Local Football Sentiment and Returns from Stocks: Evidence from Europe

Consideration of additional variables based on investor sentiment that affects market performance on national stock exchanges. General characteristics of statistical evidence of the presence of local football sentiment, familiarity with the features.

Рубрика Экономика и экономическая теория
Вид курсовая работа
Язык английский
Дата добавления 07.12.2019
Размер файла 83,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Conclusion

As the result, the primary goal of this research has been achieved. Stocks' abnormal returns were analyzed on the various sample of football matches on the presence of local football sentiment. Particularly, each company was linked to the football club that based in the same city, where this company is headquartered. Using two-step modified Edmans (2007) approach the panel data regressions were built to test the main hypotheses.

The results suggest that there exists local football sentiment: firms' returns are affected by the outcome of local football team match and the strength of football sentiment depends from the type of company (either small cap or big cap) and from the country economic level (either developed or developing). However, study failed to formulate the general rule of dependence between match outcome (win/loss) with the corresponding market reaction (positive/negative) as the results have shown different variations of dependency. Although there was an attempt to answer all of the raised questions, generally the study provides the basis for future research.

Bibliography

1.Ashton, JK., Gerrard, B., Hudson, R., (2003), "Economic impact of national sporting success: evidence from the London stock exchange", Applied Economics Letters, Vol. 10, pp. 783-785

2.Banz, RW., (1981), "THE RELATIONSHIP BETWEEN RETURN AND MARKET VALUE OF COMMON-STOCKS', Journal of Financial Economics, Vol. 9, pp. 3-18

3.Bauer, R., Cosemans, M., Schotman, PC., (2010), "Conditional Asset Pricing and Stock Market Anomalies in Europe", European Financial Management, Vol. 16, pp. 165-190

4.Berument, M., Ceylan, NB., Onar, B., (2013), "Football and the Risk-Return Relationship for a Stock Market: Borsa Istanbul", Emerging Markets Finance and Trade, Vol. 49, pp. 19-30

5.Bizman, A., Yinon, Y., (2002), "Engaging in distancing tactics among sport fans: Effects on self-esteem and emotional responses", Journal of Social Psychology, Vol. 142, pp. 381-392

6.Cao, M., Wei, J., (2005), "Stock market returns: A note on temperature anomaly", Journal of Banking & Finance, Vol. 29, pp. 1559-1573

7.Chang, S.C., Chen, S.S., Chou, R.K., Lin, Y.H., (2012). “Local sports sentiment and returns of locally headquartered stocks: a firm-level analysis”, Journal of Empirical Finance, Vol. 19, pp. 309-318

8.Coval, JD., Moskowitz, TJ., (1999), "Home bias at home: Local equity preference in domestic portfolios", Journal of Finance, Vol. 54, pp. 2045-2073

9.DeBondt, WFM., Thaler, R., (1985), "DOES THE STOCK-MARKET OVERREACT", Journal of Finance, Vol. 40, pp. 793-805

10.Edmans, A., Garcia, D., Norli, O., (2007), "Sports sentiment and stock returns", Journal of Finance, Vol. 62, pp. 1967-1998

11.Eker, G., Berument, H., Dogan, B., (2007), "Football and exchange rates: Empirical support for behavioral economics", Psychological Reports, Vol. 101, pp. 643-654

12.Etzioni, A., (1988), "NORMATIVE-AFFECTIVE FACTORS TOWARD A NEW DECISION-MAKING MODEL", Journal of Economic Psychology, Vol. 9, pp. 125-150

13.Forgas, JP., (1998), "On being happy and mistaken: Mood effects on the fundamental attribution error", Journal of Personality and Social Psychology, Vol. 75, pp. 318-331

14.Fung, KWT., Demir, E., Lau, CKM., Chan, KH., (2015), "Reexamining sports-sentiment hypothesis: Microeconomic evidences from Borsa Istanbul", Journal of International Financial Markets Institutions & Money, Vol. 34, pp 337-355

15.Guven, C., (2009), "Weather and Financial Risk-Taking: Is Happiness the Channel?", SOEPpaper No. 218

16.Hirshleifer, D., (2001), "Investor psychology and asset pricing", Journal of Finance, Vol. 56, pp. 1533-1597

17.Hirshleifer, D., Shumway, T., (2003) "Good day sunshine: Stock returns and the weather", Journal of Finance, Vol. 58, pp. 1009-1032

18.Kahneman, D., Knetsch, JL., Thaler, R., (1991), "ANOMALIES - THE ENDOWMENT EFFECT, LOSS AVERSION, AND STATUS-QUO BIAS", Journal of Economic Perspectives, Vol. 5, pp. 193-206

19.Kahneman, D., Lovallo, D., (1993), "TIMID CHOICES AND BOLD FORECASTS - A COGNITIVE PERSPECTIVE ON RISK-TAKING", Management Science, Vol. 39, pp. 17-31

20.Kahneman, D., Tversky, A., (1979), “PROSPECT THEORY - ANALYSIS OF DECISION UNDER RISK”, Econometrica, Vol. 47, pp. 263 - 291

Applications

Attachment 1

Appendix A

Table 1. The detailed description of football-company linking in the sample:

country

city

club

# of games in domestic championship

# of games in Europa League

# of games in Champions League

total number of games

Russia

Moscow

CSKA

197

8

46

251

Lokomotiv

197

20

0

217

Spartak

197

6

14

217

Dynamo

167

18

0

185

Saint-Petersburg

Zenit

197

0

44

241

Kazan

Rubin

197

36

4

237

Ufa

Ufa

137

0

0

137

Volgograd

Volga

60

0

0

60

Poland

Warsaw

Legia

235

38

26

299

Polonia

30

0

0

30

Krakow

Wisla

235

0

0

235

Cracovia

205

2

0

207

Wroclaw

Slask

235

12

4

251

Poznan

Lech

235

28

4

267

Gdynia

Arka

94

0

0

94

Turkey

Istanbul

Besiktas

221

24

18

263

Galatasaray

221

4

30

255

Fenerbahce

221

40

12

273

Istanbul BB

187

12

4

203

Kasimpasa

221

0

0

221

Karabuk

Karabukspor

170

4

0

174

Bursa

Bursaspor

221

8

0

229

England

London

Arsenal

250

14

54

318

Chelsea

250

9

55

314

Tottenham

250

46

14

310

Fulham

98

0

0

98

QPR

76

0

0

76

West Ham

250

10

0

260

Crystal Palace

212

0

0

212

Germany

Frankfurt

Eintracht

222

10

0

232

Hamburg

Hamburg

204

0

0

204

Hannover

Hannover 96

188

12

0

200

Leverkusen

Bayer

222

12

42

276

Munich

Bayern

222

0

86

308

Stuttgart

Stuttgart

188

16

0

204

Wolfsburg

Wolfsburg

222

12

10

244

Berlin

Hertha

188

8

0

196

Dortmund

Borussia

222

20

53

295

Koln

Koln

136

6

0

142

country

city

club

# of games in domestic championship

# of games in Europa League

# of games in Champions League

total number of games

France

Paris

PSG

246

0

56

302

Saint-Йtienne

Saint-Йtienne

246

36

0

282

Bordeaux

Bordeaux

246

30

0

276

Lyon

Lyon

246

42

26

314

Attachment 2

Appendix B

The variety of can be described on the example of the exact club. Let's took, for example, FC Arsenal from London. For this club the set of dummy variables would be the following:

- ARSW - Arsenal wins the match in its national division (English Premier League).

- ARSL - Arsenal loses the match in its national division.

- ARSCLW - Arsenal wins the match in UEFA Champions League.

- ARSCLL - Arsenal loses the match in UEFA Champions League.

- ARSELW - Arsenal wins the match in UEFA Europe League.

- ARSELL - Arsenal loses the match in UEFA Europe League.

- ARSCLQUALW - Arsenal wins the match in qualification round of UEFA Champions League.

- ARSCLQUALL - Arsenal loses the match in qualification round of UEFA Champions League.

- ARSCLGRW - Arsenal wins the match in group stage of UEFA Champions League.

- ARSCLGRL - Arsenal loses the match in group stage of UEFA Champions League.

- ARSCLFLW - Arsenal wins the match in final stage of UEFA Champions League.

- ARSCLFLL - Arsenal loses the match in final stage of UEFA Champions League.

- ARSCLFLSUC - Arsenal successfully goes to the next round of final stage of UEFA Champions League.

- ARSCLFLFAIL - Arsenal fails to go to the next round of final stage of UEFA Champions League.

- ARSELQUALW - Arsenal wins the match in qualification round of UEFA Europe League.

- ARSELQUALL - Arsenal loses the match in qualification round of UEFA Europe League.

- ARSELGRW - Arsenal wins the match in group stage of UEFA Europe League.

- ARSELGRL - Arsenal loses the match in group stage of UEFA Europe League.

- ARSELFLW - Arsenal wins the match in final stage of UEFA Europe League.

- ARSELFLL - Arsenal loses the match in final stage of UEFA Europe League.

- ARSELFLSUC - Arsenal successfully goes to the next round of final stage of UEFA Europe League.

- ARSELFLFAIL - Arsenal fails to go to the next round of final stage of UEFA Europe League.

Attachment 3

Appendix C

The following tables represent the regression on datasets that don't show any significance:

Table 2. Regression results: Small Cap England companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

ARSW

-3.140

7.481

-0.42

0.675

-17.804

11.524

ARSL

-3.420

10.130

-0.34

0.736

-23.276

16.435

CHEW

-0.816

7.489

-0.11

0.913

-15.496

13.864

CHEL

2.759

10.759

0.26

0.798

-18.329

23.848

CRYW

-1.382

9.009

-0.15

0.878

-19.041

16.276

CRYL

1.895

8.082

0.23

0.815

-13.946

17.736

TOTW

-0.977

7.808

-0.13

0.900

-16.282

14.327

TOTL

1.439

10.376

0.14

0.890

-18.899

21.777

WHW

-1.086

9.032

-0.12

0.904

-18.789

16.618

WHL

-0.670

8.487

-0.08

0.937

-17.305

15.965

QPRW

-0.007

18.954

0.00

1.000

-37.158

37.144

QPRL

6.540

10.639

0.61

0.539

-14.313

27.393

FULW

5.427

13.863

0.39

0.695

-21.745

32.599

FULL

1.262

9.454

0.13

0.894

-17.268

19.793

ARSCLFRW

28.490

40.492

0.70

0.482

-50.876

107.856

ARSCLFRL

-4.014

22.760

-0.18

0.860

-48.624

40.597

ARSGRCLW

1.579

15.284

0.10

0.918

-28.379

31.537

ARSGRCLL

3.946

24.623

0.16

0.873

-44.316

52.207

ARSELW

1.009

28.669

0.04

0.972

-55.184

57.202

ARSELL

-0.590

43.115

-0.01

0.989

-85.099

83.918

CHECLGRW

-8.434

15.513

-0.54

0.587

-38.839

21.972

CHECLGRL

15.479

26.124

0.59

0.554

-35.725

66.684

CHECLFRW

0.809

26.939

0.03

0.976

-51.994

53.611

CHECLFRL

8.909

24.258

0.37

0.713

-38.639

56.457

CHEELW

-16.079

25.909

-0.62

0.535

-66.862

34.705

CHEELL

-10.416

48.154

-0.22

0.829

-104.801

83.969

TOTCLW

3.102

22.866

0.14

0.892

-41.716

47.920

TOTCLL

4.407

30.005

0.15

0.883

-54.403

63.217

TOTELGRW

-17.103

15.883

-1.08

0.282

-48.235

14.029

TOTELGRL

-28.971

43.102

-0.67

0.501

-113.453

55.510

TOTELFRW

12.712

33.694

0.38

0.706

-53.329

78.754

TOTELFRL

-3.848

22.747

-0.17

0.866

-48.434

40.738

Constant

0.296

1.631

0.18

0.856

-2.902

3.494

Mean dependent var

0.000

SD dependent var

235.770

R-squared

0.000

Number of obs

26294.000

F-test

0.145

Prob > F

1.000

Akaike crit. (AIC)

361944.482

Bayesian crit. (BIC)

362214.326

*** p<0.01, ** p<0.05, * p<0.1

Table 3. Regression results: Small Cap Russia companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

LOKW

-0.320

0.489

-0.66

0.512

-1.278

0.637

LOKL

-0.104

0.625

-0.17

0.868

-1.328

1.121

SPAW

0.067

0.492

0.14

0.891

-0.898

1.033

SPAL

-0.075

0.623

-0.12

0.904

-1.297

1.147

CSKW

0.207

0.462

0.45

0.654

-0.699

1.113

CSKL

0.567

0.656

0.86

0.387

-0.719

1.854

DYNW

0.078

0.560

0.14

0.890

-1.021

1.176

DYNL

-0.170

0.599

-0.28

0.777

-1.343

1.004

ZENW

-0.061

0.441

-0.14

0.890

-0.924

0.803

ZENL

-0.466

0.768

-0.61

0.544

-1.971

1.039

UFAW

0.249

1.449

0.17

0.864

-2.591

3.089

UFAL

-0.041

1.226

-0.03

0.973

-2.444

2.361

VOLW

-0.839

2.933

-0.29

0.775

-6.588

4.910

VOLL

0.134

1.680

0.08

0.936

-3.159

3.427

LOKOMW

0.427

4.171

0.10

0.918

-7.747

8.602

LOKOML

1.317

2.453

0.54

0.591

-3.491

6.124

LOKOFAIL

-0.338

2.485

-0.14

0.892

-5.208

4.532

SPAMW

-0.446

2.860

-0.16

0.876

-6.052

5.160

SPAML

-0.491

1.913

-0.26

0.798

-4.240

3.259

SPASUC

-0.638

4.304

-0.15

0.882

-9.075

7.799

SPAFAIL

-0.211

2.709

-0.08

0.938

-5.520

5.098

CSKAMW

-0.253

1.778

-0.14

0.887

-3.738

3.232

CSKAML

-0.830

1.202

-0.69

0.490

-3.185

1.525

CSKASUC

0.542

1.701

0.32

0.750

-2.793

3.876

CSKAFAIL

-1.167

2.443

-0.48

0.633

-5.955

3.620

DYNSUC

-0.359

2.110

-0.17

0.865

-4.494

3.777

DYNFAIL

0.361

2.819

0.13

0.898

-5.164

5.886

ZENMW

-0.721

1.694

-0.43

0.670

-4.041

2.598

ZENML

0.530

1.868

0.28

0.777

-3.132

4.192

ZENSUC

-0.139

2.592

-0.05

0.957

-5.219

4.942

ZENFAIL

0.265

3.427

0.08

0.938

-6.453

6.982

Constant

0.003

0.064

0.04

0.964

-0.123

0.129

Mean dependent var

-0.000

SD dependent var

10.536

R-squared

0.000

Number of obs

29875.000

F-test

0.100

Prob > F

1.000

Akaike crit. (AIC)

225521.372

Bayesian crit. (BIC)

225787.125

*** p<0.01, ** p<0.05, * p<0.1

Table 4. Regression results: Small Cap France companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

PSGW

0.020

0.123

0.16

0.872

-0.221

0.261

PSGL

0.160

0.355

0.45

0.652

-0.537

0.857

LYOW

0.168

0.419

0.40

0.689

-0.654

0.990

LYOL

-0.176

0.598

-0.29

0.768

-1.349

0.996

BORW

0.110

0.348

0.32

0.751

-0.571

0.792

BORL

0.088

0.386

0.23

0.820

-0.669

0.845

STEW

-0.178

0.483

-0.37

0.713

-1.124

0.768

STEL

-0.055

0.613

-0.09

0.929

-1.256

1.147

PSGCLFRW

0.356

0.655

0.55

0.586

-0.927

1.639

PSGCLFRL

0.257

0.869

0.30

0.767

-1.445

1.960

PSGSUCCESS

-0.806

0.865

-0.93

0.351

-2.502

0.889

PSGFAIL

0.478

0.966

0.50

0.621

-1.415

2.370

BELQUALWIN

-0.869

1.521

-0.57

0.568

-3.850

2.113

BELQUALL

0.691

2.150

0.32

0.748

-3.523

4.904

BELFRW

1.755

4.805

0.36

0.715

-7.663

11.173

BELFRL

0.090

3.399

0.03

0.979

-6.572

6.751

SELQUALWIN

0.251

1.820

0.14

0.890

-3.316

3.817

SELQUALL

-0.802

2.405

-0.33

0.739

-5.516

3.912

SELGROUPW

0.195

2.152

0.09

0.928

-4.023

4.412

SELGROUPL

-1.074

3.399

-0.32

0.752

-7.736

5.587

SELFRW

-0.548

4.805

-0.11

0.909

-9.966

8.870

SELFRL

0.018

2.776

0.01

0.995

-5.423

5.460

LYCLFAIL

0.566

4.805

0.12

0.906

-8.852

9.984

LYELGRW

0.120

1.454

0.08

0.934

-2.729

2.969

LYELMW

-0.036

1.338

-0.03

0.979

-2.658

2.586

LYELML

0.254

1.523

0.17

0.868

-2.732

3.240

Constant

-0.005

0.033

-0.16

0.873

-0.070

0.059

Mean dependent var

-0.000

SD dependent var

4.801

R-squared

0.000

Number of obs

24201.000

F-test

0.148

Prob > F

1.000

Akaike crit. (AIC)

144645.614

Bayesian crit. (BIC)

144864.156

*** p<0.01, ** p<0.05, * p<0.1

Table 5. Regression results: Big Cap England companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

ARSW

-0.002

0.003

-0.56

0.576

-0.008

0.004

ARSL

-0.001

0.004

-0.23

0.815

-0.009

0.007

CHEW

-0.003

0.003

-0.86

0.389

-0.009

0.003

CHEL

0.003

0.005

0.64

0.522

-0.006

0.012

CRYW

-0.002

0.004

-0.55

0.584

-0.011

0.006

CRYL

0.000

0.004

0.02

0.984

-0.007

0.008

TOTW

-0.002

0.003

-0.80

0.423

-0.008

0.004

TOTL

0.000

0.004

-0.05

0.957

-0.008

0.008

WHW

-0.001

0.004

-0.34

0.734

-0.009

0.007

WHL

-0.002

0.004

-0.44

0.662

-0.009

0.006

QPRW

-0.001

0.009

-0.13

0.899

-0.019

0.017

QPRL

0.005

0.005

0.96

0.336

-0.005

0.015

FULW

0.003

0.007

0.47

0.641

-0.010

0.016

FULL

0.000

0.005

0.07

0.946

-0.009

0.009

ARSCLFRW

0.010

0.013

0.73

0.467

-0.017

0.036

ARSCLFRL

-0.003

0.012

-0.26

0.796

-0.026

0.020

CHECLFRW

-0.001

0.021

-0.07

0.947

-0.042

0.039

CHECLFRL

0.003

0.014

0.24

0.812

-0.024

0.031

TOTCLFRL

0.010

0.029

0.35

0.728

-0.047

0.068

Constant

0.001

0.001

0.83

0.405

-0.001

0.002

Mean dependent var

0.000

SD dependent var

0.128

R-squared

0.000

Number of obs

31594.000

F-test

0.424

Prob > F

0.999

Akaike crit. (AIC)

-40129.743

Bayesian crit. (BIC)

-39962.528

*** p<0.01, ** p<0.05, * p<0.1

stock evidence football

Table 6. Regression results: Big Cap Russia companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

LOKOW

-51.491

55.051

-0.94

0.350

-159.394

56.412

LOKOL

-18.906

70.267

-0.27

0.788

-156.631

118.820

SPARTAKW

3.784

55.039

0.07

0.945

-104.094

111.662

SPARTAKL

-16.186

68.679

-0.24

0.814

-150.800

118.427

CSKAW

30.850

51.162

0.60

0.547

-69.429

131.129

CSKAL

80.127

73.904

1.08

0.278

-64.728

224.982

DYNAMOW

6.071

64.930

0.09

0.926

-121.194

133.335

DYNAMOL

-26.211

67.376

-0.39

0.697

-158.271

105.849

RUBINW

3.982

190.782

0.02

0.983

-369.958

377.921

RUBINL

-1.434

207.873

-0.01

0.994

-408.872

406.004

ZENITW

21.206

115.897

0.18

0.855

-205.955

248.368

ZENITL

-3.638

213.153

-0.02

0.986

-421.425

414.150

LOKOELFRW

3.616

451.509

0.01

0.994

-881.356

888.589

LOKOELFRL

156.801

257.344

0.61

0.542

-347.603

661.205

SPACLW

-19.581

307.959

-0.06

0.949

-623.192

584.030

SPACLL

-56.552

205.935

-0.28

0.784

-460.192

347.088

CSKACLW

-29.379

194.170

-0.15

0.880

-409.959

351.201

CSKACLL

-109.793

139.110

-0.79

0.430

-382.453

162.867

DYNSUC

-117.595

238.323

-0.49

0.622

-584.717

349.527

DYNFAIL

2.734

324.080

0.01

0.993

-632.475

637.943

ZENGRW

-29.399

399.184

-0.07

0.941

-811.814

753.016

ZENGRL

-30.976

477.559

-0.07

0.948

-967.008

905.057

Constant

0.241

10.053

0.02

0.981

-19.463

19.945

Mean dependent var

-0.000

SD dependent var

1713.219

R-squared

0.000

Number of obs

33549.000

F-test

0.132

Prob > F

1.000

Akaike crit. (AIC)

594854.836

Bayesian crit. (BIC)

595065.355

*** p<0.01, ** p<0.05, * p<0.1

Table 7. Regression results: Big Cap Poland companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

LEGW

0.010

0.015

0.65

0.517

-0.019

0.039

LEGL

-0.016

0.025

-0.66

0.508

-0.064

0.032

POLW

0.000

0.057

-0.00

0.999

-0.112

0.112

POLL

-0.028

0.060

-0.46

0.645

-0.145

0.090

SLAW

0.012

0.079

0.15

0.883

-0.143

0.167

SLAL

0.012

0.080

0.15

0.882

-0.145

0.169

LEGQUALW

-0.041

0.051

-0.80

0.423

-0.141

0.059

LEGQUALL

-0.025

0.168

-0.15

0.879

-0.354

0.303

LEGGROUPW

0.067

0.157

0.43

0.668

-0.241

0.376

LEGGROUPL

0.031

0.084

0.38

0.707

-0.132

0.195

LEGELQUALW

0.004

0.056

0.07

0.943

-0.106

0.114

LEGELQUALL

0.115

0.155

0.74

0.458

-0.188

0.418

LEGELGROUP

-0.028

0.063

-0.43

0.665

-0.152

0.097

LEGELGROUPL

-0.019

0.058

-0.32

0.751

-0.133

0.096

SLAELQUALW

0.040

0.315

0.13

0.899

-0.578

0.658

SLAELQUALL

0.009

0.254

0.03

0.973

-0.489

0.507

Constant

0.000

0.004

-0.00

0.997

-0.008

0.008

Mean dependent var

0.000

SD dependent var

0.683

R-squared

0.000

Number of obs

31994.000

F-test

0.179

Prob > F

1.000

Akaike crit. (AIC)

66430.830

Bayesian crit. (BIC)

66573.176

*** p<0.01, ** p<0.05, * p<0.1

Table 8. Regression results: Big Cap France companies

resid

Coef.

St.Err.

t-value

p-value

[95% Conf

Interval]

Sig

PSGW

0.000

0.001

-0.10

0.923

-0.003

0.003

PSGL

0.001

0.004

0.34

0.731

-0.006

0.009

PSGWCL

-0.001

0.004

-0.35

0.729

-0.008

0.006

PSGLCL

-0.002

0.008

-0.25

0.807

-0.019

0.015

PSGCLFRW

0.005

0.007

0.70

0.486

-0.009

0.019

PSGCLFRL

0.006

0.010

0.59

0.552

-0.014

0.025

Constant

0.000

0.000

0.30

0.766

-0.001

0.001

Mean dependent var

0.000

SD dependent var

0.064

R-squared

0.000

Number of obs

24210.000

F-test

0.212

Prob > F

1.000

Akaike crit. (AIC)

-64537.685

Bayesian crit. (BIC)

...

Подобные документы

  • The stock market and economic growth: theoretical and analytical questions. Analysis of the mechanism of the financial market on the efficient allocation of resources in the economy and to define the specific role of stock market prices in the process.

    дипломная работа [5,3 M], добавлен 07.07.2013

  • Mergers and acquisitions: definitions, history and types of the deals. Previous studies of post-merger performance and announcement returns and Russian M&A market. Analysis of factors driving abnormal announcement returns and the effect of 2014 events.

    дипломная работа [7,0 M], добавлен 02.11.2015

  • General characteristic of the LLC DTEK Zuevskaya TPP and its main function. The history of appearance and development of the company. Characteristics of the organizational management structure. Analysis of financial and economic performance indicators.

    отчет по практике [4,2 M], добавлен 22.05.2015

  • Issues about housing prices formation process. Analytical model of housing prices. Definition a type of relationship between the set of independent variables and housing prices. The graph of real housing prices of all Russian regions during the period.

    курсовая работа [1,6 M], добавлен 23.09.2016

  • Law of demand and law of Supply. Elasticity of supply and demand. Models of market and its impact on productivity. Kinds of market competition, methods of regulation of market. Indirect method of market regulation, tax, the governmental price control.

    реферат [8,7 K], добавлен 25.11.2009

  • Natural gas market overview: volume, value, segmentation. Supply and demand Factors of natural gas. Internal rivalry & competitors' overview. Outlook of the EU's energy demand from 2007 to 2030. Drivers of supplier power in the EU natural gas market.

    курсовая работа [2,0 M], добавлен 10.11.2013

  • State intervention in the economy. Assessment and the role of teaching Veblen. Economic development of the society. Process of long-term loan and the inclusion of investor-banker in industrial production. Negative aspects of American institucionalism.

    реферат [27,4 K], добавлен 14.11.2012

  • Transition of the Chinese labor market. Breaking the Iron Rice Bowl. Consequences for a Labor Force in transition. Labor market reform. Post-Wage Grid Wage determination, government control. Marketization Process. Evaluating China’s industrial relations.

    курсовая работа [567,5 K], добавлен 24.12.2012

  • Economic entity, the conditions of formation and functioning of the labor market as a system of social relations, the hiring and use of workers in the field of social production. Study of employment and unemployment in the labor market in Ukraine.

    реферат [20,3 K], добавлен 09.05.2011

  • Assessment of the rate of unemployment in capitalist (the USA, Germany, England, France, Japan) and backward countries (Russia, Turkey, Pakistan, Afghanistan). Influence of corruption, merges of business and bureaucracy on progress of market economy.

    реферат [15,5 K], добавлен 12.04.2012

  • A theoretic analysis of market’s main rules. Simple Supply and Demand curves. Demand curve shifts, supply curve shifts. The problem of the ratio between supply and demand. Subsidy as a way to solve it. Effects of being away from the Equilibrium Point.

    курсовая работа [56,3 K], добавлен 31.07.2013

  • Concept and program of transitive economy, foreign experience of transition. Strategic reference points of long-term economic development. Direction of the transition to an innovative community-oriented type of development. Features of transitive economy.

    курсовая работа [29,4 K], добавлен 09.06.2012

  • Stereotypes that influence on economic relations between the European Union countries and Russia. Consequences of influence of stereotypes on economic relations between EU and Russia. Results of first attempts solving problem. General conclusion.

    реферат [19,0 K], добавлен 19.11.2007

  • Basic rules of social protection in USA. Maintenance of legal basis, development and regular updating of general(common) methodological principles of state guarantees and methodical development in sphere of work. Features of payment of work by worker.

    курсовая работа [29,4 K], добавлен 12.04.2012

  • The first stage of market reforms in Kazakhstan is from 1992 to 1997. The second phase is in 1998 after the adoption of the Strategy "Kazakhstan-2030". The agricultural, education sectors. The material and technical foundation of the medical institutions.

    презентация [455,3 K], добавлен 15.05.2012

  • The levers of management of a national economy, regions and enterprises. The prices for the goods. Taxes to the proceeds from realization of commodity production. Proceeds from realization of services to the population, establishments and organizations.

    реферат [18,7 K], добавлен 12.04.2012

  • Models and concepts of stabilization policy aimed at reducing the severity of economic fluctuations in the short run. Phases of the business cycle. The main function of the stabilization policy. Deviation in the system of long-term market equilibrium.

    статья [883,7 K], добавлен 19.09.2017

  • Financial bubble - a phenomenon on the financial market, when the assessments of people exceed the fair price. The description of key figures of financial bubble. Methods of predicting the emergence of financial bubbles, their use in different situations.

    реферат [90,0 K], добавлен 14.02.2016

  • Project background and rationales. Development methodology, schedule planning. Company mission and vision. Organization of staff and company structure. Procurement system target market. Implementation of procurement system. Testing, user manual.

    дипломная работа [6,8 M], добавлен 28.11.2013

  • Calculation of accounting and economic profits. The law of diminishing returns. Short-Run production relationships and production costs, it's graphic representation. The long-run cost curve. Average fixed, variable, total costs and marginal costs.

    презентация [66,7 K], добавлен 19.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.