Модель парной регрессии

Формулировка вида модели простой (парной) регрессии, исходя из соответствующей теории связи между переменными. Определение величины случайных ошибок. Применение фиктивных переменных для функции спроса. Построение системы линейных одновременных уравнений.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 29.04.2013
Размер файла 98,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Модель парной регрессии

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая регрессия представляет собой регрессию между двумя переменными - у и х, т. е. модель вида

где у - зависимая переменная (результативный признак);

х - независимая, или объясняющая, переменная (признак-фактор).

Любое эконометрическое исследование формулировки вида модели начинается со спецификации модели, т. е. с, исходя из соответствующей теории связи между переменными. Иными словами, исследование начинается с теории, устанавливающей связь между явлениями.

Прежде всего из всего круга факторов, влияющих на результативный признак, необходимо выделить наиболее существенно влияющие факторы. Парная регрессия достаточна, если имеется доминирующий фактор, который и используется в качестве объясняющей переменной. Предположим, что выдвигается гипотеза о том, что величина спроса у на товар А находится в обратной зависимости от цены х, т. е.. В этом случае необходимо знать, какие остальные факторы предполагаются неизменными, возможно, в дальнейшем их придется учесть в модели и от простой регрессии перейти к множественной.

Уравнение простой регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений. В уравнении регрессии корреляционная по сути связь признаков представляется в виде функциональной связи, выраженной соответствующей математической функцией. Практически в каждом отдельном случае величина у складывается из двух слагаемых:

где - фактическое значение результативного признака;

- теоретическое значение результативного признака, найденное исходя из соответствующей математической функции связи у и х, т. е. из уравнения регрессии;

- случайная величина, характеризующая отклонения реального значения результативного признака от теоретического, найденного по уравнению регрессии.

Случайная величина е называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения. Ее присутствие в модели порождено тремя источниками: спецификацией модели, выборочным характером исходных данных, особенностями измерения переменных.

Поэтому от правильно выбранной спецификации модели зависит величина случайных ошибок: они тем меньше, чем в большей мере теоретические значения результативного признака ух подходят к фактическим данным у.

К ошибкам спецификации будут относиться не только неправильный выбор той или иной математической функции для ух, но и недоучет в уравнении регрессии какого-либо существенного фактора, т. е. использование парной регрессии вместо множественной.

Наряду с ошибками спецификации могут иметь место ошибки выборки, поскольку исследователь чаще всего имеет дело с выборочными данными при установлении закономерной связи между признаками. Ошибки выборки имеют место и в силу неоднородности данных в исходной статистической совокупности, что, как правило, бывает при изучении экономических процессов. Если совокупность неоднородна, то уравнение регрессии не имеет практического смысла. Для получения хорошего результата обычно исключают из совокупности единицы с аномальными значениями исследуемых признаков. И в этом случае результаты регрессии представляют собой выборочные характеристики.

Использование временной информации также представляет собой выборку из всего множества хронологических дат. Изменив временной интервал, можно получить другие результаты регрессии.

Наибольшую опасность в практическом использовании методов регрессии представляют ошибки измерения. Если ошибки спецификации можно уменьшить, изменяя форму модели (вид математической формулы), а ошибки выборки - увеличивая объем исходных данных, то ошибки измерения практически сводят на нет все усилия по количественной оценке связи между признаками. Особенно велика роль ошибок измерения при исследовании на макроуровне. Так, в исследованиях спроса и потребления в качестве объясняющей переменной широко используется «доход на душу населения». Вместе с тем статистическое измерение величины дохода сопряжено с рядом трудностей и не лишено возможных ошибок, например в результате наличия сокрытых доходов.

Предполагая, что ошибки измерения сведены к минимуму, основное внимание в эконометрических исследованиях уделяется ошибкам спецификации модели.

В парной регрессии выбор вида математической функции ух =f(x) может быть осуществлен тремя методами:

ѕ графическим;

ѕ аналитическим, т. е. исходя из теории изучаемой взаимосвязи;

ѕ экспериментальным.

При изучении зависимости между двумя признаками графический метод подбора вида уравнения регрессии достаточно нагляден. Он основан на поле корреляции.

Линейная регрессия описывается уравнением

Различают два класса нелинейных регрессий:

ѕ регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

ѕ регрессии, нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

ѕ полиномы разных степеней

ѕ равносторонняя гипербола

.

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

ѕ степенная

ѕ показательная

ѕ экспоненциальная

Фиктивные переменные

парная регрессия спрос уравнение

Может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т. е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. В отечественной литературе можно встретить термин «структурные переменные».

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для совокупности обследуемых уравнение регрессии имеет вид:

где у - количество потребляемого кофе;

х - цена.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола:

и женского пола:

.

Различия в потреблении кофе проявятся в различии средних и . Вместе с тем сила влияния х на у может быть одинаковой, т. е. . В этом случае возможно построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Объединяя уравнения и и вводя фиктивные переменные, можно прийти к следующему выражению:

где и - фиктивные переменные, принимающие значения:

В общем уравнении регрессии зависимая переменная у рассматривается как функция не только цены х, но и пола (,). Переменная z рассматривается как дихотомическая переменная, принимающая всего два значения: 1 и 0. При этом когда , то и, наоборот.

Для лиц мужского пола, когда и, объединенное уравнение регрессии составит:

,

а для лиц женского пола, когда и, объединенное уравнение регрессии составит:

.

Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии:. Параметр b является общим для всей совокупности лиц, как для мужчин, так и для женщин.

Следует иметь в виду, что при введении фиктивных переменных и в модель применение МНК для оценивания параметров и приведет к вырожденной матрице исходных данных, а следовательно, и к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в данном уравнении появляется свободный член, т. е. уравнение примет вид

Предполагая при параметре А независимую переменную, равную 1, имеем матрицу исходных данных:

В рассматриваемой матрице существует линейная зависимость между первым, вторым и третьим столбцами: первый равен сумме второго и третьего столбцов. Поэтому матрица исходных факторов вырождена. Выходом из создавшегося затруднения может явиться переход к уравнениям

т. е. каждое уравнение включает только одну фиктивную переменную или

Предположим, что определено уравнение

Где _ принимает значения 1 для мужчин и 0 для женщин.

Теоретические значения размера потребления кофе для мужчин будут получены из уравнения

Для женщин соответствующие значения получим из уравнения

Сопоставляя эти результаты, видим, что различия в уровне потребления мужчин и женщин состоят в различии свободных членов данных уравнений: А - для женщин и А + А1 - для мужчин.

Системы линейных одновременных уравнений

Сложные системы и процессы в них, как правило, описываются не одним уравнением, а системой уравнений. При этом между переменными имеются связи, так что по крайней мере некоторые из таких связей между переменными требуют корректировки МНК для адекватного оценивания параметров модели (параметров системы уравнений). Удобно сначала рассмотреть оценивание системы, в которой уравнения связаны только благодаря корреляции между ошибками (остатками) в разных уравнениях системы. Такая система называется системой внешне несвязанных между собой уравнений:

В такой системе каждая зависимая переменная рассматривается как функция одного и того же набора факторов; правда, этот набор факторов вовсе не обязан быть представлен весь целиком во всех уравнениях системы, а может варьировать от одного уравнения к другому. Можно рассматривать каждое уравнение такой системы независимо от остальных и применять для оценивания его параметров МНК. Но в практически важных задачах описываемые отдельными уравнениями зависимости представляют объекты и взаимодействие между этими объектами, которые находятся в одной общей среде. Наличие этой единой экономической среды обусловливает взаимосвязи между объектами и соответствующее взаимодействие, за что отвечают в данном случае остатки (корреляция между ошибками). Поэтому объединение уравнений в систему и применение обобщенного метода наименьших квадратов (ОМНК) для ее решения существенно повышает эффективность оценивания параметров уравнений.

Более общей является модель так называемых рекурсивных уравнений, когда зависимая переменная одного уравнения выступает в роли фактора х, оказываясь в правой части другого уравнения системы. При этом каждое последующее уравнение системы (зависимая переменная в правой части этих уравнений) включает в качестве факторов все зависимые переменные предшествующих уравнений наряду с набором их собственных факторов х. Здесь опять каждое уравнение системы может рассматриваться независимо, но тоже эффективнее рассматривать взаимосвязь через остатки и применять ОМНК:

Наконец, общим и самым полным является случай системы взаимосвязанных уравнений. Такие уравнения еще называют одновременными, или взаимозависимыми. Также это система совместных одновременных уравнений. Здесь уже одни и те же переменные рассматриваются одновременно как зависимые в одних уравнениях и независимые - в других. Такая форма модели называется структурной формой модели. Теперь уже нельзя рассматривать каждое уравнение системы по отдельности (как самостоятельное), так что для оценки параметров системы традиционный МНК неприменим!

Для этой структурной формы модели существенное значение получает деление переменных модели на два класса: эндогенные переменные - взаимозависимые переменные, которые определяются внутри модели (внутри самой системы) и обозначаются у; экзогенные переменные - независимые переменные, которые определяются вне системы и обозначаются как х. Кроме того, вводится также понятие предопределенных переменных. Под ними понимаются экзогенные переменные системы и лаговые эндогенные переменные системы (лаговые - это переменные, относящиеся к предыдущим моментам времени).

Структурная форма модели в правой части содержит при эндогенных и экзогенных переменных коэффициенты, которые называются структурными коэффициентами модели. Можно представить систему (модель) в другой форме: записать ее как систему, в которой все эндогенные переменные линейно зависят уже только от экзогенных переменных. Иногда практически то же формулируют несколько более общим образом - требуют, чтобы эндогенные переменные линейно зависели только от всех предопределенных переменных системы (т.е. экзогенных и лаговых эндогенных переменных системы). В любом из этих двух случаев такая форма называется приведенной формой модели. Приведенная форма уже ничем внешне не отличается от системы независимых уравнений:

Ее параметры оцениваются по МНК. После чего несложно оценить и значения эндогенных переменных с помощью значений экзогенных. Но коэффициенты приведенной формы модели являются нелинейными функциями коэффициентов структурной формы модели. Таким образом, получение оценок параметров структурной формы модели по параметрам приведенной формы технически является не столь уж простым.

Нужно отметить также, что приведенная форма модели аналитически уступает структурной форме модели, т.к. именно в последней имеется взаимосвязь между эндогенными переменными. В приведенной форме модели отсутствуют оценки взаимосвязи между эндогенными переменными. С другой стороны, в структурной форме модели в полном виде имеется большее количество параметров, чем в приведенной. И это большее количество параметров, которые требуется определить по меньшему числу определяемых в приведенной форме параметров, невозможно однозначно найти, если только не ввести определенные ограничения на сами структурные коэффициенты.

Описанная только что наиболее общая модель - система взаимозависимых уравнений - получила название системы совместных одновременных уравнений. Эта структурная форма модели подчеркивает, что в такой системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и независимые - в других. Важным примером такой модели служит следующая простая модель динамики и заработной платы:

.

В этой модели левые части первого и второго уравнений системы - это темп изменения месячной заработной платы и темп изменения цен. Переменные в правых частях уравнений: x1 - процент безработных, x2 - темп изменения постоянного капитала, x3 - темп изменения цен на импорт сырья.

Что касается структурной модели, то она позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Поэтому следует в качестве экзогенных переменных выбирать такие, которые могут быть объектом регулирования. Тогда меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменные.

Таким образом, существуют две различные формы моделей, которые описывают одну ситуацию, но имеют определенные преимущества в контексте решения различных проблем, различных аспектов этой ситуации. Следовательно, нужно уметь устанавливать и поддерживать должное соответствие между этими двумя формами моделей. Так, при переходе от структурной формы модели к приведенной возникает проблема идентификации - единственности соответствия между приведенной и структурной формами модели. По возможности идентифицируемости структурные модели делятся на три вида.

Модель идентифицируема, если все структурные коэффициенты модели однозначно определяются по коэффициентам приведенной формы модели. При этом число параметров в обеих формах модели одинаково.

Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов. Тогда структурные коэффициенты не могут быть определены и оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В таком случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель, в отличие от неидентифицируемой, практически всегда решаема, однако для этого используются специальные методы вычисления параметров

Следует еще раз подчеркнуть, что деление переменных на эндогенные и экзогенные зависит от содержания модели, а не от ее формальных особенностей. Именно интерпретация определяет, какие переменные считать эндогенными, а какие - экзогенными. При этом предполагается, что экзогенные переменные некоррелированы с ошибкой для каждого уравнения. Тогда как экзогенные переменные (они стоят в правых частях уравнений), как правило, имеют ненулевую корреляцию с ошибкой в соответствующем уравнении. Для приведенной формы уравнений (в отличие от структурной формы) в каждом уравнении экзогенная переменная некоррелирована с ошибкой. Именно поэтому МНК для ее параметров дает состоятельные оценки. А сам такой способ оценки параметров (уже структурных коэффициентов) с помощью оценок коэффициентов приведенной формы и МНК называется косвенным методом наименьших квадратов. Использование косвенного метода наименьших квадратов заключается просто в составлении приведенной формы для определения численных значений параметров каждого уравнения посредством обычного МНК. После этого с помощью алгебраических преобразований переходят опять к исходной структурной форме модели и получают тем самым численные оценки структурных параметров.

Размещено на Allbest.ru

...

Подобные документы

  • Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.

    контрольная работа [79,3 K], добавлен 28.07.2013

  • Построение гипотезы о форме связи денежных доходов на душу населения с потребительскими расходами в Уральском и Западно-Сибирском регионах РФ. Расчет параметров уравнений парной регрессии, оценка их качества с помощью средней ошибки аппроксимации.

    контрольная работа [4,5 M], добавлен 05.11.2014

  • Построение эконометрической модели спроса в виде уравнений парной и множественной регрессии. Отбор факторов для построения функции потребления. Расчет коэффициентов корреляции и детерминации, проверка правильности выбранных факторов и формы связи.

    контрольная работа [523,7 K], добавлен 18.08.2010

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

  • Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.

    лабораторная работа [67,8 K], добавлен 26.12.2010

  • Экономическое моделирование хозяйственных процессов. Множественная модель уравнения регрессии. Уравнение парной линейной регрессии, поиск необходимых значений. Выбор одного из значимых признаков для построения парной модели, расчет показателей.

    контрольная работа [117,6 K], добавлен 17.04.2015

  • Выборка и генеральная совокупность. Модель множественной регрессии. Нестационарные временные ряды. Параметры линейного уравнения парной регрессии. Нахождение медианы, ранжирование временного ряда. Гипотеза о неизменности среднего значения временного ряда.

    задача [62,0 K], добавлен 08.08.2010

  • Понятие параметрической идентификации парной линейной эконометрической модели. Критерий Фишера, параметрическая идентификация парной нелинейной регрессии. Прогнозирование спроса на продукцию предприятия. Использование в MS Excel функции "Тенденция".

    контрольная работа [73,3 K], добавлен 24.03.2010

  • Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа [100,5 K], добавлен 02.06.2014

  • Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.

    контрольная работа [200,1 K], добавлен 21.08.2010

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.

    контрольная работа [226,6 K], добавлен 11.08.2015

  • Построение модели парной регрессии и расчет индекса парной корреляции. Построение производственной функции Кобба-Дугласа, коэффициент детерминации . Зависимость среднедушевого потребления от размера дохода и цен. Расчет параметров структурной модели.

    контрольная работа [1,6 M], добавлен 05.01.2012

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Расчет уравнений линейной и нелинейной парной регрессии. Оценка тесноты связи расходов на перевозки и грузооборота с помощью показателей корреляции и детерминации. Оценка ошибки аппроксимации уравнений регрессии. Расчет прогнозного значения расходов.

    курсовая работа [2,5 M], добавлен 26.12.2014

  • Ковариация и коэффициент корреляции, пары случайных переменных. Вычисление их выборочных значений и оценка статистической значимости в Excel. Математическая мера корреляции двух случайных величин. Построение моделей парной и множественной регрессии.

    контрольная работа [2,2 M], добавлен 24.12.2014

  • Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.

    контрольная работа [2,0 M], добавлен 05.04.2014

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.

    контрольная работа [771,6 K], добавлен 28.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.