Экономико-математические методы и модели

Решение расчетным методом типовой задачи оптимизации, ее экономико-математическая модель. Ограничения задачи по времени работы оборудования и по специальному ингредиенту. Построение вектора-градиента для определения направления движения к оптимуму.

Рубрика Экономико-математическое моделирование
Вид задача
Язык русский
Дата добавления 06.04.2013
Размер файла 23,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Задача

Решить типовую задачу оптимизации

Фирма производит два широко популярных безалкогольных напитка - «Лимонад» и «Тоник». Фирма может продать всю продукцию, которая будет произведена. Однако объем производства ограничен количеством основного ингредиента и производственной мощностью имеющегося оборудования. Для производства 1 л «Лимонада» требуется 0,02 ч работы оборудования, а для производства 1 л «Тоника» - 0,04 ч. Расход специального ингредиента составляет 0,01 кг и 0,04 кг на 1 л «Лимонада» и «Тоника» соответственно. Ежедневно в распоряжении фирмы имеется 24 ч времени работы оборудования и 16 кг специального ингредиента. Прибыль фирмы составляет 0,10 ден.ед. за 1 л «Лимонада» и 0,30 ден.ед. за 1 л «Тоника». Сколько продукции каждого вида следует производить ежедневно, если цель фирмы состоит в максимизации ежедневной прибыли?

Построить экономико-математическую модель задачи, дать необходимые комментарии к ее элементам и получить решение графическим методом. Что произойдет, если решать задачу на минимум, и почему?

Решение задача модель оптимизация экономический

Экономико-математическая модель задачи

Обозначим через х1 - количество популярного безалкогольного напитка «Лимонад», через х2 - количество «Тоника».

Целевая функция - это выражение, которое необходимо максимизировать. Прибыль от реализации 1 л «Лимонада» составляет 0,1х1, а от реализации 1 л «Тоника» - 0,3х2, т.е. необходимо максимизировать целевую функцию:

Ограничения задачи имеют вид:

Первое ограничение по времени работы оборудования . Прямая проходит через точки (1200; 0) и (0; 600).

Второе ограничение по специальному ингредиенту . Прямая проходит через точки (1600; 0) и (0; 400). Решением обоих неравенств являются полуплоскости, лежащие ниже прямых и . На рис. 1 заштрихована область допустимых значений.

Для определения направления движения к оптимуму построим вектор-градиент , координаты которого являются частными производными целевой функции, т.е.

(0,1; 0,3)

Чтобы построить такой вектор, нужно соединить точку (0,1; 0,3) с началом координат. При максимизации целевой функции необходимо двигаться в направлении вектора градиента. Для удобства можно строить вектор, пропорционально вектору . Изобразим на рисунке вектор-градиент.

В нашем случае движение линии уровня будем осуществлять до ее выхода из области допустимых решений. В крайней, угловой, точке достигается максимум целевой функции. Для нахождения координат этой точки достаточно решить два уравнения прямых, получаемых из соответствующих ограничений и дающих в пересечении точку максимума:

«-»

Ответ. max f(x) = 140 ден.ед. и достигается при л и л.

Если решать задачу на минимум, мы получим, что для минимизации ежедневной прибыли фирме следует сократить ежедневный выпуск продукции до 0, т.е. перестать выпускать продукцию.

Размещено на www.allbest.

...

Подобные документы

  • Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.

    контрольная работа [2,2 M], добавлен 27.03.2008

  • Исследование методом Жордана-Гаусса системы линейных уравнений. Решение графическим и симплексным методом задач линейного программирования. Экономико-математическая модель задачи на максимум прибыли и нахождение оптимального плана выпуска продукции.

    контрольная работа [177,8 K], добавлен 02.02.2010

  • Характеристика моделируемого процесса - организация угодий. Оценка деятельности АО "Россия". Построение экономико-математической задачи. Обозначение неизвестных и формулирование систем ограничений. Построение числовой модели и решение задачи на ЭВМ.

    курсовая работа [24,8 K], добавлен 25.04.2012

  • Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.

    курсовая работа [1,3 M], добавлен 09.07.2015

  • Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.

    контрольная работа [168,7 K], добавлен 08.10.2009

  • Построение одноиндексной математической модели задачи линейного программирования, ее решение графическим методом. Разработка путей оптимизации сетевой модели по критерию "минимум исполнителей". Решение задачи управления запасами на производстве.

    контрольная работа [80,8 K], добавлен 13.12.2010

  • Экономико-математическая модель получения максимальной прибыли, её решение графическим методом. Алгоритм решения задачи линейного программирования симплекс-методом. Составление двойственной задачи и её графическое решение. Решение платёжной матрицы.

    контрольная работа [367,5 K], добавлен 11.05.2014

  • Формулирование экономико-математической модели задачи в виде основной задачи линейного программирования. Построение многогранника решений, поиск оптимальной производственной программы путем перебора его вершин. Решение задачи с помощью симплекс-таблиц.

    контрольная работа [187,0 K], добавлен 23.05.2010

  • Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.

    курсовая работа [56,9 K], добавлен 04.05.2011

  • Нахождение оптимального значения целевой функции, позволяющей минимизировать себестоимость произведенной продукции. Оптимизационные задачи на максимум выручки от реализации готовой продукции. Экономико-математическая модель технологической матрицы.

    контрольная работа [248,8 K], добавлен 25.10.2013

  • Решение экономико-математических задач методами линейного программирования. Геометрическая интерпретация и решение данных задач в случае двух переменных. Порядок разработки экономико-математической модели оптимизации отраслевой структуры производства.

    курсовая работа [116,4 K], добавлен 23.10.2011

  • Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной. Гладкая и выпуклая оптимизации. Условие выпуклости. Экономико-математическая модель реструктуризации угольной промышленности. Критерий оптимизационной задачи.

    реферат [159,8 K], добавлен 17.03.2009

  • Решение задач линейного программирования на примере ПО "Гомсельмаш". Алгоритм и экономико-математические методы решения транспортной задачи. Разработка наиболее рациональных путей, способов транспортирования товаров, оптимальное планирование грузопотоков.

    курсовая работа [52,3 K], добавлен 01.06.2014

  • Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.

    лекция [124,5 K], добавлен 15.06.2004

  • Нахождение начального опорного плана методом минимальной стоимости, оптимизация его методом потенциалов. Решение задачи о назначениях с заданной матрицей затрат. Построение набора дуг, соединяющих все вершины сети и имеющих минимальную протяженность.

    контрольная работа [341,0 K], добавлен 24.04.2012

  • Производственно-экономическая характеристика хозяйства. Динамика и структура основных и оборотных фондов. Трудовой потенциал предприятия. Специализация, интенсификация производства. Разработка экономико-математической модели оптимизации кормопроизводства.

    курсовая работа [44,8 K], добавлен 31.01.2012

  • Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.

    реферат [167,6 K], добавлен 22.07.2009

  • Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.

    контрольная работа [458,1 K], добавлен 16.03.2012

  • Планирование проведения кровельных работ промышленных зданий и сооружений наплавляемыми кровельными материалами силами набольшего количества рабочих. Разработка информационной системы, обеспечивающей решение задачи методом нелинейного программирования.

    дипломная работа [2,8 M], добавлен 16.10.2009

  • Математическая формулировка экономико-математической задачи. Вербальная постановка и разработка задачи о составлении графика персонала. Решение задачи о составлении графика персонала с помощью программы Microsoft Excel. Выработка управленческого решения.

    курсовая работа [1,2 M], добавлен 12.01.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.