Экономико-математические методы и модели
Решение расчетным методом типовой задачи оптимизации, ее экономико-математическая модель. Ограничения задачи по времени работы оборудования и по специальному ингредиенту. Построение вектора-градиента для определения направления движения к оптимуму.
Рубрика | Экономико-математическое моделирование |
Вид | задача |
Язык | русский |
Дата добавления | 06.04.2013 |
Размер файла | 23,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Задача
Решить типовую задачу оптимизации
Фирма производит два широко популярных безалкогольных напитка - «Лимонад» и «Тоник». Фирма может продать всю продукцию, которая будет произведена. Однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л «Лимонада» требуется 0,02 ч работы оборудования, а для производства 1 л «Тоника» - 0,04 ч. Расход специального ингредиента составляет 0,01 кг и 0,04 кг на 1 л «Лимонада» и «Тоника» соответственно. Ежедневно в распоряжении фирмы имеется 24 ч времени работы оборудования и 16 кг специального ингредиента. Прибыль фирмы составляет 0,10 ден.ед. за 1 л «Лимонада» и 0,30 ден.ед. за 1 л «Тоника». Сколько продукции каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневной прибыли?
Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на минимум, и почему?
Решение задача модель оптимизация экономический
Экономико-математическая модель задачи
Обозначим через х1 - количество популярного безалкогольного напитка «Лимонад», через х2 - количество «Тоника».
Целевая функция - это выражение, которое необходимо максимизировать. Прибыль от реализации 1 л «Лимонада» составляет 0,1х1, а от реализации 1 л «Тоника» - 0,3х2, т.е. необходимо максимизировать целевую функцию:
Ограничения задачи имеют вид:
Первое ограничение по времени работы оборудования . Прямая проходит через точки (1200; 0) и (0; 600).
Второе ограничение по специальному ингредиенту . Прямая проходит через точки (1600; 0) и (0; 400). Решением обоих неравенств являются полуплоскости, лежащие ниже прямых и . На рис. 1 заштрихована область допустимых значений.
Для определения направления движения к оптимуму построим вектор-градиент , координаты которого являются частными производными целевой функции, т.е.
(0,1; 0,3)
Чтобы построить такой вектор, нужно соединить точку (0,1; 0,3) с началом координат. При максимизации целевой функции необходимо двигаться в направлении вектора градиента. Для удобства можно строить вектор, пропорционально вектору . Изобразим на рисунке вектор-градиент.
В нашем случае движение линии уровня будем осуществлять до ее выхода из области допустимых решений. В крайней, угловой, точке достигается максимум целевой функции. Для нахождения координат этой точки достаточно решить два уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку максимума:
«-»
Ответ. max f(x) = 140 ден.ед. и достигается при л и л.
Если решать задачу на минимум, мы получим, что для минимизации ежедневной прибыли фирме следует сократить ежедневный выпуск продукции до 0, т.е. перестать выпускать продукцию.
Размещено на www.allbest.
...Подобные документы
Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.
контрольная работа [2,2 M], добавлен 27.03.2008Исследование методом Жордана-Гаусса системы линейных уравнений. Решение графическим и симплексным методом задач линейного программирования. Экономико-математическая модель задачи на максимум прибыли и нахождение оптимального плана выпуска продукции.
контрольная работа [177,8 K], добавлен 02.02.2010Характеристика моделируемого процесса - организация угодий. Оценка деятельности АО "Россия". Построение экономико-математической задачи. Обозначение неизвестных и формулирование систем ограничений. Построение числовой модели и решение задачи на ЭВМ.
курсовая работа [24,8 K], добавлен 25.04.2012Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.
курсовая работа [1,3 M], добавлен 09.07.2015Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.
контрольная работа [168,7 K], добавлен 08.10.2009Построение одноиндексной математической модели задачи линейного программирования, ее решение графическим методом. Разработка путей оптимизации сетевой модели по критерию "минимум исполнителей". Решение задачи управления запасами на производстве.
контрольная работа [80,8 K], добавлен 13.12.2010- Примеры использования графического и симплексного методов в решении задач линейного программирования
Экономико-математическая модель получения максимальной прибыли, её решение графическим методом. Алгоритм решения задачи линейного программирования симплекс-методом. Составление двойственной задачи и её графическое решение. Решение платёжной матрицы.
контрольная работа [367,5 K], добавлен 11.05.2014 Формулирование экономико-математической модели задачи в виде основной задачи линейного программирования. Построение многогранника решений, поиск оптимальной производственной программы путем перебора его вершин. Решение задачи с помощью симплекс-таблиц.
контрольная работа [187,0 K], добавлен 23.05.2010Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.
курсовая работа [56,9 K], добавлен 04.05.2011Нахождение оптимального значения целевой функции, позволяющей минимизировать себестоимость произведенной продукции. Оптимизационные задачи на максимум выручки от реализации готовой продукции. Экономико-математическая модель технологической матрицы.
контрольная работа [248,8 K], добавлен 25.10.2013Решение экономико-математических задач методами линейного программирования. Геометрическая интерпретация и решение данных задач в случае двух переменных. Порядок разработки экономико-математической модели оптимизации отраслевой структуры производства.
курсовая работа [116,4 K], добавлен 23.10.2011Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной. Гладкая и выпуклая оптимизации. Условие выпуклости. Экономико-математическая модель реструктуризации угольной промышленности. Критерий оптимизационной задачи.
реферат [159,8 K], добавлен 17.03.2009Решение задач линейного программирования на примере ПО "Гомсельмаш". Алгоритм и экономико-математические методы решения транспортной задачи. Разработка наиболее рациональных путей, способов транспортирования товаров, оптимальное планирование грузопотоков.
курсовая работа [52,3 K], добавлен 01.06.2014Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.
лекция [124,5 K], добавлен 15.06.2004Нахождение начального опорного плана методом минимальной стоимости, оптимизация его методом потенциалов. Решение задачи о назначениях с заданной матрицей затрат. Построение набора дуг, соединяющих все вершины сети и имеющих минимальную протяженность.
контрольная работа [341,0 K], добавлен 24.04.2012Производственно-экономическая характеристика хозяйства. Динамика и структура основных и оборотных фондов. Трудовой потенциал предприятия. Специализация, интенсификация производства. Разработка экономико-математической модели оптимизации кормопроизводства.
курсовая работа [44,8 K], добавлен 31.01.2012Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.
реферат [167,6 K], добавлен 22.07.2009Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.
контрольная работа [458,1 K], добавлен 16.03.2012Планирование проведения кровельных работ промышленных зданий и сооружений наплавляемыми кровельными материалами силами набольшего количества рабочих. Разработка информационной системы, обеспечивающей решение задачи методом нелинейного программирования.
дипломная работа [2,8 M], добавлен 16.10.2009Математическая формулировка экономико-математической задачи. Вербальная постановка и разработка задачи о составлении графика персонала. Решение задачи о составлении графика персонала с помощью программы Microsoft Excel. Выработка управленческого решения.
курсовая работа [1,2 M], добавлен 12.01.2018