Информационные технологии поддержки принятия решений в экономике

Применение автоматизированных информационных технологий для перехода к инновационным методам работы. Системы поддержки принятия решений. Определение, структура, функции и решаемые задачи. Применения систем поддержки принятия решений в сфере экономики.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 26.12.2012
Размер файла 101,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http:\\www.allbest.ru\

Реферат

По курсу

Системы поддержки принятия решений в экономике

«Информационные технологии поддержки принятия решений в экономике»

Содержание

Введение

1. Информационные технологии поддержки принятия решений в экономике

2. Системы поддержки принятия решений. Определение, структура, функции, назначение, решаемые задачи

3. Применения СППР в сфере экономики

4. Рынок СППР и их внедрение на предприятии

Заключение

Список использованной литературы

Введение

Руководство крупных компаний испытывает потребность в достоверной информации о различных аспектах бизнеса компании в целях поддержки принятия решений. От этого зависит качество управления компанией, возможность эффективного планирования ее деятельности, выживание в условиях жесткой конкурентной борьбы. При этом критически важными являются наглядность форм представления информации, быстрота получения новых видов отчетности, возможность анализа текущих и исторических данных. Системы, предоставляющие такие возможности, называются Системами Поддержки Принятия Решений (СППР). Они с успехом применяются в самых разных отраслях: телекоммуникациях, финансовой сфере, торговле, промышленности, медицине и многих других.

Как показывает зарубежная практика, большинство крупных компании применяют автоматизированные информационные технологии, что создает благоприятные условия для поиска неординарных вариантов перехода от сложившихся годами методов работы к новым, дающим кратно увеличенный экономический эффект.

1. Информационные технологии поддержки принятия решений в экономике

информационный поддержка решение экономика

Характеристика и назначение. Главной особенностью информационной технологии поддержки принятия решений является качественно новый метод организации взаимодействия человека и компьютера. Выработка решения, что является основной целью этой технологии, происходит в результате итерационного процесса (рис. 1.1), в котором участвуют:

? система поддержки принятия решений в роли вычислительного звена и объекта управления;

? человек как управляющее звено, задающее входные данные и оценивающее полученный результат вычислений на компьютере.

Рисунок 1.1 - Итерационный процесс информационной технологии поддержки принятия решений

Окончание итерационного процесса происходит по воле человека. В этом случае можно говорить о способности информационной системы совместно с пользователем создавать новую информацию для принятия решений.

Дополнительно к этой особенности информационной технологии поддержки принятия решений можно указать еще ряд ее отличительных характеристик:

? ориентация на решение плохо структурированных задач;

? сочетание традиционных методов доступа и обработки компьютерных данных с возможностями математических моделей и методами решения задач на их основе;

? направленность на непрофессионального пользователя компьютера;

? высокая адаптивность, обеспечивающая возможность приспосабливаться к особенностям имеющегося технического и программного обеспечения, а также требованиям пользователя.

Информационная технология поддержки принятия решений может использоваться на любом уровне управления. Кроме того, решения, принимаемые на различных уровнях управления, часто должны координироваться. Поэтому важной функцией и систем, и технологий является координация лиц, принимающих решения, как на разных уровнях управления, так и на одном уровне.

Основные компоненты. Рассмотрим структуру системы поддержки принятия решений (рис. 1.2), а также функции составляющих ее блоков, которые определяют основные технологические операции.

Рисунок 1.2 - Основные компоненты информационной технологии поддержки принятия решений

В состав системы поддержки принятия решений входят три главных компонента: база данных, база моделей и программная подсистема, которая состоит из системы управления базой данных (СУБД), системы управления базой моделей (СУБМ) и системы управления интерфейсом между пользователем и компьютером.

База данных играет в информационной технологии поддержки принятия решений (СППР) важную роль. Данные могут использоваться непосредственно пользователем для расчетов при помощи математических моделей. Рассмотрим источники данных и их особенности:

1. Часть данных поступает от информационной системы операционного уровня. Чтобы использовать их эффективно, эти данные должны быть предварительно обработаны.

Для этого существуют две возможности:

- использовать для обработки данных об операциях фирмы систему управления базой данных, входящую в состав системы поддержки принятия решений;

- сделать обработку за пределами системы поддержки принятия решений, создав для этого специальную базу данных. Этот вариант более предпочтителен для фирм, производящих большое количество коммерческих операций. Обработанные данные об операциях фирмы образуют файлы, которые для повышения надежности и быстроты доступа хранятся за пределами системы поддержки принятия решений.

2. Помимо данных об операциях фирмы для функционирования системы поддержки принятия решений требуются и другие внутренние данные, например данные о движении персонала, инженерные данные и т.п., которые должны быть своевременно собраны, введены и поддержаны.

3. Важное значение, особенно для поддержки принятия решений на верхних уровнях управления, имеют данные из внешних источников. В числе необходимых внешних данных следует указать данные о конкурентах, национальной и мировой экономике. В отличие oт внутренних внешние данные обычно приобретаются у специализирующихся на их сборе организаций.

4. В настоящее время широко исследуется вопрос о включении в базу данных еще одного источника данных - документов, содержащих записи, письма, контракты, приказы и т.п. Если содержание этих документов будет записано в памяти и затем обработано по некоторым ключевым характеристикам (поставщикам, потребителям, датам, видам услуг и др.), то система получит новый мощный источник информации.

Система управления данными (СУБД) должна обладать следующими возможностями:

составление комбинаций данных, получаемых из различных источников посредством использования процедур агрегирования и фильтрации;

быстрое прибавление или исключение того или иного источника данных;

построение логической структуры данных в терминах пользователя;

использование и манипулирование неофициальными данными для экспериментальной проверки рабочих альтернатив пользователя;

обеспечение полной логической независимости этой базы данных от других операционных баз данных, функционирующих в рамках фирмы.

База моделей. Целью создания моделей являются описание и оптимизация некоторого объекта или процесса. Использование моделей обеспечивает проведение анализа в системах поддержки принятия решений. Модели, базируясь на математической интерпретации проблемы, при помощи определенных алгоритмов способствуют нахождению информации, полезной для принятия правильных решений.

Например, модель линейного программирования дает возможность определить наиболее выгодную производственную программу выпуска нескольких видов продукции при заданных ограничениях на ресурсы.

Использование моделей в составе информационных систем началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Позже были созданы специальные языки, позволяющие моделировать ситуации типа «что будет, если?» или «как сделать, чтобы?» Такие языки, созданные специально для построения моделей, дают возможность построить модели определенного типа, обеспечивающие нахождение решения при гибком изменении переменных.

Существует множество типов моделей и способов их классификации, например по цели использования, области возможных приложений, способу оценки переменных и т.п.

По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).

По способу оценки модели классифицируются на детерминистские, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.

Детерминистские модели более популярны, чем стохастические, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.

По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные - для использования несколькими системами.

Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.

В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей (рис. 1.3) в виде совокупности модельных блоков, модулей и процедур, используемых как элементы для их построения.

Рисунок 1.3 - Типы моделей, составляющих базу моделей

Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт планирования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминистские, описательные, специализированные для использования на одной определенной фирме.

Тактические модели применяются управляющими среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, - от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминистские, оптимизационные и универсальные.

Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов, календарное производственное планирование, управление запасами и т.д. Оперативные модели обычно используют для расчетов внутрифирменные данные. Они, как правило, детерминистские, оптимизационные и универсальные (т.е. могут быть использованы в различных организациях).

Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. - от простейших процедур до сложных ППП. Модельные блоки, модули и процедуры могут использоваться как по отдельности, так и комплексно для построения и поддержания моделей.

Система управления базой моделей (СУБМ) должна обладать следующими возможностями: создавать новые модели или изменять существующие, поддерживать и обновлять параметры моделей, манипулировать моделями.

Система управления интерфейсом. Эффективность и гибкость информационной технологии во многом зависят от характеристик интерфейса системы поддержки принятия решений. Интерфейс определяет: язык пользователя; язык сообщений компьютера, организующий диалог на экране дисплея; знания пользователя.

Язык пользователя - это те действия, которые пользователь производит в отношении системы путем использования возможностей клавиатуры; электронных карандашей, пишущих на экране; джойстика; «мыши»; команд, подаваемых голосом, и т.п. Наиболее простой формой языка пользователя является создание форм входных и выходных документов. Получив входную форму (документ), пользователь заполняет его необходимыми данными и вводит в компьютер. Система поддержки принятия решений производит необходимый анализ и выдает результаты в виде выходного документа установленной формы.

Значительно возросла за последнее время популярность визуального интерфейса. С помощью манипулятора «мышь» пользователь выбирает представленные ему на экране в форме картинок объекты и команды, реализуя таким образом свои действия.

Управление компьютером при помощи человеческого голоса - самая простая и поэтому самая желанная форма языка пользователя. Она еще недостаточно разработана и поэтому малопопулярна. Существующие разработки требуют от пользователя серьезных ограничений: определенного набора слов и выражений; специальной надстройки, учитывающей особенности голоса пользователя; управления в виде дискретных команд, а не в виде обычной гладкой речи. Технология этого подхода интенсивно совершенствуется, и в ближайшем будущем можно ожидать появления систем поддержки принятия решений, использующих речевой ввод информации.

Язык сообщений - это то, что пользователь видит на экране дисплея (символы, графика, цвет), данные, полученные на принтере, звуковые выходные сигналы и т.п. Важным измерителем эффективности используемого интерфейса является выбранная форма диалога между пользователем и системой. В настоящее время наиболее распространены следующие формы диалога: запросно-ответный режим, командный режим, режим меню, режим заполнения пропусков в выражениях, предлагаемых компьютером.

Каждая форма в зависимости от типа задачи, особенностей пользователя и принимаемого решения может иметь свои достоинства и недостатки.

Долгое время единственной реализацией языка сообщений был отпечатанный или выведенный на экран дисплея отчет или сообщение. Теперь появилась новая возможность представления выходных данных - машинная графика. Она дает возможность создавать на экране и бумаге цветные графические изображения в трехмерном виде. Использование машинной графики значительно повышает наглядность и интерпретируемость выходных данных и становится все более популярным в информационной технологии поддержки принятия решений.

За последние несколько лет наметилось новое направление, развивающее машинную графику, - мультипликация. Мультипликация оказывается особенно эффективной для интерпретации выходных данных систем поддержки принятия решений, связанных с моделированием физических систем и объектов.

Например, система поддержки принятия решений, предназначенная для обслуживания клиентов в банке, с помощью мультипликационных моделей может реально просмотреть различные варианты организации обслуживания в зависимости от потока посетителей, допустимой длины очереди, количества пунктов обслуживания и т.п.

В ближайшие годы следует ожидать использования в качестве языка сообщений человеческого голоса. Сейчас эта форма применяется в системе поддержки принятия решений сферы финансов, где в процессе генерации чрезвычайных отчетов голосом поясняются причины исключительности той или иной позиции.

Знания пользователя - это то, что пользователь должен знать, работая с системой. К ним относятся не только план действий, находящийся в голове у пользователя, но и учебники, инструкции, справочные данные, выдаваемые компьютером.

Совершенствование интерфейса системы поддержки принятия решений определяется успехами в развитии каждого из трех указанных компонентов. Интерфейс должен обладать следующими возможностями:

- манипулировать различными формами диалога, изменяя их в процессе принятия решения по выбору пользователя;

-передавать данные системе различными способами;

- получать данные от различных устройств системы в различном формате;

- гибко поддерживать знания пользователя (оказывать помощь по запросу, подсказывать).

2. Системы поддержки принятия решений. Определение, структура, функции, назначение, решаемые задачи

В 70-е годы XX века ряд компаний начал развивать информационные системы, которые совершенно отличались от традиционных управляющих информационных систем (MIS). Эти новые системы были меньшими, интерактивными и были разработаны с целью помочь конечным пользователям использовать данные и модели, чтобы решать слабоструктурированные и неструктурированные проблемы. В 80-е годы эти системы были использованы для групп и целых организаций. Эти системы названы системами поддержки принятия решений

Системы поддержки принятия решений (DSS) -это компьютерные системы, почти всегда интерактивные, разработанные, чтобы помочь менеджеру (или руководителю) в принятии решений управления, объединяя данные, сложные аналитические модели и удобное для пользователя программное обеспечение в единую мощную систему, которая может поддерживать слабоструктурированное и неструктурированное принятие решения. DSS находиться под управлением пользователя от начала до реализации и используется ежедневно

DSS включают и данные, и модели, чтобы помочь принимающему решение решить проблемы, особенно те, которые плохо формализованы. Данные часто извлекаются из системы диалоговой обработки запросов или базы данных. Модель может быть простой типа «доходы и убытки», чтобы вычислить прибыль при некоторых предложениях, или комплексной типа оптимизационной модели для расчета загрузки для каждой машины в цехе. DSS не всегда оправдывается традиционным подходом стоимость - прибыль; для этой системы многие из выгод неосязаемы, типа более глубокого принятия решения и лучшего понимания данных. На рисунке 2.1 показана принципиальная схема DSS.

Размещено на http:\\www.allbest.ru\

Рисунок 2.1 - Принципиальная схема DSS

Рисунок 2.2 показывает, что система поддержки принятия решений требует трех первичных компонентов: модели управления, управления данными для сбора и ручной обработки данных и управления диалогом для облегчения доступа пользователя к DSS.

Пользователь взаимодействует с DSS через пользовательский интерфейс, выбирая частную модель и набор данных, которые использовать, а затем DSS представляет результаты пользователю через тот же самый пользовательский интерфейс. Модель управления и управление данными в значительной степени действуют незаметно и варьируются от относительно простой типовой модели в электронной таблице до сложной комплексной модели планирования, основанной на математическом программировании.

Размещено на http:\\www.allbest.ru\

Рисунок 2.2 - Компоненты системы поддержки принятия решений

Основная концепция DSS - дать пользователям инструментальные средства, необходимые для анализа важных блоков данных, используя легкоуправляемые сложные модели, гибким способом. DSS разработаны, чтобы предоставить возможности, а не просто, чтобы ответить на информационные потребности.

DSS специализированы по специфическим решениям или классам решений типа маршрутизации, формирования очередей, оценки и т.д. Таблица 1 показывает различия между DSS и MIS.

Таблица 1 - Различия между DSS и MIS

Сфера применения

DSS

MIS

Философия

Обеспечивает объединенные инструментальные средства, данные, модели и язык пользователям

Обеспечивает структурную информацию конечным пользователям

Системный анализ

Использует инструментальные средства в процессе решения

Выделяют информационные требования

Проект

Итеративный процесс

Поставляют систему, основанную на утвержденных требованиях

В основной концепции DSS обещают конечному пользователю управление данными и инструментальными средствами. MIS до сих пор в значительной степени во власти профессионалов: пользователи получают информацию из профессионального штата аналитиков, проектировщиков и программистов. MIS ориентируются на структурные информационные потоки средних менеджеров. DSS ориентированны на главных управляющих и средних менеджеров, на изменения, гибкость и быструю реакцию. В DSS имеется меньшее количество возможностей, чтобы связать пользователей со структурными информационными потоками, и соответственно больший акцент делается на моделях, предложениях и показе графики. Как DSS, так и MIS полагаются на профессиональный анализ и проектирование. Однако в то время, как MIS обычно следует за традиционной методологией развития систем, системы DSS сознательно итерационные, никогда не заморожены и в этом смысле никогда не закончены.

Имеется существенное различие между структурированными, неструктурированными и частично структурированными решениями. Структурированные проблемы повторяемы и обычны, для них обеспечивают решения известные алгоритмы. Неструктурированные проблемы оригинальны и необычны, для них не имеется никаких алгоритмов для решения: каждый находит свой ответ. Частично структурированные проблемы находятся между структурированными и неструктурированными проблемами. DSS разработаны, чтобы поддержать слабоструктурированный и неструктурированный прикладной анализ.

Принятие решений включает четыре стадии: распознавание, проект, выбор и реализация. DSS предназначены, чтобы помогать проектировать, оценивать альтернативы и контролировать процесс реализации.

Хорошо разработанные DSS могут использоваться на многих уровнях организации. Главные менеджеры могут использовать финансовые DSS, чтобы предсказать пригодность общих фондов для инвестиций. Средние менеджеры внутри отделов могут использовать эти оценки и ту же самую систему и данные, чтобы принять решение относительно распределения фондов отделения по проектам. Руководители проекта внутри отделов могут по очереди использовать эту систему, чтобы начать свои проекты, регулярно сообщая системе (и, в конечном счете, старшим менеджерам), сколько денег было потрачено.

Ошибочно думать, что решения принимаются в больших организациях только отдельными личностями. Фактически большинство решений принимается коллективно. В большой организации принятие решений по существу групповой процесс, и DSS могут быть разработаны, чтобы облегчить принятие решений группой.

Рассмотрев рисунки 2.1 и 2.2 видно, что система поддержки принятия решений имеет три основных компонента: базу данных, модель и систему программного обеспечения DSS. База данных DSS - собрание текущих или исторических данных из ряда приложений или групп, организованных для легкого доступа к областям применения. DSS используют организационные данные (из таких систем, как производство и продажа) так, чтобы личности и группы были способны принять решения, основанные на фактических данных. Модель - собрание математических и аналитических моделей, которые могут быть сделаны легкодоступными для пользователя DSS. Модель - абстрактное представление, которое поясняет компоненты или связи явления.

Третий компонент DSS - система программного обеспечения DSS, которая обеспечивает простое взаимодействие между пользователями системы, базой данных DSS и эталонным вариантом. Система программного обеспечения DSS управляет созданием, хранением и восстановлением моделей в образцовой основе и интегрирует их с данными в базе данных DSS. Система программного обеспечения DSS также обеспечивает графический, легкий в использовании, гибкий интерфейс пользователя, который поддерживает диалог между пользователем и DSS.

Чрезвычайно популярный тип DSS - в виде генератора финансового отчета. С помощью электронной таблицы типа Lotus 1-2-3 или Microsoft Exel создают модели, чтобы прогнозировать различные элементы организации или финансового состояния. В качестве данных используются предыдущие финансовые отчеты организации. Начальная модель включает различные предложения относительно будущих трендов в категориях расхода и дохода. После рассмотрения результатов базовой модели менеджер проводит ряд исследований типа «что, если», изменяя одно или большее количество предложений, чтобы определить их влияние на исходное состояние. Например, менеджер мог бы зондировать влияние на рентабельность, если бы продажа нового изделия росла на 10% ежегодно. Или менеджер мог бы исследовать влияние большего, чем ожидаемое, увеличения цены сырья, например 7% вместо 4% ежегодно. Этот тип генератора финансового отчета - простые, но мощные DSS для руководства принятием финансовых решений.

Пример DSS по приведению транзакций данных - система определения размеров ассигнований на полицейские выезды, используемая городами Калифорнии. Эта система позволяет офицеру полиции увидеть карту и выводит данные географической зоны, показывает полиции звонки вызовов, типы вызовов и время звонка. Интерактивная способность графики системы разрешает офицеру манипулировать картой, зоной и данными, чтобы быстро и легко предложить вариации альтернатив полицейских выездов.

Другой пример DSS - интерактивная система для планирования объема и производства в большой бумажной компании. Эта система использует детальные предыдущие данные, прогнозирующие и планирующие модели, чтобы проиграть на компьютере общие показатели компании при различных плановых предложениях. Большинство нефтяных компаний развивают DSS, чтобы поддержать принятие решения капиталовложений. Эта система включает различные финансовые условия и модели для создания будущих планов, которые могут быть представлены в табличной или графической форме.

Все приведенные примеры DSS названы специфическими DSS. Они - фактические приложения, которые помогают в процессе принятия решения. Напротив, генератор системы поддержки принятия решений - это система, которая обеспечивает набор возможностей быстро и легко строить специфические DSS. Генератор DSS - пакет программ, разработанный для выполнения на частично компьютерной основе. В нашем примере финансового отчета Microsoft Exel или Lotus 1-2-3 могут рассматриваться как генераторы DSS, в то время как модели для проектирования финансовых отчетов для частного отделения компании на базе Exel или Lotus 1-2-3 - это специфические DSS.

3. Применения СППР в сфере экономики

Телекоммуникации

Телекоммуникационные компании используют СППР для подготовки и принятия комплекса решений, направленных на сохранение своих клиентов и минимизацию их оттока в другие компании. СППР позволяют компаниям более результативно проводить свои маркетинговые программы, вести более привлекательную тарификацию своих услуг.

Анализ записей с характеристиками вызовов позволяет выявлять категории клиентов с похожими стереотипами поведения, с тем чтобы дифференцировано подходить к привлечению клиентов той или иной категории.

Есть категории клиентов, которые постоянно меняют провайдеров, реагируя на те или иные рекламные компании. СППР позволяют выявить наиболее характерные признаки «стабильных» клиентов, т.е. клиентов, длительное время остающихся верными одной компании, давая возможность ориентировать свою маркетинговую политику на удержание именно этой категории клиентов.

Банковское дело

СППР используются для более качественного мониторинга различных аспектов банковской деятельности, таких как обслуживание кредитных карт, займов, инвестиций и так далее, что позволяет значительно повысить эффективность работы.

Выявление случаев мошенничества, оценка риска кредитования, прогнозирование изменений клиентуры - области применения СППР и методов добычи данных. Классификация клиентов, выделение групп клиентов со сходными потребностями позволяет проводить целенаправленную маркетинговую политику, предоставляя более привлекательные наборы услуг той или иной категории клиентов.

Страхование

Набор применений СППР в страховом бизнесе можно назвать классическим - это выявление потенциальных случаев мошенничества, анализ риска, классификация клиентов.

Обнаружение определенных стереотипов в заявлениях о выплате страхового возмещения, в случае больших сумм, позволяет сократить число случаев мошенничества в будущем.

Анализируя характерные признаки случаев выплат по страховым обязательствам, страховые компании могут уменьшить свои потери. Полученные данные приведут, например, к пересмотру системы скидок для клиентов, подпадающих под выявленные признаки.

Классификация клиентов дает возможность выявить наиболее выгодные категории клиентов, чтобы.

Розничная торговля

Торговые компании используют технологии СППР для решения таких задач, как планирование закупок и хранения, анализ совместных покупок, поиск шаблонов поведения во времени.

Анализ данных о количестве покупок и наличии товара на складе в течение некоторого периода времени позволяет планировать закупку товаров, например, в ответ на сезонные колебания спроса на товар.

Часто, покупая какой либо товар покупатель приобретает вместе с ним и другой товар. Выявление групп таких товаров позволяет, например, помещать их на соседних полках, с тем, чтобы повысить вероятность их совместной покупки.

Поиск шаблонов поведения во времени дает ответ на вопрос «Если сегодня покупатель приобрел один товар, то через какое время он купит другой товар?». Например, приобретая фотоаппарат, покупатель, вероятно, в ближайшем будущем станет приобретать пленку, пользоваться услугами по проявке и печати.

4. Рынок СППР и их внедрение на предприятии

На рынке СППР компании предлагают следующие виды услуг по созданию систем поддержки принятия решений:

Реализация пилот-проектов по СППР-системам, с целью демонстрации руководству Заказчика качественного потенциала аналитических приложений.

Создание совместно с Заказчиком полнофункциональных СППР-систем, включая хранилище данных и средства Business Intelligence.

Проектирование архитектуры хранилища данных, включая структуры хранения и процессы управления.

Создание «витрин данных» для выделенной предметной области.

Установка и настройка средств OLAP и Business Intelligence; их адаптация к требованиям Заказчика.

Анализ инструментов статистического анализа и «добычи данных» для выбора программных продуктов под архитектуру и потребности Заказчика.

Интеграция систем СППР в корпоративные интранет-сети Заказчика, автоматизация электронного обмена аналитическими документами между пользователями хранилища.

Разработка Информационных Систем Руководителя (EIS) под требуемую функциональность.

Услуги по интеграции баз данных в единую среду хранения информации

Обучение специалистов Заказчика технологиям хранилищ данных и аналитических систем, а также работе с необходимыми программными продуктами.

Оказание консалтинговых услуг Заказчику на всех стадиях проектирования и эксплуатации хранилищ данных и аналитических систем.

Комплексные проекты создания/модернизации вычислительной инфраструктуры, обеспечивающей функционирование СППР: решения любого масштаба, от локальных систем до систем масштаба предприятия/концерна/отрасли.

Заключение

Рассмотрев СППР как интегрированную автоматизированную систему, ориентированную на решение слабоструктурированных задач, можно судить о высокой актуальности ее применения в большинстве сфер экономики. Совокупность современных информационных технологий, позволяет вести речь о разработке информационной системы (подсистемы) интеллектуальной поддержки принятия решения, главным предназначением которой является - своевременное и качественное обеспечение всех информационных потребностей руководителей в процессе принятия решения.

Системы поддержки принятия решений позволяют:

· проводить анализ и дифференцировано подходить к привлечению клиентов той или иной категории;

· оценка риска кредитования в банковской сфере;

· точнее ориентировать существующий набор услуг и вводить новые виды услуг.

На сегодняшний день не существует признанного лидера в области производства программного обеспечения для построения систем СППР. Ни одна из компаний не производит готового решения, что называется «из коробки», пригодного к непосредственному использованию в производственном процессе заказчика. Создание СППР всегда включает в себя стадии анализа данных и бизнес-процессов заказчика, проектирования структур хранилища с учетом его потребностей и технологических процессов.

Несколько десятков различных фирм выпускают продукты, способные решать те или иные задачи, возникающие в процессе проектирования и эксплуатации систем СППР. Сюда входят СУБД, средства выгрузки/трансформации/загрузки данных, инструменты для OLAP-анализа и многое другое. Самостоятельный анализ рынка, изучение хотя бы нескольких таких средств - непростая и длительная задача.

Учитывая размер вовлекаемых финансовых и других ресурсов, сложность и многоэтапность проектов построения систем СППР очевидна высокая стоимость ошибок проектирования. Ошибки выбора программного обеспечения могут повлечь за собой финансовые расходы, не говоря уже об увеличении времени выполнения проекта. Ошибки проектирования структуры данных могут вести как к неприемлемым производственным характеристикам, так и стоить времени потраченного на перезагрузку данных, которое порой достигает нескольких суток.

Список использованной литературы

1. Автоматизированные информационные технологии в экономике / Под общ. ред. Г.А. Титоренко. - М.: Финансы и статистика, 1998.

2. Годин В.В., Корнеев И.К. Управление информационными ресурсами: 17-модульная программа для менеджеров «Управление развитием организации». Модуль 17. - М.: ИНФРА-М, 2000.

3. Евдокимов В.В. и др. Экономическая информатика. - СПб: Питер, 2000.

4. Информационные системы в экономике / Под. ред. В.В. Дика. - М.: Финансы и статистика, 1996.

5. Информационные технологии бухгалтерского учета / Под ред. О.П. Ильина. - СПб.: Питер, 2001.

6. Карминский А.М., Нестеров П.В. Информатизация бизнеса. - М.: Финансы и статистика, 1997.

7. Корнеев И.К., Машурцев В.А. Информационные технологии в управлении. - М.: ИНФРА-М, 2001.

8. Лихачева Г.Н. Информационные технологии в экономике: Учебно-практическое пособие / МЭСИ. - М.: МЭСИ, 1999.

9. Якубайтис Э.А. Информационные сети и системы. - М.: Финансы и статистика, 1996.

10. Игнатущенко М., Беляев А., Изотова Е. Система аудиторского обслуживания предприятия. // Аудит 1997 - № 12, с. 20.

11. Савицкая Г. В. Анализ хозяйственной деятельности предприятия. Мн.: ИП "Экоперспектива", 1998, с. 409 - 485.

12. Семенов М.И. и др. Автоматизированные информационные технологии в экономике: Учеб. пособие для агроэкономических специальностей вузов/М.И. Семенов, В.И. Лойко, Т.П. Барановская; Под общ. ред. И.Т.Трубилина. Краснодар: Изд-во Куб-ГАУ, 1998.

13. Смирнов А.Д. Архитектура вычислительных систем. М.: Наука, 1990.

14. Абрютина М.С., Грачев А.В. Анализ финансово-экономической деятельности предприятия.-М.: "Дело и сервис".-1998.

15. Ковалев В. В. Финансовый анализ: управление капиталом, выбор инвестиций, анализ отчетности. М.: Финансы и статистика, 1994, с. 86- 196.

16. Edwards J.S. Expert Systems in Management and Administration -- Are they really different from Decision Support Systems? // European Journal of Operational Research, 1992. -- Vol. 61. -- pp. 114--121.

17. Ginzberg M.I., Stohr E.A. Decision Support Systems: Issues and Perspectives // Processes and Tools for Decision Support / ed. by H.G. Sol.. -- Amsterdam: North-Holland Pub.Co, 1983.

18. Haettenschwiler P. Neues anwenderfreundliches Konzept der Entscheidungs-unterstutzung. Gutes Entscheiden in Wirtschaft, Politik und Gesellschaft. Zurich: Hochschulverlag AG, 1999. -- S. 189--208.

Размещено на allbest.ru

...

Подобные документы

  • Теория игр в контексте теории принятия решений. Игры без седловых точек. Использование линейной оптимизации при решении матричных игр. Критерии, используемые для принятия решений в играх с природой. Решение парных матричных игр с нулевой суммой.

    контрольная работа [437,2 K], добавлен 14.02.2011

  • Статистические модели принятия решений. Описание моделей с известным распределением вероятностей состояния среды. Рассмотрение простейшей схемы динамического процесса принятия решений. Проведение расчета вероятности произведенной модификации предприятия.

    контрольная работа [383,0 K], добавлен 07.11.2011

  • Решение задач при помощи пакета прикладных программ MatLab. Загрузка в MatLab матриц A и P. Нахождение оптимальной стратегии для заданных матриц с использованием критериев принятия решений в условиях неопределённости Вальда, Гурвица, Лапласа, Сэвиджа.

    лабораторная работа [80,2 K], добавлен 18.03.2015

  • Оптимизация решений динамическими методами. Расчет оптимальных сроков начала строительства объектов. Принятие решений в условиях риска (определение математического ожидания) и неопределенности (оптимальная стратегия поведения завода, правило максимакса).

    контрольная работа [57,1 K], добавлен 04.10.2010

  • Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.

    контрольная работа [1,2 M], добавлен 11.06.2011

  • Понятие измерительной шкалы и их виды в математическом моделировании: шкала наименований (полинальная), порядковая, интервальная и шкала отношений. Статистические меры, допустимые для разных типов шкал. Основные положения теории принятия решений.

    контрольная работа [21,7 K], добавлен 16.02.2011

  • Понятие нулевой и альтернативной гипотез. Обычная процедура принятия решений. Область принятия гипотезы. Гипотетическое распределение, область принятия и распределения в действительности. Области и вероятность совершения ошибки при принятии решения.

    презентация [61,3 K], добавлен 20.01.2015

  • Теория статистических решений как поиск оптимального недетерминированного поведения в условиях неопределенности. Критерии принятия решений Лапласа, минимаксный, Сэвиджа, Гурвица и различия между ними. Математические средства описания неопределенностей.

    контрольная работа [66,0 K], добавлен 25.03.2009

  • Использование информационных технологий при решении задач нелинейной оптимизации. Определение оптимального ассортимента продукции. Линейные модели оптимизации в управлении. Использование мощностей оборудования. Размещение проектов на предприятиях.

    контрольная работа [560,8 K], добавлен 14.02.2011

  • Понятие полезности: общая и предельная полезность. Понятие производственной функции. Применение математических функций. Теория принятия решений. Понятия функции потребления, спроса и предложения. Обобщенные формы зависимости между доходами и спросом.

    курсовая работа [345,3 K], добавлен 14.10.2014

  • Математическая модель задачи принятия решения в условиях риска. Нахождение оптимального решения по паре критериев. Построение реализационной структуры задачи принятия решения. Ориентация на математическое ожидание, среднеквадратичное отклонение.

    курсовая работа [79,0 K], добавлен 16.09.2013

  • Применение теории игр для обоснования и принятия решений в условиях неопределенности. Цель изучения систем массового обслуживания, их элементы и виды. Сетевые методы планирования работ и проектов. Задачи динамического и стохастического программирования.

    курсовая работа [82,0 K], добавлен 24.03.2012

  • Построение графа состояний и переходов процесса функционирования систем массового обслуживания. Вычисление вероятности внесения вкладов частных лиц в сберегательный банк за любой промежуток времени. Схемы принятия решений в условиях неопределенности.

    контрольная работа [118,1 K], добавлен 12.01.2015

  • Принятие решений в условиях неопределенности. Критерий Лапласа и принцип недостаточного основания. Критерий крайнего пессимизма. Требования критерия Гурвица. Нахождение минимального риска по Сэвиджу. Выбор оптимальной стратегии при принятии решения.

    контрольная работа [34,3 K], добавлен 01.02.2012

  • Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.

    контрольная работа [182,8 K], добавлен 18.01.2015

  • Разработка и принятие правильного решения как задачи работы управленческого персонала организации. Деревья решений - один из методов автоматического анализа данных, преимущества их использования и область применения. Построение деревьев классификации.

    контрольная работа [91,6 K], добавлен 08.09.2011

  • Сущность прогнозирования и планирования. Формы сочетания прогноза и плана. Обоснование принятия и практическая реализация управляющих решений. Логика разработки комплексных прогнозов экономического и социального развития в условиях переходной экономики.

    контрольная работа [26,6 K], добавлен 11.02.2014

  • Значения переменных, важных в процессе принятия решений. Разработка методов прогнозирования. Основной принцип работы нейросимулятора. Зависимость погрешностей обучения и обобщения от числа нейронов внутренних слоев персептрона. Определение ошибки сети.

    презентация [108,5 K], добавлен 14.08.2013

  • Гносеологическая роль теории моделирования и сущность перехода от натурального объекта к модели. Переменные, параметры, связи (математические) и информация - элементы модели. Обобщенное представление вычислительного эксперимента и признаки морфологии.

    реферат [31,0 K], добавлен 11.03.2009

  • Математическая теория оптимального принятия решений. Табличный симплекс-метод. Составление и решение двойственной задачи линейного программирования. Математическая модель транспортной задачи. Анализ целесообразности производства продукции на предприятии.

    контрольная работа [467,8 K], добавлен 13.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.