Основы корреляционного и регрессионного анализа
Проблема изучения взаимосвязей экономических показателей в экономическом анализе. Спецификация, смысл и оценка параметров линейной регрессии и корреляция, оценка их существенности. Интервалы прогноза по линейному уравнению регрессии. Нелинейная регрессия.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.02.2013 |
Размер файла | 18,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Основы корреляционного и регрессионного анализа
Содержание
экономический анализ регрессия корреляция
Введение
1. Спецификация, смысл и оценка параметров линейной регрессии и корреляция
2. Оценка существенности параметров линейной регрессии и корреляции
3. Интервалы прогноза по линейному уравнению регрессии
4. Нелинейная регрессия
Заключение
Список использованной литературы
Практическое задание
Введение
Проблема изучения взаимосвязей экономических показателей является одной из важнейших в экономическом анализе. Любая экономическая политика заключается в регулировании экономических переменных, и она должна основываться на знании того, как эти переменные влияют на другие переменные, являющиеся ключевыми для принимающего решение политика. Так, в рыночной экономике нельзя непосредственно регулировать темп инфляции, но на него можно воздействовать средствами бюджетно-налоговой и кредитно-денежной политики. В наиболее общем виде в области изучения взаимосвязей исследователя интересует количественная оценка их наличия и направления, а также характеристика силы и формы влияния одних факторов на другие. Для ее решения применяется две группы методов, одна из которых включает в себя методы корреляционного анализа, а другого - регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно - регрессионный анализ, что объясняется наличием целого ряда вычислительных процедур, взаимодополнения при интерпретации результатов и др. Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов, оказывающих наибольшее влияние на результативный признак. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной. Решение задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей. При этом инструментарием их базового анализа являются методы статистики и эконометрики.
1. Спецификация, смысл и оценка параметров линейной регрессии и корреляция
Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, эти данные являются значениями случайной величины.
Случайной величиной называется переменная величина, которая в зависимости от случая принимает различные значения с некоторой вероятностью. Закон распределения случайной величины показывает частоту ее тех или иных значений в общей их совокупности.
Раздел эконометрики, посвященный изучению взаимосвязей между случайными величинами называется корреляционным анализом. Основная задача корреляционного анализа - это установление характера и тесноты связи между результативными (зависимыми) и факторными (независимыми) показателями (признаками) в данном явлении или процессе. Корреляционную связь можно обнаружить только при массовом сопоставлении фактов. Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. При такой связи среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины х или других случайных величин х1,х2…хn. Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям.
Корреляционная связь - понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, то есть любой другой характеристики вариации. Таким образом, корреляционная связь является частным случаем стохастической связи.
Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.
Задачами регрессионного анализа являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной (функции регрессии). Решение всех названных задач приводит к необходимости комплексного использования этих методов.
Наиболее разработанной в теории статистики является методология так называемой парной корреляции, рассматривающая влияние вариации факторного анализа х на результативный признак у и представляющая собой однофакторный корреляционный и регрессионный анализ. Овладение теорией и практикой построения и анализа двухмерной модели корреляционного и регрессионного анализа представляет собой исходную основу для изучения многофакторных стохастических связей.
Важнейшим этапом построения регрессионной модели (уравнения регрессии) является установление в анализе исходной информации математической функции. Сложность заключается в том, что из множества функций необходимо найти такую, которая лучше других выражает реально существующие связи между анализируемыми признаками. Выбор типов функции может опираться на теоретические знания об изучаемом явлении, опят предыдущих аналогичных исследований, или осуществляться эмпирически - перебором и оценкой функций разных типов и т.п.
При изучении связи экономических показателей производства (деятельности) используют различного вида уравнения прямолинейной и криволинейной связи. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму.
Регрессия - это линия, характеризующая наиболее общую тенденцию во взаимосвязи факторного и результативного признаков.
Простая регрессия представляет собой регрессию между двумя переменными - у и х, т.е. модель вида , где у - результативный признак; х - признак-фактор. Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида. Спецификация модели - формулировка вида модели, исходя из соответствующей теории связи между переменными. В уравнении регрессии корреляционная по сути связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией. где yj - фактическое значение результативного признака;
yxj -теоретическое значение результативного признака.
- случайная величина, характеризующая отклонения реального значения результативного признака от теоретического.
Случайная величина е называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения.
От правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результативного признака подходят к фактическим данным у.
К ошибкам спецификации относятся неправильный выбор той или иной математической функции для, и недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии вместо множественной.
Ошибки выборки - исследователь чаще всего имеет дело с выборочными данными при установлении закономерной связи между признаками.
Ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками. Основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели.
В парной регрессии выбор вида математической функции может быть осуществлен тремя методами: графическим, аналитическим и экспериментальным.
Графический метод основан на поле корреляции. Аналитический метод основан на изучении материальной природы связи исследуемых признаков.
Экспериментальный метод осуществляется путем сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Если фактические значения результативного признака совпадают с теоретическими у =, то Docm =0. Если имеют место отклонения фактических данных от теоретических (у - ) то
Чем меньше величина остаточной дисперсии, тем лучше уравнение регрессии подходит к исходным данным. Число наблюдений должно в 6-7 раз превышать число рассчитываемых параметров при переменной х.
На практике чаще всего применяются следующие формы регрессионных моделей:
Линейная:
Полулогарифметическая кривая:
Гипербола:
Парабола второго порядка:
Показательная функция:
Степенная функция:
Уравнение однофакторной (парной) линейной корреляционной связи имеет вид:
y = a0 + a1x ,
где y - теоретические значения результативного признака, полученные по уравнению регрессии;
a0, a1 - коэффициенты (параметры) уравнения регрессии.
Поскольку a0 является средним значением у в точке х=0, экономическая интерпретация часто затруднена или вообще невозможна.
Коэффициент парной линейной регрессии a1 имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Вышеприведенное уравнение показывает среднее значение изменения результативного признака у при изменении факторного признака х на одну единицу его измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a1 указывает направление этого изменения.
Параметры уравнения a0 , a1 находят методом наименьших квадратов (метод решения систем уравнений, при котором в качестве решения принимается точка минимума суммы квадратов отклонений), то есть в основу этого метода положено требование минимальности сумм квадратов отклонений эмпирических данных yi от выравненных y :
S(yi - y)2 = S(yi - a0 - a1xi)2 ? min.
Для нахождения минимума данной функции приравняем к нулю ее частные производные и получим систему двух линейных уравнений, которая называется системой нормальных уравнений:
Решим эту систему в общем виде:
Параметры уравнения парной линейной регрессии иногда удобно исчислять по следующим формулам, дающим тот же результат:
Определив значения a0, a1 и подставив их в уравнение связи y = a0 + a1x, находим значения y, зависящие только от заданного значения х.
Помимо содержательного подхода существует формальная оценка адекватности подобранной регрессионной модели. Лучшей из них считается та, которая наименее удалена от исходных данных.
Данное свойство средней, гласящее, что сумма квадратов отклонений всех вариантов ряда от средней арифметической меньше суммы квадратов их отклонений от любого другого числа, положено в основу метода наименьших квадратов, позволяющего рассчитать параметры избранного уравнения регрессии таким образом, чтобы линия регрессии была в среднем наименее удалена от эмпирических данных.
2. Оценка существенности параметров линейной регрессии и корреляции
Корреляционный и регрессионный анализ обычно проводится для ограниченной по объёму совокупности. Поэтому показатели регрессии и корреляции - параметры уравнения регрессии, коэффициенты корреляции и детерминации могут быть искажены действием случайных факторов. Чтобы проверить, насколько эти показатели характерны для всей генеральной совокупности, не являются ли они результатом стечения случайных обстоятельств, необходимо проверить адекватность построенных статистических моделей.
После построения уравнения линейной регрессии, проводится оценка значимости как уравнения в целом, так и отдельных его параметров. Проверить значимость уравнения регрессии - значит установить, соответствует ли математическая модель, выражающая зависимость между переменными, экспериментальным данным и достаточно ли включенных в уравнение объясняющих переменных (одной или нескольких) для описания зависимой переменной. Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Значение линейного коэффициента корреляции важно для исследования социально-экономических явлений и процессов, распределение которых близко к нормальному. Он принимает значения в интервале: -1? r ? 1.
По степени тесноты связи различают количественные критерии оценки тесноты связи. Оценка линейного коэффициента корреляции может быть произведена по таблице 1, либо укрупненно по таблице 2.
Таблица 1 Количественные критерии оценки тесноты связи
Величина коэффициента корреляции |
Характер связи |
|
| ± 0,01| - | 0,15| |
Отсутствует связь |
|
| ± 0,16| - |± 0,20| |
Практически отсутствует связь |
|
|±0,21| - |±0,30| |
Слабая связь |
|
|±0,31| - |± 0,40| |
Умеренная связь |
|
|±0,41| - |± 0,60| |
Средняя связь |
|
|± 0,61| - |± 0,80| |
Высокая связь |
|
|±0,81| - |± 0,90| |
Очень высокая связь |
|
|±0,91| - |± 1,00| |
Полная связь |
Таблица 2 Укрупненные критерии оценки тесноты связи
Величина коэффициента корреляции |
Характер связи |
|
до | ± 0,3| |
Практически отсутствует |
|
|±0,3| - |±0,5| |
Слабая |
|
|± 0,5| - |± 0,7| |
Умеренная |
|
|± 0,7| - | ±1,0| |
Сильная |
Отрицательные значения указывают на обратную связь, положительные - на прямую. При r = 0 линейная связь отсутствует. Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее связь между признаками. И, наконец, при r = ±1 - связь функциональная.
По направлению выделяют связь прямую и обратную. При прямой связи с увеличением или уменьшением значений факторного признака происходит увеличение или уменьшение значений результативного. В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака.
По аналитическому выражению выделяют связи прямолинейные и криволинейные. Если статистическая связь между явлениями может быть приближенно выражена уравнением прямой линии, то ее называют линейной связью; если же она выражается уравнением какой-либо кривой линии (параболы, гиперболы, показательной и др.), то такую связь называют криволинейной.
Графически взаимосвязь двух признаков отображается с помощью поля корреляции. В системе координат по оси абсцисс откладываются значения факторного признака, а на оси ординат - результативного. Каждое пересечение линий, проводимых через эти оси, обозначается точкой. Чем сильнее связь между признаками, тем теснее будут группироваться точки вокруг определенной линии, выражающей форму связи.
Квадрат линейного коэффициента корреляции r2 называется линейным коэффициентом детерминации. Из определения коэффициента детерминации очевидно, что его числовое значение всегда заключено в пределах от 0 до 1, то есть 0 ? r2 ? 1. Степень тесноты связи полностью соответствует теоретическому корреляционному отношению, которое является более универсальным показателем тесноты связи по сравнению с линейным коэффициентом корреляции. Факт совпадений и несовпадений значений теоретического корреляционного отношения з и линейного коэффициента корреляции r используется для оценки формы связи.
Для оценки значимости коэффициента корреляции r используют t-критерий Стьюдента, который применяется при t-распределении, отличном от нормального. Полученное значение tрасч сравнивают с табличным значением t-критерия (для б = 0,05 и 0,01). Если рассчитанное значение tрасч превосходит табличное значение критерия tтабл, то практически невероятно, что найденное значение обусловлено только случайными колебаниями (то есть отклоняется гипотеза о его случайности).
Оценка значимости уравнения регрессии в целом дается с помощью F-критерия Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен нулю, следовательно, фактор х не оказывает влияния на результат у. Величина F-отношения (F-критерий) получается при сопоставлении факторной и остаточной дисперсии в расчете на одну степень свободы.
F = Dфакт / Dост.
F-критерий проверки для нулевой гипотезы Н0: Dфакт = Dост.
Если нулевая гипотеза справедлива, то факторная и остаточная дисперсии не отличаются друг от друга. Для Н0 необходимо опровержение, чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором разработаны таблицы критических значений F-отношений при разных уровнях существенности нулевой гипотезы и различном числе степеней свободы. Табличное значение F-критерия - это максимальная величина отношения дисперсий, которая может иметь место при случайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения признается достоверным (отличным от 1), если оно больше табличного. В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: Fфакт > Fтабл Н0 отклоняется.
Если же величина оказалась меньше табличной Fфакт < Fтабл, то вероятность нулевой гипотезы меньше заданного уровня (например, 0, 05) и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым и не отклоняется.
Проверка адекватности регрессионной модели может быть дополнена корреляционным анализом. Для этого необходимо определить тесноту корреляционной связи между переменными х и у.
Теоретическое корреляционное отношение з представляет собой относительную величину, получающуюся в результате сравнения среднего квадратического отклонения выравненных значений результативного признака д, то есть рассчитанных по уравнению регрессии, со средним квадратическим отношением эмпирических (фактических) значений результативности признака у. Изменение значения з объясняется влиянием факторного признака.
Проверка значимости уравнения регрессии производится на основе дисперсионного анализа. В математической статистике дисперсионный анализ рассмотрен как самостоятельный инструмент (метод) статистического анализа. В эконометрике он применяется как вспомогательное средство для изучения качества модели. Центральное место в анализе дисперсии занимает разложение общей суммы квадратов отклонений переменной у от среднего значения у на две части - «объясненную» и «необъясненную».
Общая сумма квадратов отклонений |
= |
Сумма квадратов отклонений, объясненная регрессией |
+ |
Остаточная сумма квадратов отклонений |
Оценку качества модели дают с помощью скорректированной средней ошибки аппроксимации:
3. Интервалы прогноза по линейному уравнению регрессии
Оценка статистической значимости параметров регрессии проводится с помощью t-статистики Стьюдента и путем расчета доверительного интервала для каждого из показателей. Выдвигается гипотеза Н0 о статистически значимом отличие показателей от 0 a = b = r = 0. Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что параметры a и b находясь в указанных границах не принимают нулевых значений, т.е. не является статистически незначимыми и существенно отличается от 0.
4. Нелинейная регрессия
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы , параболы второй степени и д.р.
Различают два класса нелинейных регрессий:
- регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;
- регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:
полиномы разных степеней;
равносторонняя гипербола.
К нелинейным регрессиям по оцениваемым параметрам относятся функции:
степенная;
показательная;
экспоненциальная.
Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени y=a0+a1x+a2x2+е заменяя переменные x=x1,x2=x2, получим двухфакторное уравнение линейной регрессии: у=а0+а1х1+а2х2+ е.
Парабола второй степени целесообразна к применению, если для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую. В этом случае определяется значение фактора, при котором достигается максимальное (или минимальное), значение результативного признака: приравниваем к нулю первую производную параболы второй степени, т.е. b+2cx=0 и x=-b/2c.
В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям. Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия min, то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т.е. ln y, 1/y. Так, в степенной функции МНК применяется к преобразованному уравнению lny = lnб + в ln x ln е. Это значит, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах. Соответственно если в линейных моделях то в моделях, нелинейных по оцениваемым параметрам. Вследствие этого оценка параметров оказываются несколько смещенной.
Теснота связи между переменными величинами может иметь различные значения, если рассматривать ее с позиции характера зависимости (линейная, нелинейная). Если установлена слабая связь между переменными в линейной зависимости, то это совсем не означает, что такая связь должна быть в нелинейной зависимости. Показателем, характеризующим значимость факторов при различной форме связи, является корреляционное отношение. Оценка факторов по корреляционному отношению уже на этом этапе анализа позволяет предварительно уст0новить вид многофакторной связи, что служит хорошей предпосылкой при выборе конкретной модели исследуемого показателя.
В случае нелинейной зависимости линейный коэффициент корреляции теряет смысл, и для измерения тесноты связи применяют так называемое корреляционное отношение, известное также под названием «индекс корреляции». Для нахождения лучшей подстановки можно использовать визуальный метод, когда «на глаз» определяется вид нелинейной зависимости, связывающей результирующий параметр и независимый фактор, а можно выбор наилучшей замены осуществлять, используя коэффициент корреляции. Та подстановка, у которой коэффициент корреляции является максимальным, и является наилучшей.
Заключение
Корреляционно-регрессионный анализ как общее понятие включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи. Наиболее разработанной в теории статистики является методология парной корреляции, рассматривающая влияние вариации факторного признака х на результативный у и представляющая собой однофакторный корреляционный и регрессионный анализ.
Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна. Ряд авторов считают корреляционный анализ частью регрессионного анализа, а другие полагают, что регрессионный анализ является частью корреляционного, как общей теории взаимосвязи между случайными величинами. Практически, речь идет о том, чтобы анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) - линию регрессии.
Список использованной литературы
1. Голованов Е.А. Основы корреляционного и регрессионного анализа. - М.: Наука, 2005
2. Доугерти К. Введение в эконометрику. - М.: Финансы и статистика, 2005.
3. Елисеева И.И., Курышева С.В., Костеева Т.В. и др. Эконометрика. - М.: Финансы и статистика, 2001.
4. Ланге О. Введение в эконометрику. - М.: Прогресс, 2007.
5. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. - М.: Дело, 2001.
6. Маленво Э. Статистические методы в эконометрии. - М.: Статистика, 1976.
Размещено на Allbest.ru
...Подобные документы
Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.
курсовая работа [233,1 K], добавлен 21.03.2015Сущность и основные этапы проведения регрессионного анализа. Виды ошибок и возможности их прогнозирования. Построение поля корреляции и гипотеза о форме связи. Порядок произведения расчета прогнозного значения результата по линейному уравнению регрессии.
контрольная работа [372,7 K], добавлен 29.04.2010Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Связь между случайными переменными и оценка её тесноты как основная задача корреляционного анализа. Регрессионный анализ, расчет параметров уравнения линейной парной регрессии. Оценка статистической надежности результатов регрессионного моделирования.
контрольная работа [50,4 K], добавлен 07.06.2011Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Оценка уравнений парной и множественной регрессии. Ковариация, корреляция, дисперсия. Определение доверительных интервалов для параметров. Статистические уравнения зависимостей. Расчет нормативных микроэкономических показателей хозяйственной деятельности.
дипломная работа [1,9 M], добавлен 20.10.2014Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.
контрольная работа [216,6 K], добавлен 12.05.2010Использование метода оценки параметров в стандартных масштабах для определения неизвестных параметров линейной модели множественной регрессии. Специфика изучения взаимосвязей по временным рядам. Моделирование взаимосвязей и тенденций в финансовой сфере.
контрольная работа [326,7 K], добавлен 22.04.2016Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.
контрольная работа [3,6 M], добавлен 29.05.2010Измерения в эконометрике. Парная регрессия и корреляция эконометрических исследований. Оценка существования параметров линейной регрессии и корреляции. Стандартная ошибка прогноза. Коэффициенты эластичности для различных математических функций.
курс лекций [474,5 K], добавлен 18.04.2011Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.
курсовая работа [243,1 K], добавлен 17.01.2016Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.
контрольная работа [1,6 M], добавлен 14.05.2008Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.
курсовая работа [418,3 K], добавлен 24.06.2015Аппроксимация данных с учетом их статистических параметров. Математическая постановка задачи регрессии, ее принципы. Виды регрессии: линейная и нелинейная, полиномиальная. Сглаживание данных и предсказание зависимостей. Реализация задач в Mathcad.
реферат [167,8 K], добавлен 12.04.2009Понятие о взаимосвязях в эконометрике. Сопоставление параллельных рядов. Корреляция альтернативных признаков. Оценка надежности параметров парной линейной регрессии и корреляции. Коэффициенты эластичности в парных моделях. Парная нелинейная корреляция.
курсовая работа [1,9 M], добавлен 29.06.2015Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.
контрольная работа [63,3 K], добавлен 19.04.2013Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.
контрольная работа [1,4 M], добавлен 25.06.2010