группу вопросов:
· необходимость глубокого изучения данной связи между признаками и целесообразность ее практического применения;
· степень различий в проявлении связи в конкретных условиях (сопоставление оценки тесноты связи для различных условий);
· выявление главных и второстепенных факторов в данных конкретных условиях путём последовательного рассмотрения и сравнения признака с различными факторами.
Показатели тесноты связи должны удовлетворять ряду основных требований:
· величина показателя тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует;
· при наличии между изучаемыми признаками функциональной связи величина показателя тесноты связи должна быть равна единице;
· при наличии между признаками корреляционной связи абсолютное значение показателя тесноты связи должно выражаться правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице).
Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили парные показатели, характеризующие взаимосвязь двух случайных величин: коэффициент ковариации (корреляционный момент) и линейный коэффициент корреляции (коэффициент корреляции Пирсона).
Сила связи определяется абсолютным значением показателя тесноты связи и не зависит от направления связи.
В зависимости от абсолютного значения коэффициента корреляции p корреляционные связи между признаками по силе делятся следующим образом:
· сильная, или тесная (при p >0,70);
· средняя (при 0,50< p <0,69);
· умеренная (при 0,30< p <0,49);
· слабая (при 0,20< p <0,29);
· очень слабая (при p <0,19).
По форме корреляционная связь может быть линейной или нелинейной.
Линейной может быть, например, связь между уровнем подготовки студента и оценками итоговой аттестации. Пример нелинейной связи - уровень мотивации и эффективность выполнения поставленной задачи. (При повышении мотивации эффективность выполнения задачи сначала возрастает, затем, при определённом уровне мотивации, достигается максимальная эффективность; но дальнейшему повышению мотивации сопутствует уже снижение эффективности.)
По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).
При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - более низкие значения другого. При отрицательной корреляции соотношения обратные.
Список литературы
1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы : материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 11-14.
2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 315-316.
3. Исмагилов, Р. Р. Творческая группа - эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона : проблемы и перспективы развития : материалы научно-практической конференции / Академия наук РБ, УГАТУ. - Уфа, 1999. - С. 105-106.
4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 62-69.
5. Исламгулов, Д. Р. Научно-исследовательская работа студентов - важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения : сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. - Уфа, 2007. - С. 20-22.
6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта - компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ - 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. - София: Бял ГРАД-БГ ООД, 2016. - Том 4 Педагогически науки. - C. 80-85.
7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 79-84.
8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. - Уфа, 2016. - С. 214-219.
9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта - компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 85-93.
10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 321-322.
11. Фахруллина, А.Р. Статистический аfнализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 323-324.
Размещено на Allbest.ru
...Подобные документы
Назначение рангового коэффициента корреляции, определение силы и направления корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков. Графическое представление метода ранговой корреляции, расчет эмпирического значения rs.
презентация [46,5 K], добавлен 12.11.2010Заработная плата работника предприятия. Фондоотдача основных фондов. Определение тесноты взаимосвязи между показателями с помощью коэффициента ранговой корреляции. Проверка статистической совокупности на однородность. Сравнение и анализ расчетов.
курсовая работа [161,0 K], добавлен 03.12.2010Построение корреляционного поля и предложение гипотезы о связи между денежными доходами и потребительскими расходами, выдвижение предположения о наличии выбросов. Оценка статистической надежности и значимости вычисленного коэффициента корреляции.
контрольная работа [3,0 M], добавлен 15.11.2012Этапы корреляционно-регрессионного анализа, построение корреляционной модели и определение функции, отражающей механизм связи между факторным и результативным признаками. Измерение тесноты корреляционной связи, расчет индекса корреляции и дисперсии.
лекция [38,1 K], добавлен 13.02.2011Изучение понятия и сущности коэффициента корреляции, который является одним из методов статистического анализа взаимосвязи нескольких признаков. Отличительные черты экономики Сингапура и Перу. Анализ основных показателей прироста иностранных инвестиций.
курсовая работа [168,5 K], добавлен 25.06.2010Эффективность оборотных средств. Оценка тесноты связи между факторным и результативным показателями на основе корреляционного анализа. Проверка значимости коэффициента корреляции. Оценка значимости уравнения линейной регрессии. Формы связи показателей.
курсовая работа [143,2 K], добавлен 15.03.2015Задачи корреляционного анализа. Статистическое изучение взаимосвязей. Коэффициенты ассоциации и контингенции, коэффициенты Пирсона и Чупрова. Связи между дихотомическими переменными. Применение статистического анализа для хозяйственных субъектов.
контрольная работа [246,2 K], добавлен 14.01.2015Основные черты, задачи и предпосылки применения корреляционно-регрессионного метода. Методы корреляционного и регрессионного анализа. Коэффициент ранговой корреляции Кендалла, Спирмена, Фехнера. Определение тесноты взаимосвязи между показателями.
контрольная работа [558,5 K], добавлен 08.04.2013Построение корреляционного поля между ценой акции и доходностью капитала. Гипотеза о тесноте и виде зависимости между доходностью и ценой. Расчет коэффициента детерминации. Оценка статистической значимости уравнения регрессии с помощью F-критерия Фишера.
контрольная работа [274,3 K], добавлен 25.09.2013Классификация показателей тесноты связи. Основные способы расчета показателей и определение их значимости. Линейный коэффициент корреляции для несгруппированных данных. Принятие решений о тесноте связи на основе линейного коэффициента корреляции.
презентация [146,4 K], добавлен 16.03.2014Понятие системы национальных счетов (СНС) и ее значение. Макроэкономические показатели и методы их расчета. Исследование структуры совокупности. Выявление наличия корреляционной связи между признаками, установление направления связи, измерение ее тесноты.
курсовая работа [3,0 M], добавлен 05.05.2011Рассмотрение теоретических и практических аспектов отношения между важнейшими показателями деятельности предприятия - прибылью и объемами выпусков продукции. Изучение правил нахождения уравнения прямых регрессии и вычисления коэффициента корреляции.
контрольная работа [130,8 K], добавлен 15.04.2014Сущность и назначение корреляционного анализа в статистике, основные этапы его реализации. Краткая экономическая характеристика Великобритании и Венгрии. Корреляционный анализ экономики данных государств, показателей прироста иностранных инвестиций.
курсовая работа [181,4 K], добавлен 25.06.2010Анализ экспертной информации на базе расчета непараметрических показателей связи. Вычисление рангового коэффициента корреляции Кендалла. Обзор зависимости между балансовой прибылью и объемом реализованной продукции. Использование данных экспертных оценок.
курсовая работа [68,6 K], добавлен 28.11.2014Понятие, виды производственных средств. Расчет линейного коэффициента корреляции. Аналитическое выражение связи между факторным и результативным показателем на основе регрессионного анализа. Расчет параметров уравнения тренда методом наименьших квадратов.
курсовая работа [80,9 K], добавлен 07.03.2016Структурная группировка статистических наблюдений на предприятиях по объёму перевезённого груза. Расчет показателей вариации. Оценка значимости коэффициента корреляции. Расчет связей между случайными величинами и для линейной парной зависимости.
курсовая работа [411,3 K], добавлен 13.01.2014Коэффициент корреляции, его значение и основные характеристики. Связь между двумя переменными. Динамика уровней ряда. Исследование временного ряда. Последовательность коэффициентов автокорреляции уровней первого, второго и последующих порядков.
курсовая работа [295,7 K], добавлен 06.05.2015Необходимые условия применения многофакторного корреляционного анализа. Отбор факторов, оказывающих воздействие на величину результативного показателя. Методика статистической оценки уровней связи. Корреляционная модель рентабельности предприятия.
курсовая работа [443,8 K], добавлен 25.11.2011Изучение методов измерения (натуральный, трудовой, стоимостный), характеристики динамики и индексов (Струмилина, переменного) эффективности труда. Определение наличия корреляционной связи между признаками производительности и объемом товарооборота.
курсовая работа [3,8 M], добавлен 12.02.2010Способы группировки, использование их в анализе хозяйственной деятельности организаций. Прогнозирование экономических показателей, причинно-следственные связи экономических процессов и явлений, изучение взаимосвязи и взаимозависимости между показателями.
контрольная работа [42,9 K], добавлен 12.11.2010