Механізм ефективного формування доходу персоналу підприємства
Ефективність формування доходу персоналу підприємств із переробки сільськогосподарської продукції на основі методу кластеризації. Групування товаровиробників із переробки сільськогосподарської продукції за різними факторами для проведення аналізу.
Рубрика | Экономика и экономическая теория |
Вид | статья |
Язык | украинский |
Дата добавления | 18.05.2022 |
Размер файла | 232,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Механізм ефективного формування доходу персоналу підприємства
Світлана Бірюченко
Державний університет «Житомирська політехніка»
Україна
Мета. Дослідити ефективність формування доходу персоналу підприємств із переробки сільськогосподарської продукції Житомирської області шляхом застосування кластерного аналізу. Для досягнення мети було поставлено завдання: визначити сутність «механізму формування», адаптувати це поняття до доходу персоналу, здійснити групування товаровиробників із переробки сільськогосподарської продукції за різними факторами для проведення факторного аналізу й зробити відповідні висновки.
Методологія / методика / підхід. Теоретико-методологічною основою наукового дослідження є роботи вітчизняних і зарубіжних учених з питань механізму формування доходу працівників підприємства. Для розв'язання поставлених завдань використано такі методи та прийоми наукового дослідження: аналізу та синтезу; статистико-економічні; кластерного аналізу; узагальнення та ідеалізації.
Результати. Результати проведеного кластерного аналізу дозволяють визначити конкурентну позицію кожного досліджуваного підприємства залежно від того, до якого кластеру воно належить. Крім того, проведена кластеризація підприємств допомагає визначити переваги щодо формування доходу персоналу більш точно, оскільки побудована на відносних показниках. Використання методологічних положень проведення кластерного аналізу механізму формування доходу персоналу підприємств сприяє впровадженню методів якісного стратегічного управління з метою набуття конкурентних переваг у галузі переробки сільськогосподарської продукції, а також надає можливість вищому керівництву підприємства забезпечити оптимальну структуру доходу персоналу і, тим самим, вирішувати перспективні та поточні завдання розподілу фінансових результатів підприємства та формування витрат.
Оригінальність / наукова новизна полягає у формуванні алгоритму проведення кластерного аналізу формування доходу персоналу підприємства та розроблення рекомендацій щодо впровадження такого механізму для підприємств із переробки сільськогосподарської продукції Житомирської області.
Практична цінність / значущість. Кластеризація підприємств переробки сільськогосподарської продукції Житомирської області дає можливість розширювати міжфірмові потоки ідей та інформації щодо оптимального формування доходу персоналу.
Ключові слова: механізм, доход персоналу, кластерний аналіз.
Svetlana Biryuchenko
Zhytomyr Polytechnic State University
Ukraine
AgricufturaC and Resource Economics: InternationalScientific E-JournaC
www. are-journaC. com
MECHANISM OF EFFECTIVE FORMATION OF INCOME OF STAFF OF
THE ENTERPRISE
Purpose.The purpose of the article was to investigate the efficiency of income generation of staff of agricultural products processing enterprises in Zhytomyr region by applying cluster analysis. To meet the goal, the following tasks were set: to define the essence of the «mechanism of formation», to adapt this concept to the income of staff, to group the producers of processing agricultural products by various factors for carrying out factor analysis and to draw up appropriate conclusions.
Methodology / approach.Theoretical and methodological basis of scientific research were the works of domestic and foreign scientists on the mechanism of income generation of employees of the enterprise. The following methods of scientific research were used to solve these tasks: analysis and synthesis; statistical and economic; cluster analysis; generalization and idealization.
Results.The results of the cluster analysis made it possible to determine the competitive position of each analyzed enterprise depending on which cluster it belonged to. In addition, the clustering of enterprises helped to determine the benefits of generating staff income more precisely as it was based on relative indicators. The use of methodological provisions of conduction of the cluster analysis of the mechanism of formation of income of the personnel of enterprises promoted the implementation of methods of qualitative strategic management in order to gain competitive advantages in the field of agricultural products processing, and also enabled the top management of the enterprise to ensure the optimal structure of staff income and, thus, to solve the perspective and current tasks of enterprise financial results distribution and expenses formation.
Originality / scientific novelty was in the sphere offormation of the algorithm for conducting a cluster analysis of the formation of enterprise staff income and in development of recommendations for implementing such a mechanism for agricultural products enterprises in Zhytomyr region.
Practical value / implications.The clustering of agricultural products enterprises in Zhytomyr region makes it possible to expand the inter-firm flow of ideas and information on the optimal formation of staff income.
Key words: mechanism, staff income, cluster analysis.
Светлана Бирюченко
Государственный университет «Житомирская политехника»
Украина
МЕХАНИЗМ ЭФФЕКТИВНОГО ФОРМИРОВАНИЯ ДОХОДА
ПЕРСОНАЛА ПРЕДПРИЯТИЯ
Цель. Исследовать эффективность формирования дохода персонала предприятий переработки сельскохозяйственной продукции Житомирской области путем применения кластерного анализа. Для достижения цели были поставлены задачи: определить сущность «механизма формирования», адаптировать данное понятие в контексте дохода персонала, осуществить группировки товаропроизводителей переработки сельскохозяйственной продукции за различными факторами для проведения факторного анализа и сделать соответствующие выводы.
Методология / методика / подход. Теоретико-методологической основой научного исследования выступают работы отечественных и зарубежных ученых по вопросам механизма формирования дохода персонала предприятия. Для решения поставленных заданий были использованы такие методы и приемы научного исследования: анализа и синтеза, статистико-экономические, кластерного анализа, обобщения и идеализации.
Результаты. Результаты проведенного кластерного анализа позволяют определить конкурентную позицию каждого исследуемого предприятия в зависимости от того, к какому кластеру оно принадлежит. Кроме того, проведена кластеризация предприятий помогает определить преимущества по формированию дохода персонала более точно, поскольку построена на относительных показателях. Использование методологических положений проведения кластерного анализа механизма формирования дохода персонала предприятий способствует внедрению методов качественного стратегического управления с целью получения конкурентных преимуществ в области переработки сельскохозяйственной продукции, а также предоставляет возможность высшему руководству предприятия обеспечить оптимальную структуру дохода персонала и, тем самым, решать перспективные и текущие задачи распределения финансовых результатов предприятия и формирования затрат.
Оригинальность / научная новизна заключается в формировании алгоритма проведения кластерного анализа формирования дохода персонала предприятия и разработки рекомендаций по внедрению такого механизма для предприятий по переработке сельскохозяйственной продукции Житомирской области.
Практическая ценность / значимость. Кластеризация предприятий по переработке сельскохозяйственной продукции Житомирской области дает возможность расширять межфирменные потоки идей и информации относительно оптимального формирования дохода персонала.
Ключевые слова: механизм, доход персонала, кластерный анализ.
Постановка проблеми
Доходи персоналу підприємств являють собою сукупність грошових потоків, одержаних на підприємстві, що використовують для підтримки фізичного, морального, економічного та інтелектуального розвитку персоналу [1]. Для побудови оптимізованої моделі формування доходу персоналу підприємств із переробки сільськогосподарської продукції необхідно застосовувати новації та нові підходи, одним серед яких є кластерний аналіз. Кластеризація нині набуває все більшої актуальності при проведенні групувань, що свідчить про доцільність застосування цього аналізу для формування вибірки споріднених об'єктів за допомогою різноманітних математичних залежностей.
Аналіз останніх досліджень і публікацій
Дослідження формування механізму мотивації та матеріального стимулювання праці персоналу виробничих підприємств займалися й займаються достатня кількість учених- економістів. Так, M. Fan, A. AlvesPena, J. M. Perloffрозглядали зміну формування доходу персоналу сільськогосподарських підприємств у період рецесії, провівши регресійний аналіз і зосередивши свою увагу на зареєстрованих і сезонних (незареєстрованих) працівниках [2].D. Charlton, J. E. Taylorрозглянули залежність заробітної плати, а відповідно й доходу персоналу, фермерських господарств від чисельності робочої сили. Відповідно до проведеного аналізу вони встановили, що зростання заробітної плати працівників відбулося лише за рахунок зменшення робочої сили [3].
Одним зіспособівсприяннярозвиткутапідвищення конкурентоспроможності підприємств є залучення їх до кластерного співробітництва, про що неодноразово вказували як вітчизняні, так і закордонні вчені-економісти [4]. На кластерному аналізі зосереджували свою увагу Т. Б. Ігнашкіна [5], М. Войнаренко [6], І. М. Пістунов [7], Н. В. Параниця [8], Г. П. Педченко [9], Б. С. Еверіт [10], О. В. Орлова-Курилова [11], Н. І. Мельник і Н. П. Чорна [12] та ін. M. Reiff, Z. Ivanicova, K. Surmanova, Z. Naglova, B. Boberova, T. Horakova, L. Smutka звернули увагу на групування підприємств із переробки сільськогосподарської продукції у Європі за показниками їх ефективності з розрахунку на одного працівника [13; 14]. Кластерний аналіз підприємств здійснюють для визначення їх положення на відповідному ринку та встановленняпріоритетівподальшогорозвитку[15].Н. Стоянець запропонувала структурну модель сталого регіонального розвитку, в основу якої покладено кластерну структуру [16]. Одержані профілі в дослідженнях Н. К. Васильєвої дозволили визначити кластери підтримки передових досягнень, удосконалення позитивних результатів і подолання негативних тенденцій аграрного виробництва у вітчизняних господарствах [17].
Безпосередньо проблема формування доходу персоналу підприємства при використанні кластерного аналізу залишилася поза увагою вчених.
Мета статті - дослідити ефективність формування доходу персоналу підприємств із переробки сільськогосподарської продукції Житомирської області на основі методу кластеризації. Для досягнення мети було поставлено завдання: визначити сутність «механізму формування», адаптувати це поняття до доходу персоналу, здійснити групування товаровиробників із переробки сільськогосподарської продукції за різними факторами для проведення факторного аналізу й зробити відповідні висновки. дохід персонал кластеризація товаровиробник
Виклад основного матеріалу дослідження
Організаційно-економічний механізм є складною економічною категорією без однозначного трактування в науковій літературі. У широкому розумінні організаційно-економічний механізм представляє собою сукупність інструментів і методів впливу на процес для досягнення поставленої мети. Основною метою під час формування доходу персоналу підприємства є забезпечення ефективності господарської діяльності шляхом належного формування доходу персоналу. Економічний механізм формування доходу персоналу вважається ефективним, якщо показники господарської діяльності підприємства та величини доходу персоналу як витратної позиції досягають оптимальних значень.
Досліджуючи механізм формування доходу персоналу підприємств харчової промисловості та його структуру, доцільно провести їх кластерний аналіз, який передбачає багатофакторне групування товаровиробників за сукупністю класифікаційних ознак.
Перш ніж проводити аналіз підприємств кластерним методом необхідно визначити його сутність та значення. У праці І. М. Пістунова зазначено, що «кластерний аналіз - це сукупність методів, що дають змогу класифікувати багатовимірні спостереження, кожне з яких описується набором вихідних перемінних Х1, Х2, ..., Хт» [7, с. 4]. За Т. Б. Ігнашкиною «він являє собою багатоетапну статистичну процедуру, яка класифікує об'єкти або спостереження в однорідні групи» [5, с. 23]. Тобто кластерний аналіз передбачає угрупування за певними ознаками об'єктів або спостережень певної місцевості або географічного сегменту, причому всі групи пов'язані між собою спільним індикатором.
Н. І. Бойко вважає, що в основній меті «кластерного аналізу є розподіл багатовимірної сукупності вхідних даних на однорідні групи так, щоб об'єкти всередині групи були подібними між собою згідно з деяким критерієм, а об'єкти із різних груп відрізнялися один від одного. Причому класифікація об'єктів проводиться одночасно за кількома ознаками на основі введення певної міри сумарної близькості за всіма ознаками класифікації. Кластерний аналіз використовують для дослідження структури соціально-економічних показників чи об'єктів:регіонів, підприємств, господарств, соціальних обстежень тощо, описаних багатьма апріорно однаковими факторами» [18, с. 414].
В основу кластеризації пропонуємо покласти такі ознаки: розміри елементів заробітної плати уз розрахунку на одного працівника, зокрема заробітної плати в цілому, основної та додаткової заробітної плати й заохочувальних і компенсаційних виплат. До перелічених показників також варто додати основний результативний показник діяльності переробних підприємств - рівень рентабельності їхньої господарської діяльності.
Процес кластеризації складається із шести етапів:
1) побудова дендрограми подібності підприємств, які переробляють сільськогосподарську сировину, використовуючи конгломеративний метод кластеризації;
2) визначення можливих варіантів кількості груп, на які доцільно розподілити досліджувану сукупність підприємств. На цьому етапі використаємо графік об'єднання, побудований за допомогою методу Уорда, на якому визначаться кроки об'єднання, що характеризуються найбільшим «стрибком»;
3) визначення переліку значущих класифікаційних ознак у розрізі кожного із варіантів кількості можливих груп (кластерів) підприємств переробної галузі. На основі такого аналізу обґрунтуємо остаточну та оптимальну кількість кластерів, на які доцільно розподілити об'єкти досліджуваної сукупності;
4) розподіл досліджуваних переробних підприємств на групи, застосовуючи метод ^-середніх. Визначення кількості та питомої ваги елементів, що увійшли в кожен кластер;
5) аналіз усереднених значень класифікаційних ознак у межах кластерів;
6) інтерпретація отриманих результатів кластеризації та виявлення залежностей між показниками, обраними в ролі ознак кластеризації.
У дослідженні проведено кластеризацію 19 підприємств, що здійснюють переробку сільськогосподарської сировини. Дендрограму їх подібності, яка побудована на основі евклідових відстаней, відображено на рис. 1. Окремий кластер утворюють 15-те та 18-те підприємства. Оскільки згадані підприємства характеризуються не типовістю розмірів заробітної плати, їх виключено з аналізу. Крім цієї малочисельної групи, об'єкти досліджуваної сукупності можуть бути об'єднані ще в чотири групи. Цю гіпотезу слід перевірити шляхом аналізу графіка об'єднання (рис. 2).
Евклідова відстань
Рис. 1. Дендрограма подібності підприємств Житомирської області, що переробляють сільськогосподарську сировину
Примітка: С-1-С-19 - підприємств-об'єкти кластеризації
Джерело: побудував автор.
Найсуттєвіші об'єднання, яким відповідають «стрибки» графіка Уорда, характерні для восьмого, п'ятнадцятого та сімнадцятого кроків. Оптимальна кількість кластерів визначається шляхом обчислення різниці між кількістю досліджуваних підприємств (19 товаровиробників) і кроком, якому відповідає явний «стрибок». Отже, можливим є об'єднання переробних підприємств Житомирщини на 2, 4 та 11 груп. Слід заначити, що 11 груп - це занадто багато для 19 досліджуваних об'єктів. Тому дисперсійний аналіз доцільно проводити для двох варіантів розподілу: для 2 та 4 кластерів.
Результати, отримані за допомогою аналізу графа об'єднання (рис. 2), співпадають з результатами за використання конгломеративного методу. Критерієм дальшого вибору з-поміж двох варіантів кількості груп класифікації(дві або чотири) є максимальна кількість показників, які будуть значущимих для цього багатофакторного групування. Зокрема, обрати слід ту кількість груп, за якої кількість класифікаційних ознак, що можна використати в процесі кластеризації, буде більшою. Перевірка гіпотези про значущість кожної окремої класифікаційної ознаки здійснюється на базі дисперсійного аналізу, під час якого визначають F-критерії Фішера та коефіцієнти р-значущості. Якщо рівень коефіцієнта р-значущості менше 0,05, то гіпотеза про значущість цієї ознаки кластеризації приймається. В іншому випадку відповідний показник слід вилучити з процедури кластеризації та провести її заново.
Рис. 2. Графік об'єднання підприємств Житомирської області, що переробляють сільськогосподарську сировину
Джерело: побудував автор.
Згідно з результатами дисперсійного аналізу, у разі класифікації підприємств Житомирської області, що переробляють сільськогосподарську сировину, на дві групи, два показника є незначущими для цієї класифікації (рівень рентабельності та заохочувальні й компенсаційні виплати з розрахунку на одного працівника) (табл. 1). Оскільки групування переробних підприємств Житомирщини на чотири групи дає можливість урахувати всі виділені показники, саме таку кількість груп визначено оптимальною.
Можна припустити, що заробітну плату слід розглядати як основний інструмент матеріального заохочення персоналу до збільшення продуктивності праці, та, як наслідок, до підвищення рівня рентабельності господарської діяльності підприємств харчової промисловості. Тобто умовно типовою слідвважати закономірність, коли зі збільшенням усіх елементів заробітної плати ефективність господарювання зростає.
Таблиця 1Результати дисперсійного аналізу потенційних ознак кластеризації підприємств Житомирської області, що переробляють сільськогосподарську сировину
Ознака кластеризації |
2 групи |
4 групи |
|||
А-критерій Фішера |
Р- . значущість |
А-критерій Фішера |
Р- . значущість |
||
Рівень рентабельності |
0,3117 |
0,5839 |
6,6446 |
0,0045 |
|
Заробітна плата |
40,9277 |
0,0000 |
22,9600 |
0,0000 |
|
Основна заробітна плата на одного працівника |
12,6312 |
0,0024 |
16,1898 |
0,0001 |
|
Додаткова заробітна плата на одного працівника |
15,0207 |
0,0012 |
7,0489 |
0,0035 |
|
Заохочувальні та компенсаційні виплати на одного працівника |
1,4367 |
0,2471 |
3,7439 |
0,0344 |
Джерело: розраховано автором за даними Головного управління статистики в Житомирській області [19] та Агентства з розвитку інфраструктури фондового ринку України [20].
З даних табл. 2 видно, що елементи третього та четвертого кластерів не відповідають типовій залежності між рівнем рентабельності й заробітною платою. Зокрема, підприємства третього кластера, з одного боку, мають нижчий рівень рентабельності, ніж у підприємств першого кластера, з іншого - характеризуються вищими розмірами додаткової заробітної плати. Натомість, підприємства, які увійшли до четвертого кластера, мають відносно високий рівень рентабельності господарської діяльності, та одночасно найнижчий розмір додаткової заробітної плати.
Таблиця 2
Усереднені значення ознак кластеризації підприємств Житомирськоїобласті, що переробляють сільськогосподарську сировину
Ознака кластеризації |
Номер кластера |
||||
1 |
2 |
3 |
4 |
||
Кількість підприємств, од. |
2 |
6 |
4 |
7 |
|
Питома вага підприємств у їх загальній кількості, % |
10,5 |
31,6 |
21,1 |
36,8 |
|
Рівень рентабельності, % |
14,38 |
-4,91 |
-0,92 |
7,31 |
|
Заробітна плата, грн |
5969,54 |
2982,33 |
4588,29 |
3136,41 |
|
Основна заробітна плата на 1 працюючого, грн |
4820,93 |
2315,64 |
3279,96 |
2916,81 |
|
Додаткова заробітна плата на 1 працюючого, грн |
1116,97 |
662,63 |
1308,33 |
219,59 |
|
Заохочувальні та компенсаційні виплати на 1 працюючого, грн |
31,64 |
4,06 |
0,00 |
0,00 |
Джерело: розраховано автором за даними підприємств [19; 20].
Як бачимо, у 21,1 % досліджуваних підприємств, які увійшли до третього кластера, додаткова заробітна плата не відіграє своєї ролі як чинника, мотивуючого до підвищення рівня рентабельності господарської діяльності підприємств. Натомість 36,8 % переробних підприємств четвертого кластера, виплачуючи відносно невисокий розмір додаткової заробітної плати, навпаки, характеризуються достатнім рівнем рентабельності господарювання.
У межах кластерів найбільшою варіацією характеризуються такі показники, як рівень рентабельності (особливо в другому та третьому кластерах) і заохочувальні та компенсаційні виплати на одного працівника (табл. 3).
Таблиця 3
Варіація в межах кластерів ознак кластеризації підприємствЖитомирської області, що переробляють сільськогосподарську сировину
Ознака кластеризації |
Номер кластера |
||||
1 |
2 |
3 |
4 |
||
Рівень рентабельності, % |
61,71 |
154,96 |
377,87 |
81,46 |
|
Заробітна плата, грн |
9,87 |
25,07 |
4,19 |
11,90 |
|
Основна заробітна плата на одного працівника, грн |
1,59 |
24,01 |
15,70 |
11,55 |
|
Додаткова заробітна плата на одного працівника, грн |
49,90 |
51,95 |
52,29 |
68,87 |
|
Заохочувальні та компенсаційні виплати на одного працівника, грн |
141,42 |
179,00 |
- |
- |
|
Заохочувальні та компенсаційні виплати на одного працівника, грн |
31,64 |
4,06 |
0,00 |
0,00 |
Джерело: розраховано автором за даними підприємств [19; 20]
Отже, кластеризація підприємств із переробки сільськогосподарської продукції Житомирської області надає можливість поширювати ідеї та інформацію між підприємствами певного угрупування.
Висновки
Сучасні умови функціонування підприємств із переробки сільськогосподарської продукції свідчать про необхідність розробки та впровадження нових методів управління персоналом та формування його доходу. З метою організації дослідження ефективності формування доходу персоналу підприємств із переробки сільськогосподарської продукції Житомирської області було адаптовано метод багатовимірного статистичного аналізу - метод кластеризації. Результати проведеного кластерного аналізу дозволяють визначити конкурентну позицію кожного окремого підприємства з переробки сільськогосподарської продукції, залежно від того, до якого кластеру воно належить. Крім того, проведена кластеризація підприємств допомагає визначити переваги щодо формування доходу персоналу кожного з підприємств більш точно, оскільки вона здійснена на основі п'яти відносних показників, що відображають ефективність формування доходу персоналу за різними напрямами. Використання методологічних положень проведення кластерного аналізу механізму формування доходу персоналу підприємств сприяє впровадженню методів якісного стратегічного управління з метою набуття конкурентних переваг у галузі переробки сільськогосподарської продукції, а також надає можливість вищому менеджменту підприємства забезпечити оптимальну структуру доходу персоналу і, тим самим, вирішувати перспективні та поточні завдання розподілу фінансових результатів підприємства та формування витрат.
У майбутніх дослідженнях планується звернути увагу на визначення оптимальної структури доходу персоналу підприємства для забезпечення найбільшої продуктивності праці та зростання фінансових результатів суб'єкта господарювання.
Список використаних джерел
1. БірюченкоС. Ю. Механізм формування оптимального складу доходів персоналу підприємств. Вісник Житомирського державного технологічного університету. Економічні науки. 2008. № 3(45). С. 219-229.
2. Fan M., Pena A. A., PerloffJ. M. Effects of the Great Recession on the U.S.Agricultural Labor Market.American Journal of Agricultural Economics. 2016. Vol. 98. Is. 4. Pp. 1146-1157. https://doi.org/10.1093/ajae/aaw023.
3. Charlton, D. and Taylor, J. E. A Declining Farm Workforce: Analysis of Panel Data from Rural Mexico. American Journal of Agricultural Economics. 2016. Vol. 98. Is. 4. Pp. 1158-1180. https://doi.org/10.1093/ajae/aaw018.
4. BetakovaJ., HaviernikovaK., Jaskova D., Hagara V., Zeman R. Potential for clustering in the agricultural sector assessment: the case of Slovakia. Economic Annals-XXI. 2017. Vol. 167. Is. 9-10. Pp. 23-27. https://doi.org/10.21003/ea.V167-
05.
5. ІгнашкінаТ. Б., Шура Н. О. Формування галузевих кластерів промислових підприємств Дніпропетровської області з метою аналізу відтворювальних процесів. Бізнес Інформ. 2011. № 7. Т. 2. С. 23-30.
6. Войнаренко М. Концепція кластерів - шлях до відродження виробництва на регіональному рівні. Економіст. 2000. № 1. С. 12-15.
7. Пістунов І. М., Антонюк О. П., Турчанінова І. Ю. Кластерний аналіз в економіці: навч. посіб. Дніпропетровськ: Національний гірничий університет. 2008. 84 с.
8. Параниця Н. В. Статистичний та регресійний аналіз соціально- економічних явищ регіонів України. Management of modern socio-economic systems. Vol. 2. Lithuania: Izdevnieciba«BaltijaPublishing», 2017. С. 79-92.
9. Педченко Г. П. Регіональний статистичний аналіз підприємництва в
Україні. Соціально-економічні проблеми розвитку бізнесу та місцевого самоврядування:тези доповідей ІІ міжнародної науково-практичної
конференції ТДАТУ (13-14 червня 2019 р.). URL: http://elar.tsatu.edu.ua/handle/123456789/8138.
10. Everitt B. S., Landau S., LeeseM. Cluster Analysis. 5nd ed., John Wiley & Sons, 2011. 360 p.
11. Орлова-Курилова О. В. Інноваційний кластер як органічний елемент національної економіки. Актуальні проблеми економіки. 2019. № 9(219). С. 5966.https://doi.org/10.32752/1993-6788-2019-1-219-59-66.
12. Melnyk M., Korcelli-Olejniczak E., Chorna N., Popadynets N. Development of regional IT clusters in Ukraine: institutional and investment dimensions. Economic Annals-XXI. 2018. Vol. 173. Is. 9-10. Pp. 19-25. https://doi.org/10.21003/ea.V173-Reiff M., IvanicovaZ., Surmanova K. Cluster analysis of selected world development indicators in the fields of agriculture and the food industry in European Union countries. Agricultural Economics - Czech. 2018. Vol. 64. Pp. 197-205. https ://doi.org/10.17221/198/2016-AGRICECON.
13. NaglovaZ., BoberovaB., HorakovaT., Smutka L. Statistical analysis of factors influencing the results of enterprises in dairy industry. Agricultural Economics - Czech. 2017. Vol. 63. Pp. 259-270. https://doi.org/10.17221/353/2015- AGRICECON.
14. Божидай І. Кластеризація агропромислових підприємств України як основа ефективного стратегічного управління. Agricultural and Resource Economics: International Scientific E-Journal. 2019. Vol. 5. No. 2. Pp. 86-98. URL: http ://are-journal.com.
15. Стоянець Н. Регіональні кластери як структурні ланки сталого розвитку національної економіки. Agricultural and Resource Economics: International Scientific E-Journal. 2017. Vol. 3. No. 2. Pp. 132-144. URL: http://are-journal.com.
16. Vasylieva N. Cluster models of households' agrarian production development. Economic Annals-XXI. 2016. Vol. 158. No. 3-4(2). P. 13-16. https://doi.org/10.21003/ea.V158-03.
17. Бойко Н. І. Застосування кластерного аналізу для діагностики дієвості господарського механізму торговельних підприємств. Вісник Національного університету «Львівська політехніка». Інформаційні системи та мережі. 2014. № 783. С. 412-420.
18. Офіційний сайт Головного управління статистики в Житомирській області. Статистична інформація. URL: http://www.zt.ukrstat.gov.ua.
19. Офіційний сайт Державної установи «Агентство з розвитку інфраструктури фондового ринку України». Бази даних. Емітенти. URL: http://https://smida.gov.ua/db/emitent.
References
1. Biryuchenko, S. Yu. (2008), The mechanism of formation of the optimal composition of income of the personnel of enterprises. Bulletin of the Zhytomyr State Technological University. Economic Sciences, vol. 3(45), pp. 219-229.
2. Fan, M., Pena, A. A. and Perloff, J. M. (2016), Effects of the Great Recession on the U.S. Agricultural Labor Market. American Journal of Agricultural Economics, vol. 98, is. 4, pp. 1146-1157. https://doi.org/10.1093/ajae/aaw023.
3. Charlton, D. and Taylor, J. E. (2016), A Declining Farm Workforce: Analysis of Panel Data from Rural Mexico. American Journal of Agricultural Economics, vol. 98, no. 4, pp. 1158-1180. https://doi.org/10.1093/ajae/aaw018.
4. Betakova, J., Haviernikova, K., Jaskova, D., Hagara, V. and Zeman, R.
(2017), Potential for clustering in the agricultural sector assessment: the case of Slovakia. EconomicAnnals-XXI,vol. 167, fs. (9-10), pp. 23-27.
https://doi.org/10.21003/ea.V167-05.
5. Ignashkina, T. B. and Shura, N. O (2011), Formation of branch clusters of industrial enterprises of the Dnepropetrovsk region for the purpose of analysis of reproductive processes. BUSINESS: Economy. Economic and mathematical modeling, vol. 7(2), pp. 23-30.
6. Voynarenko, M. (2000), The concept of clusters - the way to the revival of production at the regional level. Economist, vol. 1, pp. 12-15.
7. Pistunov, I. M., Antonyuk, O. P. and Turchaninova, I. Y. (2008), Klasternyianaliz v ekonomitsi [Cluster analysis in economics], National Mining University, Dnepropetrovsk, Ukraine.
8. Paranitsya, N. V. (2017), Statistical and regression analysis of socioeconomic phenomena of regions of Ukraine in Management of modern socioeconomic systems, vol. 2. Baltic Publishing House, Lithuania, available at: http ://ir.nusta.edu.ua/j spui/handle/123456789/2173.
9. Pedchenko, G. P. (2019), Rehionalnyistatystychnyianalizpidpryiemnytstva v Ukraini [Regional statistical analysis of entrepreneurship in Ukraine], Sotsialno- ekonomichniproblemyrozvytkubiznesuta mistsevohosamovriaduvannia: tezydopovidei II mizhnarodnoinaukovo-praktychnoikonferentsii [materials II International scientific-practical conference «Socio-economic problems of business development and local self-government»], TDATU, June 13-14, available at: http://elar.tsatu.edu.ua/handle/123456789/8138.
10. Everitt, B. S., Landau, S. and Leese, M. (2011), Cluster Analysis, 5nd edition, John Wiley & Sons, USA.
11. Orlova-Kurilova, O. V. (2019), Innovation cluster as an organic element of national economy. Actual problems of economics, vol. 9, no. 219, pp. 59-66. https://doi.org/10.32752/1993-6788-2019-1-219-59-66.
12. Melnyk, M., Korcelli-Olejniczak, E., Chorna, N. and Popadynets, N. (2018),
Development of regional IT clusters in Ukraine: institutional and investment dimensions. EconomicAnnals-XXI,vol. 173, is. 9-10, pp. 19-25,
https://doi.org/10.21003/ea.V173-03.
13. Reiff, M., Ivanicova, Z. and Surmanova, K. (2018), Cluster analysis of selected world development indicators in the fields of agriculture and the food industry in European Union countries. Agricultural Economics - Czech, vol. 64, pp. 197-205. https://doi.org/10.17221/198/2016-AGRICECON.
14. Naglova, Z., Boberova, B., Horakova, T. and Smutka, L. (2017), Statistical analysis of factors influencing the results of enterprises in dairy industry. Agricultural Economics - Czech, vol. 63, pp. 259-270. https://doi.org/10.17221/353/2015- AGRICECON.
15. Bogiday, І. (2019), Clusterization of agro-industrial enterprises of Ukraine as the basis of effective strategic management. Agricultural and Resource Economics: International Scientific E-Journal, [Online], vol. 5, no. 2, pp. 86-98, available at: http://are-journal.com.
16. Stoianets, N. (2017), Regional clusters as a structural link sustainable development national economy. Agricultural and Resource Economics: International Scientific E-Journal, [Online], vol. 3, no. 2, pp. 132-144, available at: http://are- journal.com.
17. Vasylieva, N. (2016), Cluster models of households' agrarian production
development,EconomicAnnals-XXI, vol. 158, no. 3-4(2), pp. 13-16.
https://doi.org/10.21003/ea.V158-03.
18. Bojko, N. I. (2014), Application of cluster analysis for the diagnosis of the efficiency of the economic mechanism of trading enterprises. VisnykNatsional'nohouniversytetu «L'vivs'ka politekhnika». Informatsijnisystemyta merezhi, no. 783, pp. 412-420.
19. Official site of the Main Department of Statistics in Zhytomyr region [Online], Statistical information, available at: http://www.zt.ukrstat.gov.ua.
20. Official site of the State «Agency Stock Market Infrastructure Development
Agency ofUkraine»[Online],Databases.Issuers, available at:
www.http://https://smida.gov.ua/db/emitent.
Размещено на Allbest.ru
...Подобные документы
Основні напрями підвищення ефективності сільськогосподарської продукції. Регулювання якості і безпеки сільськогосподарської продукції. Використання ефективного сільськогосподарського маркетингу. Розробка інституційної і сільськогосподарської політики.
реферат [14,8 K], добавлен 13.09.2010Методологічний підхід до стратегічного управління підприємством. Етапи стратегічного управління. Аналіз ресурсів підприємства та ефективність їх використання. Економічна ефективність виробництва сільськогосподарської продукції та канали її реалізації.
курсовая работа [110,1 K], добавлен 21.12.2008Виробничі ресурси підприємства та їх використання. Рівень і структура собівартості сільськогосподарської продукції та її вплив на економічні результати діяльності підприємства. Поглиблення спеціалізації виробництва на базі різних форм господарювання.
курсовая работа [130,5 K], добавлен 22.06.2014Теоретико-методологічні основи аналізу реалізації продукції та виконання договірних зобов’язань. Аналіз майна підприємства та джерел його формування. Коефіцієнт співвідношення власних і оборотних коштів. Вплив факторів на обсяг реалізації продукції.
курсовая работа [58,4 K], добавлен 20.01.2016Основні види собівартості продукції. Умови і рівень розвитку сільськогосподарського підприємства, формування витрат на виробництво сільськогосподарської продукції (на прикладі ТОВ "Агрофірма "Зоря"). Шляхи і фактори зниження собівартості продукції.
курсовая работа [237,5 K], добавлен 08.05.2011Визначення основних методів аналізу та планування прибутку підприємств. Дослідження факторного синтезу зміни рентабельності організації та пошук резервів щодо зростання доходу. Характеристика факторів, що впливають формування абсолютного розміру приходу.
статья [160,2 K], добавлен 05.10.2017Характеристика реалізації продукції як об'єкту аналізу, критерії визнання доходу. Динаміка та структура об'ємів реалізації продукції, аналіз динаміки зміни прибутку. Баланс товарної продукції й аналіз напруженості плану, вплив зміни обсягу реалізації.
курсовая работа [686,6 K], добавлен 12.07.2010Формування думки про систему управління як про один з магічних способів ефективного менеджменту і виходу українських підприємств із кризового стану. Визначення привабливості стратегічних зон господарювання. Сутність SWOT-аналізу підприємства і продукції.
контрольная работа [26,6 K], добавлен 18.03.2009Механізм формування собівартості експортної продукції та процеси її зниження. Аналіз виробничо-господарської, фінансової та зовнішньоекономічної діяльності ПАТ "СВЗ". Удосконалення механізму зниження собівартості експортної продукції підприємства.
дипломная работа [863,9 K], добавлен 26.06.2014Місце собівартості в системі показників ефективності виробництва. Формування витрат на виробництво сільськогосподарської продукції та їх класифікація. Факторний аналіз собівартості та оцінка його результатів. Технологічні фактори зниження собівартості.
дипломная работа [68,6 K], добавлен 10.08.2015Теоретичні основи визначення собівартості продукції підприємства: поняття, структура, шляхи формування, методика аналізу витрат на виробництво. Аналіз основних техніко-економічних показників на ВАТ "ЦГЗК". Шляхи зменшення резервів собівартості продукції.
дипломная работа [589,7 K], добавлен 08.06.2011Загальна характеристика витрат підприємства. Поняття, механізм формування, показники та методи вимірювання собівартості продукції. Коротка соціально-економічна характеристика діяльності ТОВ "Гранд". Напрямки скорочення затрат на виробництво продукції.
курсовая работа [114,5 K], добавлен 19.09.2011Наукові засади формування прибутку на підприємствах меблевої продукції. ТОВ "НВП Інтехцентр": структура, обсяги продажів у 2011 р., техніко-економічні показники. Аналіз взаємозв’язків доходу та структури реалізації. Правові основи регулювання прибутку.
дипломная работа [753,0 K], добавлен 09.01.2013Поняття суспільних витрат виробництва, виробничих витрат і собівартості продукції рослинництва. Основні положення методики обчислення собівартості продукції рослинництва. Напрямки зниження трудомісткості продукції і підвищення продуктивності праці.
курсовая работа [62,0 K], добавлен 06.05.2019Розрахунок показників виробничої програми підприємства та підсумків її виконання. Чисельність промислово-виробничого персоналу, фонд заробітної плати працівників. Складання кошторису витрат на виробництво продукції. Калькулювання собівартості продукції.
курсовая работа [191,4 K], добавлен 23.08.2014Методика підвищення ефективності роботи персоналу на базі методу комплексної оцінки. Застосування методики на практиці для підвищення ефективності роботи адміністративного персоналу підприємства "Холод". Автоматизація розрахунку показників і коефіцієнтів.
контрольная работа [2,4 M], добавлен 09.07.2014Показники, що характеризують економічну ефективність виробництва на підприємстві обробної промисловості. Ефективність використання основних та оборотних фондів, персоналу та діяльності фірми. Коефіцієнти рентабельності виробленої продукції та продажів.
курсовая работа [181,3 K], добавлен 20.05.2012Планування асортименту і структури реалізованої продукції на прикладі підприємства ТОВ "Анастасія". Формування асортименту продукції як сукупності їх видів, різновидів і ґатунків, поєднаних за певною ознакою. Структура випуску продукції підприємства.
курсовая работа [181,8 K], добавлен 07.05.2014Огляд показників обсягу, складу продукції рослинництва в натуральному виразі, методів їх обчислення. Дослідження динаміки показників ефективності виробництва продукції тваринництва. Аналіз завдань і соціально-економічного значення статистичного вивчення.
курсовая работа [108,5 K], добавлен 17.09.2011Класифікація та групування витрат, що включаються до собівартості продукції. Характеристика прямих та позавиробничих витрат. Особливості аналізу показників собівартості продукції. Специфіка факторного аналізу собівартості. Аналіз витрат збуту продукції.
реферат [21,7 K], добавлен 06.06.2010