Оценка устойчивости социально-экономического развития регионов России
Рассмотрение составных частей устойчивого развития: экономическое развитие, социальный прогресс, ответственность за окружающую среду. Знакомство с особенностями формирования прогноза социально-экономического развития регионов Российской Федерации.
Рубрика | Экономика и экономическая теория |
Вид | статья |
Язык | русский |
Дата добавления | 21.05.2021 |
Размер файла | 472,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Оценка устойчивости социально-экономического развития регионов России
Р.В. Фаттахов
Финансовый университет, Москва, Россия
М. М. Иизамутдинов
Институт социально-экономических исследований УФИЦ РАН, Уфа, Россия
В.В. орешников
Институт социально-экономических исследований УФИЦ РАН, Уфа, Россия
Аннотация
Регионы России не только неоднородны по уровню текущего состояния, но и отличаются сложившимися тенденциями изменения ключевых параметров их дальнейшего развития. Некоторые из них, обладая существенным экономическим потенциалом, рискуют потерять устойчивость в связи с происходящими социальными процессами и наоборот. Исходя из этого, цель исследования заключается в оценке устойчивости развития субъектов Российской Федерации, выявлении типовых регионов, в том числе в рамках реализации основного приоритета Стратегии пространственного развития России до 2025 года - раскрытии социально-экономического потенциала территорий, обеспечения их устойчивого развития за счет экономической специализации регионов.
Методы. В рамках решения задачи выбора типовых регионов России по уровню устойчивости социально-экономического развития сформирована база данных показателей за период с 2010 по 2016 г. Финансово-экономическая составляющая развития описывается восемью показателями, социальная - 14 показателями, экологическая - тремя показателями. Ранжирование регионов осуществлено в три этапа - рассмотрение частных показателей, объединение их в группы и исследование обобщенных значений. Для выявления типовых регионов был применен метод кластеризации.
результаты. Апробация подхода показала, что высокая позиция региона по одному из рассматриваемых направлений анализа не всегда коррелирует с уровнем по другим показателям. Величина разброса в целом возрастает при переходе от регионов-лидеров к регионам-аутсайдерам.
Кластерный анализ позволил выявить четыре группы регионов. Первый кластер характеризуется преобладанием экономической составляющей. Второму кластеру присуще отсутствие существенного дисбаланса между направлениями. Третий кластер характеризуется лучшей динамикой финансово-экономических показателей на фоне относительно неплохих позиций в социальной и экологической сферах. Четвертый кластер представлен субъектами РФ, в которых имеются существенные результаты в сфере улучшения экологической составляющей. Исходя из кластерного анализа, выбраны типовые регионы - Республика Ингушетия, Самарская область, Республика Татарстан и Владимирская область, соответственно.
Перспективы. Полученные результаты могут быть применены при формировании прогноза социально-экономического развития регионов Российской Федерации и показателей их устойчивости на среднесрочную перспективу.
Ключевые слова: устойчивое развитие; социально-экономическое развитие; типовые регионы; финансовые факторы; субъект Российской Федерации; кластеризация; ранжирование; интегральный показатель
Abstract
Assessment of the Sustainability of the Socio-economic Development of the Regions in Russia
R.V. Fattakhov
Financial University, Moscow, Russia
M.M. Nizamutdinov
Institute of Social and Economic Research of Ufa branch of RAS, Ufa, Russia
V.V. Oreshnikov
Institute of social and economic research of Ufa branch of RAS, Ufa, Russia
Introduction. The regions of Russia are not only heterogeneous in terms of the current state but also differ in the prevailing trends in the key parameters of their future development. Some of them, possessing significant economic potential, risk losing stability due to ongoing social processes and vice versa. The purpose of the study is to assess the sustainable development of the Russian Federation regions, to identify typical regions, including implementation of the main priority of the Spatial Development Strategy of Russia until 2025 - to uncover the socio-economic potential of the territories and their sustainable development through economic specialisation regions.
Methods. In the framework of solving the problem of choosing typical regions of Russia according to the level of sustainability of socio-economic development, we formed a database of indicators for the period from 2010 to 2016. The 8th indicators describe the financial and economic component of development, the social component - by the 14th indicators, the environmental one - by the 3rd indicators. The ranking of regions was carried out in three stages - the consideration of particular indicators, their unification into groups and the study of generalised values. For the identification of typical regions, we applied the clustering method.
Results. Approbation of the approach showed that the high position of the region in one of the considered areas of analysis does not always correlate with the level in other indicators. The magnitude of the dispersion in general increases with the transition from the leading regions to the outside regions. Cluster analysis revealed four groups of regions. The first cluster is characterised by the predominance of the economic component. The second cluster is characterised by the absence of a significant imbalance between the directions. The third cluster is characterised by better dynamics of financial and economic indicators against the background of relatively good positions in the social and environmental spheres. The fourth cluster is represented by subjects of the Russian Federation, in which there are significant results in the field of improving the environmental component. Based on the cluster analysis, typical regions were selected - the Republic of Ingushetia, the Samara Region, the Republic of Tatarstan and the Vladimir Region, respectively.
Discussion. The obtained results can be applied when making a forecast of the socio-economic development of the regions of the Russian Federation and indicators of their sustainability in the medium term.
Keywords: sustainable development; socio-economic development; model regions; financial factors; the subject of the Russian Federation; clustering; ranking; integral indicator.
Введение
Социально-экономическое развитие регионов России крайне неоднородно. Сложившаяся диспропорция наблюдается как в объемах производства и инвестиций, так и в динамике миграционных процессов и продолжительности жизни населения.
При этом в ряде случаев тенденции изменения ключевых показателей развития таковы, что создают угрозу для нормального функционирования региональной системы в будущем [1]. Кроме того, реализация базового приоритета принятой Правительством России Стратегии пространственного развития России до 2025 года предопределяет необходимость обеспечить устойчивость социально-экономического развития территорий в средне- и долгосрочной перспективе, в том числе за счет экономической специализации регионов. В связи с этим вопросы обеспечения устойчивости развития регионов Российской Федерации являются одними из наиболее актуальных на сегодняшний момент. Их решение зависит не только от действий органов государственной власти, но и от качества научного обоснования применяемых подходов.
Ключевые составляющие устойчивого развития регионов России
Задача группировки регионов Российской Федерации по уровню устойчивости социально-экономического развития на сегодняшний день не имеет однозначного решения. Подобная ситуация сопряжена в первую очередь с двумя взаимосвязанными факторами: 1) неоднозначностью понимания термина «устойчивое социально-экономическое развитие» и, соответственно, компонентов данного развития; 2) неоднозначностью подходов к формированию комплекса показателей, характеризующих устойчивость социально-экономического развития регионов.
Одним из наиболее соответствующих целям проводимого исследования является следующее определение: «Устойчивое развитие (от англ. sustainable development) -- это процесс экономических и социальных изменений, при котором эксплуатация природных ресурсов, направление инвестиций, ориентация научно-технического развития, развитие личности и институциональные изменения согласованы друг с другом и укрепляют нынешний и будущий потенциал для удовлетворения человеческих потребностей и устремлений» [2]. Таким образом, составными частями устойчивого развития являются экономическое развитие, социальный прогресс и ответственность за окружающую среду [3, 4]. Следующим шагом является определение перечня показателей, характеризующих каждое из представленных направлений устойчивого развития региональной системы. При этом следует исходить из принципов системности, комплексности и целесообразности. Принцип системности [5] в данном случае воплощается в необходимости рассмотрения показателей регионального развития не в качестве отдельных характеристик, а как взаимосвязанных и взаимовлияющих параметров. В связи с чем изменение одних показателей может формировать как позитивные, так и негативные условия для изменения других, столь же значимых, показателей регионального развития. Принцип комплексности подразумевает необходимость охвата всех выделенных ранее частей устойчивого развития и всех значимых элементов каждой части. В свою очередь, принцип целесообразности требует ограничения числа рассматриваемых параметров некоторым приемлемым уровнем, тем самым создавая противовес предыдущему принципу, направленному на расширение числа анализируемых факторов [6, 7]. При этом не следует забывать, что в первую очередь речь во многом идет об обеспечении качества жизни людей, которое может описываться большим числом параметров [8]. Исходя из данных принципов, были отобраны следующие показатели по каждому из направлений.
Финансово-экономическая составляющая устойчивого развития:
• Объем валового регионального продукта на душу населения.
• Среднегодовая численность занятых в экономике.
• Уровень занятости населения.
• Стоимость основных производственных фондов.
• Степень износа основных производственных фондов.
• Объем инвестиций в основной капитал на душу населения.
• Оборот розничной торговли [9].
• Сальдированный финансовый результат предприятий и организаций [10].
Социальная составляющая устойчивого развития:
• Численность населения на конец года.
• Коэффициент демографической нагрузки.
• Общий коэффициент рождаемости (число родившихся на 1000 человек населения).
• Общий коэффициент смертности (число умерших на 1000 человек населения).
• Коэффициент миграционного прироста на 10 000 человек населения [11, 12].
• Ожидаемая продолжительность жизни при рождении.
• Среднемесячная номинальная начисленная заработная плата работников организаций.
• Реальные денежные доходы населения.
• Доля населения с денежными доходами ниже величины прожиточного минимума.
• Общая площадь жилых помещений, приходящаяся в среднем на одного жителя.
• Численность студентов.
• Численность населения, приходящаяся на одного врача.
• Заболеваемость на 1000 человек населения (зарегистрировано заболеваний у пациентов с диагнозом, установленным впервые в жизни).
• Число зарегистрированных преступлений на 100 000 человек населения.
Экологическая составляющая устойчивого развития:
• Выбросы загрязняющих веществ в атмосферный воздух, отходящих от стационарных источников.
• Доля уловленных и обезвреженных загрязняющих атмосферу веществ в общем количестве отходящих загрязняющих веществ от стационарных источников.
• Сброс загрязненных сточных вод в поверхностные водные объекты.
Таким образом, общее количество рассматриваемых показателей составляет 25 единиц. Однако неравенство числа показателей в каждой из групп затрудняет процедуру исследования общей динамики развития регионов. Так, количественное преобладание финансово-экономических показателей над экологическими может исказить общую картину в случае рассмотрения их как единого массива данных. В связи с этим в дальнейшем целесообразным представляется рассмотреть каждую из составляющих частей устойчивого регионального развития в отдельности и лишь после этого перейти к обобщению.
С целью проведения анализа был произведен сбор и первичная обработка статистических данных, характеризующих динамику изменения указанных показателей социально-экономического развития регионов Российской Федерации за период с 2010 по 2016 г. Статистическая информация по Республике Крым и городу федерального значения Севастополь публикуется начиная с 2014 г., что накладывает определенные ограничения на возможность дальнейшего анализа. Кроме того, во избежание дублирования данных и двойного счета из анализа были исключены автономные округа. Таким образом, был подготовлен массив информации, включающий порядка 14,5 тыс. значений.
Ранжирование регионов по уровню устойчивости развития
экономический социальный регион
Анализ динамики социально-экономического развития субъектов Российской Федерации показывает, с одной стороны, высокую степень дифференциации регионов по различным критериям, а с другой -- неоднородность развития каждого из регионов. Так, многие субъекты Федерации, занимая лидирующие позиции в экономическом плане, не выдерживают конкуренции по сугубо социальным показателям развития. В связи с этим при формировании рейтинга регионов России следует учитывать динамику различных показателей, отражающих все сферы жизнедеятельности общества. В рамках проведенного исследования ранжирование регионов осуществлялось в три этапа. На первом этапе были рассмотрены частные показатели развития регионов. На втором -- частные показатели были объединены в указанные ранее группы, что позволило рассматривать финансово-экономическую, социальную и экологическую сферу в целом. На третьем этапе было проведено исследование обобщенных значений по всем составным частям устойчивого развития.
Анализ частных показателей подразумевает исследования их изменения во времени с целью выявления позитивных и негативных тенденций. Для этого был проведен расчет цепных индексов. При этом были учтены следующие особенности рассматриваемых показателей:
1. Необходимость обеспечения сопоставимости данных [13]. Для этого финансовые показатели следует выразить в ценах одного (базового) года. В рамках проводимых расчетов в качестве базового года использован 2010 г.
2. По данным Росстата, на протяжении всего рассматриваемого периода в Чеченской Республике сброс загрязненных сточных вод в поверхностные водные объекты отсутствует. Аналогичная ситуация наблюдается в отношении доли уловленных и обезвреженных загрязняющих атмосферу веществ в общем количестве отходящих загрязняющих веществ от стационарных источников в Республике Ингушетия.
Рис.1 Алгоритм расчета рейтинговых оценок / Algorithm for calculating rating scores
3. Ряд показателей, таких как коэффициент миграционного прироста и сальдированный финансовый результат предприятий и организаций, может принимать как положительные, так и отрицательные значения. В связи с этим в отношении данных показателей была проведена предварительная обработка, включающая в себя процедуры расчета величин их изменения во времени и нормирования с последующим переводом в шкалу, в рамках которой значение, равное единице, является нейтральным уровнем [14] (по аналогии с остальными показателями, где значения больше единицы рассматриваются как положительная динамика, а значения меньше единицы -- как отрицательная динамика).
4. Показатели, рост которых интерпретируется как негативная тенденция (уровень смертности, доля населения с доходами ниже прожиточного уровня, заболеваемость, величина выбросов в атмосферу и т.д.), были также переведены в сопоставимый вид [15].
5. Для снижения влияния эффектов высокой и низкой базы и тем самым предотвращения появления в расчетах резких «всплесков» и «прова
6. лов» предполагается проводить анализ данных в среднем за три последовательных периода. В данном случае речь идет о 2014-2016 гг.
7. Для обеспечения сопоставимости составных частей устойчивого развития региона (трудность данной задачи вызвана различным количеством показателей по каждому из рассматриваемых направлений) предлагается анализировать не динамику отдельных показателей, а соотношения количества положительных и отрицательных тенденций. При этом значимость каждого из направлений выравнивается, несмотря на различное число показателей в выделенных группах.
Сформированная таким образом база данных, основанная на анализе динамики изменения ключевых показателей по регионам России в разрезе выделенных групп и представляющая собой совокупность цепных индексов, в дальнейшем была использована для формирования соответствующих рейтингов. В агрегированном виде последовательность расчетов представлена на рисунке.
Таким образом, на следующем (после расчета цепных индексов) этапе анализа предполагается
Таблица 1. Соотношение числа показателей, имеющих положительную и отрицательную тенденцию (фрагмент) /The ratio of the number of indicators with a positive and negative trend (fragment)
Субъект Российской Федерации |
Социальное развитие |
Финансово-экономическое развитие |
Экологическое состояние |
Интегральный уровень |
Место в РФ |
|||||||||||
2014 |
2015 |
2016 |
Среднее значение |
2014 |
2015 |
2016 |
Среднее значение |
2014 |
2015 |
2016 |
Среднее значение |
Интегральный уровень |
Социальное раз витие |
|||
Республика Саха (Якутия) |
2,5 |
0,8 |
1,0 |
1.4 |
1,7 |
3,0 |
7,0 |
3,9 |
0,0 |
2,0 |
3,0 |
1.7 |
2,09 |
і |
2 |
|
Липецкая область |
0,8 |
0,8 |
1,3 |
0,9 |
1,7 |
1,7 |
7,0 |
3,4 |
3,0 |
3,0 |
0,5 |
2,2 |
1,92 |
2 |
22 |
|
Республика Дагестан |
1,8 |
1,0 |
1,3 |
1,4 |
8,0 |
1,0 |
3,0 |
4,0 |
0,5 |
2,0 |
0,5 |
1.0 |
1,77 |
3 |
3 |
|
Республика Татарстан |
1,0 |
0,6 |
1,3 |
1,0 |
0,6 |
7,0 |
1,7 |
3,1 |
2,0 |
2,0 |
0,5 |
1,5 |
1,65 |
4 |
19 |
|
Белгородская область |
1,0 |
0,8 |
1,3 |
1,0 |
3,0 |
1,7 |
7,0 |
3,9 |
0,5 |
2,0 |
0,5 |
1,0 |
1,59 |
5 |
12 |
|
Ленинградская область |
0,6 |
0,8 |
1,3 |
0,9 |
ОД |
1,0 |
7,0 |
2,7 |
0,5 |
2,0 |
2,0 |
1,5 |
1,53 |
6 |
28 |
|
Республика Калмыкия |
1,0 |
0,4 |
0,6 |
0,7 |
3,0 |
1,0 |
3,0 |
2,3 |
3,0 |
2,0 |
2,0 |
2,3 |
1,53 |
7 |
54 |
|
г. Санкт-Петербург |
0,8 |
0,6 |
1,8 |
1,0 |
1,0 |
0,6 |
7,0 |
2,9 |
3,0 |
0,5 |
0,0 |
1,2 |
1,51 |
8 |
10 |
|
Сахалинская область |
1,0 |
0,8 |
1,0 |
0,9 |
3,0 |
7,0 |
1,0 |
3,7 |
2,0 |
0,5 |
0,5 |
1,0 |
1,50 |
9 |
24 |
|
Вологодская область |
0,6 |
0,6 |
0,8 |
0,6 |
0,3 |
0,6 |
7,0 |
2,6 |
2,0 |
2,0 |
2,0 |
2,0 |
1,49 |
10 |
60 |
|
Нижегородская область |
0,4 |
0,6 |
0,8 |
0,6 |
0,6 |
1,0 |
1,0 |
0,9 |
0,5 |
2,0 |
0,5 |
1,0 |
0,79 |
71 |
65 |
|
Волгоградская область |
0,8 |
0,4 |
1,3 |
0,8 |
1,0 |
ОД |
ОД |
0,4 |
2,0 |
2,0 |
0,0 |
1,3 |
0,78 |
72 |
33 |
|
Кемеровская область |
0,6 |
0,4 |
1,0 |
0,7 |
0,0 |
0,6 |
1,0 |
0,5 |
3,0 |
0,5 |
0,5 |
1,3 |
0,77 |
73 |
53 |
|
Респ. Северная Осетия - Алания |
0,6 |
0,2 |
0,8 |
0,5 |
0,6 |
0,6 |
1,0 |
0,7 |
3,0 |
0,0 |
0,5 |
1,2 |
0,77 |
74 |
71 |
|
Чувашская Республика |
0,6 |
0,8 |
0,8 |
0,7 |
0,3 |
0,6 |
0,3 |
0,4 |
2,0 |
2,0 |
0,5 |
1,5 |
0,76 |
75 |
49 |
|
Курганская область |
0,4 |
0,2 |
1,0 |
0,5 |
ОД |
0,6 |
0,6 |
0,4 |
3,0 |
0,5 |
2,0 |
1,8 |
0,75 |
76 |
72 |
|
Карачаево-Черкесская Респ. |
0,9 |
0,3 |
1,0 |
0,7 |
ОД |
0,3 |
0,3 |
0,3 |
2,0 |
2,0 |
0,5 |
1,5 |
0,67 |
77 |
45 |
|
Республика Адыгея |
1,0 |
0,4 |
0,8 |
0,7 |
0,4 |
1,3 |
1,3 |
1,0 |
0,5 |
0,5 |
0,0 |
0,3 |
0,63 |
78 |
47 |
|
Кабардино-Балкарская Рес. |
1,6 |
0,2 |
1,3 |
1,0 |
0,6 |
1,7 |
1,7 |
1,3 |
0,0 |
0,5 |
0,0 |
0,2 |
0,61 |
79 |
9 |
Таблица 2 / Table 2. соотношение числа показателей, имеющих положительную и отрицательную тенденцию, регионов рФ, входящих в первый кластер / The ratio of the number of indicators that have a positive and negative trend in the regions of the Russian Federation included in the first cluster
субъект российской Федерации |
социальное развитие |
Финансово-эконом. развитие |
Экологическое состояние |
расстояние от центра кластера |
|
Республика Калмыкия |
0,7 |
2,3 |
2,3 |
0,60 |
|
Вологодская область |
0,6 |
2,6 |
2,0 |
0,56 |
|
Московская область |
1,3 |
1,5 |
1,5 |
0,38 |
|
Республика Ингушетия |
0,9 |
2,1 |
1,3 |
0,12 |
|
Республика Мордовия |
1,0 |
1,5 |
1,7 |
0,34 |
|
Воронежская область |
0,8 |
1,9 |
1,7 |
0,21 |
|
Чеченская Республика |
1,0 |
1,9 |
1,0 |
0,22 |
|
Краснодарский край |
1,0 |
2,1 |
0,8 |
0,35 |
|
Чукотский авт. округ |
0,7 |
1,9 |
1,0 |
0,21 |
|
Хабаровский край |
0,6 |
1,5 |
1,5 |
0,28 |
|
Республика Тыва |
0,9 |
1,7 |
0,8 |
0,34 |
|
Ростовская область |
0,5 |
2,2 |
0,8 |
0,39 |
|
Республика Карелия |
0,5 |
1,7 |
1,0 |
0,29 |
Таблица 3 / Table 3 Соотношение числа показателей, имеющих положительную и отрицательную тенденцию, регионов рФ, входящих во второй кластер / The ratio of the number of indicators with a positive and negative trend of the regions of the Russian Federation included in the second cluster
субъект российской |
социальное |
Финансово- |
Экологическое |
расстояние от центра |
|
Федерации |
развитие |
Эконом. развитие |
состояние |
кластера |
|
Республика Алтай |
1,6 |
1,1 |
1,0 |
0,46 |
|
Калужская область |
0,8 |
1,2 |
1,3 |
0,22 |
|
Новгородская область |
0,8 |
1,3 |
1,3 |
0,26 |
|
Магаданская область |
0,9 |
1,2 |
1,2 |
0,19 |
|
Ульяновская область |
1,0 |
0,9 |
1,3 |
0,20 |
|
Самарская область |
1,0 |
1,1 |
1,0 |
0,13 |
|
Республика Башкортостан |
0,8 |
1,1 |
1,2 |
0,14 |
|
Приморский край |
0,9 |
1,3 |
0,8 |
0,23 |
|
Республика Хакасия |
0,8 |
1,3 |
1,0 |
0,20 |
|
Калининградская область |
1,0 |
1,1 |
0,8 |
0,17 |
|
Пензенская область |
0,6 |
1,1 |
1,3 |
0,23 |
|
Томская область |
1,0 |
0,6 |
1,3 |
0,29 |
|
Астраханская область |
1,1 |
0,7 |
1,0 |
0,22 |
|
Брянская область |
0,9 |
1,0 |
0,8 |
0,13 |
|
Ярославская область |
0,5 |
1,2 |
1,3 |
0,29 |
|
Оренбургская область |
0,6 |
0,8 |
1,3 |
0,23 |
|
Евр. автономная область |
0,5 |
1,2 |
1,0 |
0,23 |
|
Республика Бурятия |
0,9 |
0,6 |
1,3 |
0,27 |
|
Иркутская область |
0,6 |
0,9 |
1,0 |
0,13 |
|
Ставропольский край |
1,0 |
1,1 |
0,5 |
0,32 |
|
Псковская область |
0,9 |
0,7 |
0,8 |
0,20 |
|
Нижегородская область |
0,6 |
0,9 |
1,0 |
0,13 |
|
Волгоградская область |
0,8 |
0,4 |
1,3 |
0,37 |
|
Кемеровская область |
0,7 |
0,5 |
1,3 |
0,33 |
|
Республика Северная Осетия - Алания |
0,5 |
0,7 |
1,2 |
0,27 |
|
Республика Адыгея |
0,7 |
1,0 |
0,3 |
0,41 |
|
Кабардино-Балкарская Республика |
1,0 |
1,3 |
0,2 |
0,51 |
|
Алтайский край |
0,5 |
0,6 |
0,2 |
0,54 |
Таблица 4/ Table 4. соотношение числа показателей, имеющих положительную и отрицательную тенденцию, регионов рФ, входящих в третий кластер / The ratio of the number of indicators with a positive and negative trend, the regions of the Russian Federation included in the third cluster
субъект российской Федерации |
социальное развитие |
Финансово-эконом. развитие |
Экологическое состояние |
расстояние от центра кластера |
|
Респ. Саха (Якутия) |
1,4 |
3,9 |
1,7 |
0,46 |
|
Липецкая область |
0,9 |
3,4 |
2,2 |
0,52 |
|
Республика Дагестан |
1,4 |
4,0 |
1,0 |
0,48 |
|
Республика Татарстан |
1,0 |
3,1 |
1,5 |
0,19 |
|
Белгородская область |
1,0 |
3,9 |
1,0 |
0,36 |
|
Ленинградская область |
0,9 |
2,7 |
1,5 |
0,40 |
|
г. Санкт-Петербург |
1,0 |
2,9 |
1,2 |
0,27 |
|
Сахалинская область |
0,9 |
3,7 |
1,0 |
0,27 |
|
Тамбовская область |
0,7 |
3,0 |
1,0 |
0,31 |
|
Амурская область |
0,4 |
3,0 |
1,0 |
0,42 |
Таблица 5 / Table 5. Соотношение числа показателей, имеющих положительную и отрицательную тенденцию, регионов рФ, входящих в четвертый кластер / The ratio of the number of indicators with a positive and negative trend, the regions of the Russian Federation included in the fourth cluster
субъект российской Федерации |
социальное развитие |
Финансово-эконом. развитие |
Экологическое состояние |
расстояние от центра кластера |
|
Тульская область |
1,1 |
1,4 |
2,2 |
0,42 |
|
Красноярский край |
1,3 |
1,1 |
2,2 |
0,41 |
|
Новосибирская область |
1,1 |
1,0 |
1,8 |
0,23 |
|
Курская область |
0,8 |
1,2 |
1,8 |
0,18 |
|
Челябинская область |
1,0 |
1,0 |
1,8 |
0,17 |
|
Забайкальский край |
0,7 |
1,3 |
1,8 |
0,24 |
|
Удмуртская Республика |
0,8 |
1,2 |
1,8 |
0,18 |
|
Камчатский край |
0,6 |
1,1 |
2,3 |
0,30 |
|
Омская область |
0,9 |
0,6 |
2,7 |
0,54 |
|
Тюменская область |
0,8 |
1,1 |
1,7 |
0,15 |
|
Пермский край |
0,7 |
1,0 |
1,8 |
0,07 |
|
Тверская область |
0,6 |
1,1 |
1,8 |
0,14 |
|
Республика Марий Эл |
0,6 |
1,0 |
2,2 |
0,23 |
|
Владимирская область |
0,7 |
0,9 |
1,8 |
0,02 |
|
Рязанская область |
0,8 |
0,9 |
1,5 |
0,20 |
|
Орловская область |
0,6 |
1,2 |
1,5 |
0,27 |
|
г. Москва |
0,5 |
1,3 |
1,5 |
0,33 |
|
Архангельская область |
0,6 |
0,9 |
1,8 |
0,07 |
|
Мурманская область |
0,5 |
1,1 |
1,8 |
0,18 |
|
Смоленская область |
0,8 |
0,6 |
1,7 |
0,19 |
|
Саратовская область |
0,6 |
0,9 |
1,5 |
0,21 |
|
Кировская область |
0,8 |
0,7 |
1,5 |
0,23 |
|
Костромская область |
0,5 |
0,7 |
1,8 |
0,17 |
|
Свердловская область |
0,6 |
0,4 |
2,3 |
0,40 |
|
Ивановская область |
0,6 |
0,6 |
1,5 |
0,27 |
|
Республика Коми |
0,5 |
0,5 |
2,3 |
0,37 |
|
Чувашская Республика |
0,7 |
0,4 |
1,5 |
0,34 |
|
Курганская область |
0,5 |
0,4 |
1,8 |
0,31 |
|
Карачаево-Черкесская Республика |
0,7 |
0,3 |
1,5 |
0,39 |
Также характерно улучшение ситуации в экологическом плане.
Второй кластер включает 28 регионов (табл. 3) и характеризуется отсутствием существенного дисбаланса между направлениями развития. Однако необходимо принимать во внимание, что это не означает формирование исключительно положительных тенденций. Так, в данной группе присутствуют регионы, отличающиеся преобладанием негативных тенденций по всем трем составляющим устойчивого развития.
Третий выделенный кластер включает 10 субъектов Российской Федерации (табл. 4). Отличительной особенностью в данном случае является существенно лучшая динамика экономических показателей на фоне относительно неплохих позиций в социальной и экологической сферах.
Четвертый, наиболее обширный, кластер включает 29 регионов России (табл. 5). Относительно развития данных субъектов в сфере улучшения экологической составляющей можно отметить более существенные результаты, чем в области экономического и социального развития.
При этом следует обратить внимание на тот факт, что выделенные кластеры могут быть неоднородны по своему составу в случае выбора в качестве критерия не однонаправленность изменения показателей, а некоторые иные параметры.
Для выявления типовых регионов, исходя из полученных результатов кластерного анализа, необходимо рассмотреть центры кластеров. Центр кластера -- наиболее типичный представитель данного кластера (его геометрический центр). По характеристикам центра кластера можно судить обо всем кластере.
В табл. 2-5 представлены расстояния каждого элемента кластера от его центра. Таким образом, регион с наименьшим значением данного показателя является наиболее типовым для рассматриваемого кластера. В первом кластере наименьшим расстоянием от центра кластера характеризуется Республика Ингушетия, во втором -- Самарская область, в третьем -- Республика Татарстан, в четвертом -- Владимирская область.
Заключение
экономический социальный регион
Дальнейшее исследование устойчивости развития субъектов Российской Федерации, на наш взгляд, возможно осуществлять на примере выделенных выше типовых регионов. Данный подход позволит избежать необходимости проведения расчетов для каждого из 85 субъектов в отдельности, а полученные результаты могут быть, в той или иной мере, применены ко всем регионам, входящим в указанные группы. Наиболее актуальной является при этом задача формирования прогноза социально-экономического развития регионов Российской Федерации на среднесрочную перспективу, решение которой должно основываться на учете требований комплексности и системности при его разработке и базироваться на специально построенной экономико-математической модели региональной системы [18, 19].
Одним из ключевых этапов построения модели территориальной социально-экономической системы регионального уровня является разработка информационно-логической схемы, объединяющей все ключевые элементы модели в единый вычислимый комплекс. Построение предполагает описание входных и выходных элементов каждого блока модели, логических взаимосвязей между отдельными блоками. Предложенный подход позволяет сформировать целостное представление о внутренней структуре и механизмах работы разрабатываемой комплексной модели региональной системы.
Таким образом устанавливается взаимосвязь между всеми тремя рассматриваемыми видами устойчивости -- финансово-экономической, социальной и экологической. Вместе с тем обнаруживается противоречие в целях формирования комплексного устойчивого развития региона. Так, увеличение показателя валового регионального продукта на душу населения (повышение экономической устойчивости), с одной стороны, является залогом роста уровня оплаты труда и доходов населения (повышение социальной устойчивости), а с другой, приводит в большинстве случаев к повышению антропогенной нагрузки на окружающую среду в виде роста объемов сброса загрязненных сточных вод, выбросов в атмосферу (снижение экологической устойчивости [20]) и, как следствие, к повышению уровня заболеваемости населения и снижению продолжительности жизни (снижение социальной устойчивости [21]). Выбор оптимального сочетания темпов изменения различных показателей, обеспечивающих общее устойчивое развитие региона, является сложной многокритериальной задачей, решение которой невозможно без применения современных методов компьютерного моделирования.
Список источников
1. Низамутдинов М. М., Орешников В. В. Моделирование развития экономики региона. М.: Экономика; 2017. 304 с.
2. Фещенко В. В., Тачкова И. А., Черваков Р. О. Методологические основы социально-экономической эффективности регионального развития. Экономика и предпринимательство. 2017;(8-4):365-372.
3. Mihnenoka A., Senfelde M. The impact of national economy structural transformation on regional employment and income: The case of Latvia. South East European Journal of Economics and Business. 2017;12(2):47-60.
4. Oiarzabal P. J., Reips U.-D. Migration and diaspora in the age of information and communication technologies. Journal of Ethnic and Migration Studies. 2012;(38):1333-1338. DOI: 10.1080/1369183X.2012.698202
5. Ивантер В. В., Суворов А. В., Сутягин В. С. Основные задачи и принципы социально-экономического прогнозирования. Управление. 2015;3(1):8-17.
6. Mayer A., Malin S. A., Olson-Hazboun Sh. K. Unhollowing rural America? Rural human capital flight and the demographic consequences of the oil and gas boom. Population and Environment. 2017;39(3):219-238. DOI: 10.1007/511111-017-0288-9
7. Фаттахов Р. В., Низамутдинов М. М., Орешников В. В. Инструментарий обоснования параметров стратегического развития региона на базе адаптивно-имитационного моделирования. Регион: Экономика и Социология. 2017;(1):101-120.
8. Строев П. В. Трансформации пространственной структуры России. Вестник Института экономики Российской академии наук. 2014;(4):61-70.
9. Буньковский Д. В. Теневая экономика: анализ развития. Вестник Восточно-Сибирского института МВД России. 2015;(4):107-116.
10. Curry J. A., Picketts I. M. Evaluating local sustainability: Planning in Northern British Columbia, Canada. International Journal of Sustainable Development and Planning. 2014;9(6):739-753.
11. Аитова Ю. С. Качество образования как фактор формирования миграционных потоков в российской федерации. Вестник Тюменского государственного университета. Социально-экономические и правовые исследования. 2018;4(2):80-93.
12. Boneva B. S., Frieze I. H. Toward a concept of migrant personality. Journal of Social Issues. 2001;(3):477-491.
13. Клейнер Г. Б. Системное управление в трансформирующейся экономике. Эффективное антикризисное управление. 2014;(5):54-59.
14. Мартышенко С. Н. Методическое обеспечение анализа данных мониторинга социально-экономических процессов в муниципальных образованиях. Экономика и менеджмент систем управления. 2012;6(4.2):259-267.
15. Bollo Manent M., Hernandez Santana J. R., Mendez Linares A. P. The state of the environment in Mexico. Central European Journal of Geosciences. 2014;6(2):219-228. DOI: 10.2478/s13533-012-0172-1
16. Суслов С. А. Кластерный анализ: сущность, преимущества и недостатки. Вестник НГИЭИ. 2010;1(1):51-57.
17. Akhvlediani T., Cielik A. Knowledge Creation and Regional Spillovers: Empirical Evidence from Germany. Miscellanea Geographica. 2017;21(4):84-189. DOI: 10.1515/mgrsd-2017-0033
18. Суспицын С. А. Прогнозы и оценки пространственных трансформаций экономики на основе комплекса иерархических расчетов развития многорегиональной системы РФ. Регион: Экономика и Социология. 2010;(3):3-22.
19. Алексеенко В. Б., Красавина В. А. Математические методы исследования экономических систем. М.: РУДН; 2005. 154 с.
20. Pastuszka S. Regional Differentiation of the Demographic Potential in Italy and Poland. Comparative Economic Research. 2017;20(3):137-159. DOI: 10.1515/cer-2017-0024
References
1. Nizamutdinov M. M., Oreshnikov V. V. Modeling the development of the regional economy. Moscow: Ekonomika; 2017. 304 p. (In Russ.).
2. Feshchenko V. V., Tachkova I. A., Chervakov R. O. Methodological basis of socio-economic efficiency of regional development. Ekonomika i predprinimatelstvo. 2017;(8-4):365-372. (In Russ.).
3. Mihnenoka A., Senfelde M. The impact of national economy structural transformation on regional employment and income: The case of Latvia. South East European Journal of Economics and Business. 2017;12(2):47-60.
4. Oiarzabal P. J., Reips U.-D. Migration and diaspora in the age of information and communication technologies. Journal of Ethnic and Migration Studies. 2012;(38):1333-1338. DOI: 10.1080/1369183X.2012.698202
5. Ivanter V. V., Suvorov A. V., Sutyagin V. S. The main objectives and principles of socio-economic forecasting. Upravleniye. 2015;3(1):8-17. (In Russ.).
6. Mayer A., Malin S. A., Olson-Hazboun Sh. K. Unhollowing rural America? Rural human capital flight and the demographic consequences of the oil and gas boom. Population and Environment. 2017;39(3):219-238. DOI: 10.1007/s11111-017-0288-9
7. Fattakhov R. V., Nizamutdinov M. M., Oreshnikov V. V. Toolkit to justify the parameters of the strategic development of the region based on adaptive imitation modeling. Region: Ekonomika i Sotsiologiya. 2017;(1):101-120. (In Russ.).
8. Stroyev P. V. Transformation of the spatial structure of Russia. Vestnik Instituta ekonomiki Rossiyskoy akademii nauk. 2014;(4):61-70. (In Russ.).
9. Bunkovskiy D. V. Shadow economy: development analysis. Vestnik Vostochno-Sibirskogo instituta MVD Rossii. 2015;(4):107-116. (In Russ.).
10. Curry J. A., Picketts I. M. Evaluating local sustainability: Planning in Northern British Columbia, Canada. International Journal of Sustainable Development and Planning. 2014;9(6):739-753.
11. Aitova Yu. S. Education quality as a factor in the formation of migration flows in the Russian Federation. Vestnik Tyumenskogo gosudarstvennogo universiteta. Sotsial'no-ekonomicheskiye i pravovyye issledovaniya. 2018;4(2):80-93. (In Russ.).
12. Boneva B. S., Frieze I. H. Toward a concept of migrant personality. Journal of Social Issues. 2001;(3):477- 491.
13. Kleiner G. B. System management in a transforming economy. Effektivnoye antikrizisnoye upravleniye. 2014;(5):54-59. (In Russ.).
14. Martyshenko S. N. Methodological support of the analysis of monitoring data on socio-economic processes of municipalities. Ekonomika i menedzhment sistem upravleniya. 2012;6(4.2):259-267. (In Russ.).
15. Bollo Manent M., Hernandez Santana J. R., Mendez Linares A. P. The state of the environment in Mexico. Central European Journal of Geosciences. 2014;6(2):219-228. DOI: 10.2478/s13533-012-0172-1
16. Suslov S. A. Cluster analysis: essence, advantages and disadvantages. Vestnik NGIEI. 2010;1(1):51-57. (In Russ.).
17. Akhvlediani T., Cielik A. Knowledge Creation and Regional Spillovers: Empirical Evidence from Germany. Miscellanea Geographica. 2017;21(4):84-189. DOI: 10.1515/mgrsd-2017-0033
18. Suspitsyn S. A. Forecasts and estimates of spatial transformations of the economy based on a set of hierarchical calculations for the development of a multi-regional system of the Russian Federation. Region: Ekonomika i Sotsiologiya. 2010;(3):3-22. (In Russ.).
19. Alekseyenko V. B., Krasavina V. A. Mathematical methods for the study of economic systems. Moscow: RUDN; 2005. 154 p. (In Russ.).
20. Pastuszka S. Regional Differentiation of the Demographic Potential in Italy and Poland. Comparative Economic Research. 2017;20(3):137-159. DOI: 10.1515/cer-2017-0024.
Размещено на Allbest.ru
...Подобные документы
Теоретические основы исследования социально–экономического развития регионов России. Основные теории и тенденции развития, анализ различия основных показателей и динамики экономических показателей регионов, перспективные направления их развития.
научная работа [127,9 K], добавлен 27.03.2013Государственное регулирование социально-экономического развития РФ. Формирование программ социально-экономического развития регионов России. Механизмы регионального регулирования экономики на примере Северо-запада Сибири и Дальнего Востока в 2010 г.
курсовая работа [122,7 K], добавлен 18.10.2013Анализ современной динамики региональных процессов в России. Причины дифференциации развития регионов. Определение основных направлений развития единого экономического пространства государства. Выравнивание социально-экономического развития регионов.
курсовая работа [47,8 K], добавлен 24.09.2014Приоритетные направления экономического и социального развития регионов, обеспечение гарантированных государством единых минимальных социальных стандартов. Элементы современной рыночной экономики, реализация концепции социально-экономического развития.
контрольная работа [24,8 K], добавлен 18.07.2010Обобщение теоретических основ прогнозирования развития региона. Рассмотрение правовой основы прогнозирования социально-экономического развития субъектов Федерации. Определение основных проблем ее функционирования и предложение вариантов их решения.
курсовая работа [371,3 K], добавлен 24.09.2014Стратегия социально-экономического развития регионов. Субъекты и объекты государственной политики в области. Анализ теоретического и практического опыта регулирования развития регионов в современных условиях. Проблемы и стратегические цели в России.
курсовая работа [92,3 K], добавлен 29.11.2016Цели и критерии социально-экономического развития региона, условия положительной динамики. Составление сценария перспективного развития регионов. Модель и долгосрочный прогноз социально-экономического развития Вологодской области на период до 2020 г.
курсовая работа [66,8 K], добавлен 16.09.2011Цели и критерии социального развития региона. Факторы социально-экономического развития, самостоятельности и конкурентоспособности регионов, прогнозирование их развития. Современные методы управления региональным развитием. Рейтинг развития регионов.
презентация [18,1 M], добавлен 01.12.2010Характеристика основных принципов и сущность компонентов устойчивого развития регионов. Анализ реализации принципов и компонентов, социально-экономического потенциала устойчивого развития в регионах Республики Беларусь. Направления региональной политики.
курсовая работа [62,4 K], добавлен 21.04.2013Понятие концепции устойчивого развития. Особенности устойчивого развития Тюменского региона. Основные проблемы в обеспечении устойчивости социально-экономического развития Тюменской области. Сценарии и прогноз социально-экономического развития области.
курсовая работа [32,6 K], добавлен 25.10.2015Оценка выполнения прогноза социально-экономического развития Российской Федерации запредшествующий год на основе анализа фактических данных государственной статистики. Факторы и условия социально-экономического развития России: мировая экономика.
контрольная работа [1,4 M], добавлен 18.01.2015Европейский опыт социо-эколого-экономического развития регионов. Промышленность, банковский сектор, транспорт, рынок труда Пермского края. Внешнеторговые связи и иностранные инвестиции в его экономику. Формирование стратегии устойчивого развития области.
курсовая работа [1,6 M], добавлен 27.05.2014Основные аспекты социально-экономического развития регионов, инструменты его регулирования. Деятельность ассоциаций экономического воздействия субъектов РФ. Региональная политика, модель стратегического плана социально-экономического развития региона.
реферат [34,6 K], добавлен 11.12.2009Анализ показателей социально-экономического развития субъектов страны как индикаторов и детерминант экономического роста. Методы исследования дифференциации и конвергенции регионов России и стран ЕС. Построение безусловных моделей b-конвергенции.
дипломная работа [1,6 M], добавлен 22.01.2016Региональные аспекты становления рыночной экономики в России. Рейтинговые сравнения социально-экономического развития как методика оценки положения регионов в Российской Федерации. Анализ данных оперативной статистики Госкомстата России за 2004-2010 гг.
курсовая работа [89,8 K], добавлен 25.11.2012Процессы модернизации российской экономики и переход к инновационному социально ориентированному типу развития. Особенности экономического неравенства российских регионов. Дифференциация регионов по доходам населения. Данные о пенсионном обеспечении в РФ.
статья [78,8 K], добавлен 07.08.2017Понятия и причины перехода экономических регионов в депрессивное состояние, методы и критерии их выделения. Типология депрессивных регионов России. Пути преодоления кризиса и перспективы развития депрессивных регионов; зарубежный опыт форм их поддержки.
курсовая работа [102,3 K], добавлен 10.12.2013Хозяйственное развитие Ямало-Ненецкого автономного округа в условиях интенсивного освоения природных ресурсов. Организация процесса недропользования. Отраслевая структура экономики. Проблемы ресурсодобывающих регионов. Перспективы развития туризма в ЯНАО.
контрольная работа [355,9 K], добавлен 30.09.2016Основные цели и задачи анализа показателей социально-экономического развития территориальных образований. Оценка финансового положения региона. Индикаторы социально-экономического развития Архангельской области. Анализ выполнения плана областного бюджета.
контрольная работа [26,7 K], добавлен 20.06.2015Развитие регионов с учетом ритмики развития производительных сил. Анализ ресурсных циклов И.В. Комара. Концепция территориально-производственных комплексов Н.Н. Колосовского. Конкурентоспособность пространственно-временных воспроизводственных кластеров.
монография [3,2 M], добавлен 10.06.2013