Стохастическая модель процесса
Порядок и основные этапы построения модели стохастического процесса изменения цен в процессе функционирования банка. Варианты информированности исследователя операции и методы построения алгоритмов управления. Классификация средств моделирования.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 24.04.2013 |
Размер файла | 81,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Пример построения стохастической модели процесса
В процессе функционирования банка очень часто возникает необходимость в решении проблемы выбора вектора активов, т.е. инвестиционного портфеля банка, и неопределенные параметры, которые необходимо учитывать в этой задаче, связаны в первую очередь с неопределенностью цен на активы (ценные бумаги, реальные вложения и т.д.). В качестве иллюстрации можно привести пример с формированием портфеля государственных краткосрочных обязательств.
Для задач данного класса принципиальный вопрос - это построение модели стохастического процесса изменения цен, поскольку в распоряжении исследователя операции, естественно, имеется только конечный ряд наблюдений реализаций случайных величин - цен. Далее излагается один из подходов к решению этой проблемы, который развивается в ВЦ РАН в связи с решением задач управления стохастическими марковскими процессами.
Рассматриваются М видов ценных бумаг, i=1,…, M, которые торгуются на специальных биржевых сессиях. Бумаги характеризуются величинами - выраженными в процентах доходностями в течение текущей сессии . Если бумага вида в конце сессии покупается по цене и продается в конце сессии по цене , то .
Доходности - это случайные величины, формирующиеся следующим образом. Предполагается существование базовых доходностей - случайных величин, образующих марковский процесс и определяемых по следующей формуле:
, (1)
Здесь , , - константы, а - стандартные нормально распределенные случайные величины (т.е. с нулевым математическим ожиданием и единичной дисперсией).
При этом
, (2)
где - некоторый масштабный коэффициент равный (), а - случайная величина, имеющая смысл отклонения от базового значения и определяемая аналогично :
, (3)
где - также, стандартные нормально распределенные случайные величины.
Предполагается, что некоторая оперирующая сторона, называемая в дальнейшем оператором, в течение некоторого времени управляет своим капиталом, вложенным в бумаги (во всякий момент в бумагу ровно одного вида), продавая их в конце текущей сессии и тут же покупая на вырученные деньги другие бумаги. Управление, выбор приобретаемых бумаг, производится по алгоритму, зависящему от информированности оператора о процессе, формирующем доходности бумаг. Нами будут рассматриваться различные гипотезы об этой информированности и, соответственно, различные алгоритмы управления. Будем предполагать, что исследователь операции, разрабатывает и оптимизирует алгоритм управления, используя имеющийся ряд наблюдений за процессом, т.е., используя информацию о ценах закрытия на биржевых сессиях, а также, возможно, и о величинах , на некотором промежутке времени, соответствующем сессиям с номерами . Целью экспериментов является сравнение оценок ожидаемой эффективности различных алгоритмов управления с их теоретическим математическим ожиданием в условиях, когда алгоритмы настраиваются и оцениваются на одном и том же ряду наблюдений. Для оценки теоретического математического ожидания используется метод Монте-Карло «прогонкой» управления по достаточно объемному сгенерированному ряду, т.е. по матрице размерности , где столбцы соответствуют реализациям значений и по сессиям, а число определяется вычислительными возможностями, но при условии, чтобы элементов матрицы было не менее 10000. Необходимо, чтобы «полигон» был одним и тем же во всех проводимых экспериментах. Имеющийся ряд наблюдений имитирует сгенерированная матрица размерности , где значения в ячейках имеют тот же смысл, что и выше. Число и значения в этой матрице будут в дальнейшем варьироваться. Матрицы обоих видов формируются посредством процедуры генерации случайных чисел, имитирующей реализацию случайных величин , и расчета по этим реализациям и формулам (1) - (3) искомых элементов матриц.
Оценка эффективности управления на ряду наблюдений производится по формуле
,
где - индекс последней сессии в ряду наблюдений, а - номер облигаций, выбранных алгоритмом на шаге , т.е. того вида облигаций, в которых, согласно алгоритму, будет находиться капитал оператора в течение сессии . Кроме того, будем рассчитывать также месячную эффективность . Число 22 приблизительно соответствует числу торговых сессий за месяц.
Вычислительные эксперименты и анализ результатов
Далее описываются варианты информированности исследователя операции и методы построения алгоритмов управления.
Гипотезы
Точное знание оператором будущих доходностей.
Индекс выбирается как . Этот вариант дает верхнюю оценку для всех возможных алгоритмов управления, даже в случае, если дополнительная информация (учет каких-то дополнительных факторов) позволит уточнить модель прогноза цен.
Случайное управление.
Оператор не знает закона ценообразования и проводит операции случайным выбором. Теоретически, в данной модели математическое ожидание результата операций совпадает с тем, как если бы оператор вкладывал капитал не в одну бумагу, а во все поровну. При нулевых математических ожиданиях величин математическое ожидание величины равно 1. Расчеты по данной гипотезе полезны только в том смысле, что позволяют в некоторой степени проконтролировать корректность написанных программ и сгенерированной матрицы значений .
Управление при точном знании модели доходностей, всех ее параметров и наблюдаемой величины .
В этом случае оператор в конце сессии , зная значения и для сессий , и , а в наших расчетах, используя строки , и , матрицы , вычисляет по формулам (1) - (3) математические ожидания величин и выбирает для покупки бумагу с наибольшей из этих значений величин.
(5)
где, согласно (2), . (6)
Управление при знании структуры модели доходностей и наблюдаемой величине , но неизвестных коэффициентах .
Будем предполагать, что исследователь операции не только не знает значения коэффициентов , но не знает и число влияющих на формирование величин , предшествующих значений этих параметров (глубину памяти марковских процессов). Не знает также, одинаковы или различны коэффициенты при разных значениях . Рассмотрим различные варианты действий исследователя - 4.1, 4.2, и 4.3, где второй индекс обозначает предположение исследователя о глубине памяти процессов (одинаковой для и ). К примеру, в случае 4.3 исследователь предполагает, что формируется согласно уравнению
. (7)
Здесь, для полноты описания, добавлен свободный член . Однако, этот член может быть исключен либо из содержательных соображений, либо статистическими методами. Поэтому для упрощения расчетов мы в дальнейшем свободные члены при настройке параметров из рассмотрения исключаем и формула (7) приобретает вид:
. (8)
В зависимости от того, предполагает ли исследователь одинаковыми или различными коэффициенты при разных значениях , будем рассматривать подслучаи 4.m. 1 - 4.m. 2, m = 1 - 3. В случаях 4.m. 1 коэффициенты будут настраиваться по наблюденным значениям для всех бумаг вместе. В случаях 4.m. 2 коэффициенты настраиваются для каждой бумаги отдельно, при этом исследователь работает в рамках гипотезы, что коэффициенты , различны при разных и, к примеру, в случае 4.2.2. значения определяются модифицированной формулой (3)
.
Далее, будем рассматривать два способа настройки параметров . Это удвоит количество подслучаев в рамках гипотезы 4, и всего их будет 12.
Первый способ настройки - классический метод наименьших квадратов. Рассмотрим его на примере настройки коэффициентов при в вариантах 4.3.
Согласно формуле (8),
. (9)
Требуется найти такие значения коэффициентов , , чтобы минимизировать выборочную дисперсию для реализаций на известном ряду наблюдений, массиве при условии, что математическое ожидание значений определяется формулой (9).
. (10)
Здесь и в дальнейшем знак «» указывает на реализацию случайной величины.
Минимум квадратичной формы (10) достигается в единственной точке, в которой все частные производные равны нулю. Отсюда получаем систему трех алгебраических линейных уравнений:
(11),
решение которой дает искомые значения коэффициентов .
После того как коэффициенты верифицированы, выбор управлений проводится так же, как и в случае 3.
Замечание. Для того, чтобы облегчить работу над программами, принято процедуру выбора управления, описанную для гипотезы 3, сразу писать, ориентируясь не на формулу (5), а на ее модифицированный вариант в виде
. (5')
При этом в расчетах для случаев 4.1.m и 4.2.m, m = 1, 2, лишние коэффициенты обнуляются.
Второй способ настройки состоит в выборе значений параметров так, чтобы максимизировать оценку из формулы (4). Задача эта аналитически и вычислительно безнадежно сложна. Поэтому здесь можно говорить только о приемах некоторого улучшения значения критерия относительно исходной точки. За исходную точку можно взять значения , полученные методом наименьших квадратов, и затем произвести обсчет вокруг этих значений по сетке. При этом последовательность действий такова. Сначала обсчитывается сетка на параметрах (квадрат или куб) при фиксированных остальных параметрах. Затем для случаев 4.m. 1 обсчитывается сетка на параметрах , а для случаев 4.m. 2 на параметрах при фиксированных остальных параметрах. В случае 4.m. 2 далее так же оптимизируются параметры . Когда этим процессом исчерпываются все параметры, процесс повторяется. Повторения производятся до тех пор, пока новый цикл дает улучшение значений критерия по сравнению с предыдущим. Чтобы число итераций не оказалось слишком большим, применим следующий прием. Внутри каждого блока расчетов на 2-х или 3-х-мерном пространстве параметров сначала берется достаточно грубая сетка, затем, если лучшая точка оказывается на краю сетки, то исследуемый квадрат (куб) сдвигается и расчет повторяется, если же лучшая точка внутренняя, то строится новая сетка вокруг этой точки с меньшим шагом, но с тем же общим числом точек, и так некоторое, но разумное число раз.
Управление при ненаблюдаемом и без учета зависимости между доходностями разных бумаг.
Имеется в виду, что исследователь операции не замечает зависимости между разными бумаги, ничего не знает о существовании и пытается прогнозировать поведение каждой бумаги по отдельности. Рассмотрим, как обычно, три случая, когда исследователь моделирует процесс формирования доходностей в виде марковского процесса глубиной 1, 2, и 3:
(12)
Коэффициенты для прогноза ожидаемой доходности не важны, а коэффициенты настраиваются двумя способами, описанными в п. 4. Управления выбираются, аналогично тому, как это делалось выше.
(13)
Замечание: Так же, как и для выбора управления, для метода наименьших квадратов имеет смысл написать единую процедуру с максимальным числом переменных - 3. Если настраиваемые переменные, скажем, , , то для из решения линейной системы выписывается формула, в которую входят только константы, определяется через , а через и . В случаях, когда переменных меньше чем три, значения лишних переменных обнуляются.
Хотя расчеты в различных вариантах проводятся сходным образом, число вариантов довольно велико. Когда подготовка инструментов для расчетов во всех перечисленных вариантах оказывается затруднительным, рассматривается на экспертном уровне вопрос о сокращении их числа.
Управление при ненаблюдаемом с учетом зависимости между доходностями разных бумаг.
Это серия экспериментов имитирует те манипуляции, которые были произведены в задаче с ГКО [3]. Мы предполагаем, что исследователь практически ничего не знает о механизме формирования доходностей. Он располагает только рядом наблюдений, матрицей . Из содержательных соображений он делает предположение о взаимозависимости текущих доходностей разных бумаг, группирующихся около некоторой базовой доходности, определяемой состоянием рынка в целом. Рассматривая графики доходностей бумаг от сессии к сессии, он делает предположение, что в каждый момент времени точки, координатами которых являются номера бумаг и доходности (в реальности это были сроки до погашения бумаг и их цены), группируются возле некоторой кривой (в случае с ГКО - параболы).
Далее он для каждой строки матрицы без первого столбца (поскольку этого столбца у него попросту нет) описанным выше методом наименьших квадратов ищет координаты этой прямой:
(14)
Здесь - точка пересечения теоретической прямой с осью ординат (базовая доходность), а - ее наклон (то, что должно быть равным 0.05).
Построив таким образом теоретические прямые, исследователь операции может рассчитать значения - отклонения величин от их теоретических значений.
. (15)
(Заметим, что здесь имеют несколько иной смысл, чем в формуле (2). Отсутствует размерный коэффициент , и рассматриваются отклонения не от базового значения , а от теоретической прямой.)
Следующей задачей является прогноз значений по известным в момент значениям , , . Поскольку
, (16)
для прогноза значений исследователю требуется ввести гипотезу о формировании величин , и . По матрице исследователь может установить значительную корреляцию между величинами и . Можно принять гипотезу о линейной зависимости между величинами от : . Из содержательных соображений коэффициент сразу полагается равным нулю, и методом наименьших квадратов ищется в виде:
. (17)
Далее, как и выше и моделируются посредством марковского процесса и описываются формулами, аналогичными (1) и (3) с разным числом переменных в зависимости от глубины памяти марковского процесса в рассматриваемом варианте. ( здесь определяется не по формуле (2), а по формуле (16))
Наконец, как и выше реализуются два способа настройки параметров методом наименьших квадратов, и посредством непосредственной максимизации критерия и делаются оценки.
Эксперименты
Для всех описанных вариантов рассчитывались оценки критериев , , , при разных матрицах . (матрицы с числом строк 1003, 503, 103 и для каждого варианта размерности реализовывались порядка ста матриц). По результатам расчетов для каждой размерности оценивались математическое ожидание и дисперсия величин , и их отклонение от величин , для каждого из подготовленных вариантов.
Как показали первые серии вычислительных экспериментов при малом числе настраиваемых параметров (порядка 4), выбор метода настройки не оказывает существенного влияния на значение критерия в задаче.
2. Классификация средств моделирования
стохастический моделирование банк алгоритм
Классификация методов моделирования и моделей может проводиться по степени подробности моделей, по характеру признаков, по сфере приложения и т.д.
Рассмотрим одну из распространенных классификаций моделей по средствам моделирования, именно этот аспект является наиболее важным при анализе различных явлений и систем.
По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира.
По средствам моделирования методы моделирования делятся на две группы: методы материального и методы идеального моделирования Моделирование называется материальным в том случае, когда исследование ведется на моделях, связь которых с исследуемым объектом существует объективно, имеет материальный характер. Модели в этом случае строятся исследователем либо выбирается им из окружающего мира. В свою очередь в материальном моделировании можно выделить: пространственное, физическое и аналоговое моделирование.
В пространственном моделировании используются модели, предназначенные для того, чтобы воспроизвести или отобразить пространственные свойства изучаемого объекта. Модели в этом случае геометрически подобны объектам исследования (любые макеты).
Модели, используемые в физическом моделировании предназначены для воспроизводства динамики процессов, происходящих в изучаемом объекте. Причем общность процессов в объекте исследования и модели основана на сходстве их физической природы. Этот метод моделирования широко распространен в технике при проектировании технических систем различного вида. Например, исследование летательных аппаратов на основе экспериментов в аэродинамической трубе.
Аналоговое моделирование связано с использованием материальных моделей, имеющих другую физическую природу, но описывающихся теми же математическими соотношениями, что и изучаемый объект. Оно основано на аналогии в математическом описании модели и объекта (изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями, но более удобной в проведении экспериментов).
Во всех случаях материального моделирования модель-это материальное отражение исходного объекта, а исследование состоит в материальном воздействии на модель, то есть в эксперименте с моделью. Материальное моделирование по своей природе является экспериментальным методом и в экономических исследованиях не используется.
От материального моделирования принципиально отличается идеальное моделирование, основанное на идеальной, мыслимой связи между объектом и моделью. Методы идеального моделирования широко используются в экономических исследованиях. Их условно можно разделить на две группы: формализованное и неформализованное.
В формализованном моделировании моделью служат системы знаков или образов, вместе с которыми задаются правила их преобразования и интерпретации. Если в качестве моделей используются системы знаков, то моделирование называется знаковым (чертежи, графики, схемы, формулы).
Важным видом знаковой моделирования является математическое моделирование, основанное на том факте, что различные изучаемые объекты и явления могут иметь одинаковое математическое описание в виде совокупности формул, уравнений, преобразование которых осуществляется на основе правил логики и математики.
Другой формой формализованного моделирования является образное, в котором модели строятся на наглядных элементах (упругие шары, потоки жидкости, траектории движения тел). Анализ образных моделей осуществляется мысленно, поэтому они могут быть отнесены к формализованному моделированию, когда правила взаимодействия объектов, используемых в модели четко фиксированы (например, в идеальном газе столкновение двух молекул рассматривается, как соударение шаров, причем результат соударения мыслится всеми одинаково). Модели такого типа широко используются в физике, их принято называть «мысленными экспериментами».
Неформализованное моделирование. К нему можно отнести такой анализ проблем разнообразного типа, когда модель не формируется, а вместо нее используется некоторое точно не зафиксированное мысленное отображение реальной действительности, служащее основой для рассуждения и принятия решения. Таким образом, всякое рассуждение не использующее формальную модель можно считать неформализованным моделированием, когда у мыслящего индивидуума имеется некоторый образ объекта исследования, который можно интерпретировать как неформализованную модель реальности.
Исследование экономических объектов в течение долгого времени проводилось только на основе таких неопределенных представлений. В настоящее время анализ неформализованных моделей остается наиболее распространенным средством экономического моделирования, а именно всякий человек, принимающий экономическое решение без использования математических моделей вынужден руководствоваться тем или иным описанием ситуации, основанной на опыте и интуиции.
Основным недостатком этого подхода является то, что решения может оказаться мало эффективным или ошибочным. Еще долгое время, по-видимому, эти методы останутся основным средством принятия решений не только в большинстве обыденных ситуаций, но и при принятий решений в экономике.
Размещено на Allbest.ru
...Подобные документы
Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.
контрольная работа [71,8 K], добавлен 10.11.2010Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.
реферат [431,4 K], добавлен 11.02.2011Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.
реферат [192,1 K], добавлен 15.06.2015Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.
контрольная работа [26,7 K], добавлен 23.12.2013Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.
контрольная работа [176,4 K], добавлен 17.10.2014Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.
реферат [188,8 K], добавлен 23.05.2015Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.
презентация [1010,6 K], добавлен 18.03.2014Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.
реферат [493,5 K], добавлен 09.09.2010Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.
реферат [150,6 K], добавлен 21.06.2010Общая схема процесса проектирования. Формализация построения математической модели при проведении оптимизации. Примеры использования методов одномерного поиска. Методы многомерной оптимизации нулевого порядка. Генетические и естественные алгоритмы.
курс лекций [853,2 K], добавлен 03.01.2016Конструирование трехмерной системной модели экономического пространства с использованием методологии тернарного моделирования. Особенности выбора формы структурной архитектуры. Основные варианты системных факторов модели экономического пространства.
контрольная работа [673,2 K], добавлен 29.03.2013Основные параметры сетевой модели системы планирования и управления. Правила построения сетевых графиков. Характеристики элементов сетевой модели. Метод пересмотра планов. Численная реализация задачи сетевого планирования. Метод графической оценки.
реферат [154,4 K], добавлен 19.03.2015Статические и динамические модели. Анализ имитационных систем моделирования. Система моделирования "AnyLogic". Основные виды имитационного моделирования. Непрерывные, дискретные и гибридные модели. Построение модели кредитного банка и ее анализ.
дипломная работа [3,5 M], добавлен 24.06.2015Процедура проведения имитационных экспериментов с моделью исследуемой системы. Этапы имитационного моделирования. Построение концептуальной модели объекта. Верификация и адаптация имитационной модели. Метод Монте-Карло. Моделирование работы отдела банка.
курсовая работа [549,5 K], добавлен 25.09.2011Методы предпроектного обследования предприятия. Анализ полученных материалов для последующего моделирования. Разработка модели процесса в стандарте IDEF0. Описание документооборота и обработки информации в стандарте DFD. Математическая модель предприятия.
курсовая работа [1,2 M], добавлен 25.11.2009Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.
реферат [167,6 K], добавлен 22.07.2009Модель динамического программирования. Принцип оптимальности и уравнение Беллмана. Описание процесса моделирования и построения вычислительной схемы динамического программирования. Задача о минимизации затрат на строительство и эксплуатацию предприятий.
дипломная работа [845,3 K], добавлен 06.08.2013Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.
курсовая работа [50,0 K], добавлен 20.11.2008Сущность метода наименьших квадратов. Экономический смысл параметров кривой роста (линейная модель). Оценка погрешности и проверка адекватности модели. Построение точечного и интервального прогноза. Суть графического построения области допустимых решений.
контрольная работа [32,3 K], добавлен 23.04.2013Создание бизнес-модели процесса выдачи потребительских кредитов. Организационное обеспечение кредитного процесса. Моделирование и документирование бизнес-процессов в программе BPwin. Построение модели AS IS. Предложение по автоматизации бизнес-процесса.
курсовая работа [401,5 K], добавлен 07.01.2012