Понятие вариационного ряда
Абсолютные и относительные показатели, размах и степени интенсивности вариации. Дисперсия как средняя из квадратов отклонений вариантов значений признака от их средней величины. Структурные показатели вариационного ряда: мода, медиана, квартили, децили.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 26.06.2013 |
Размер файла | 134,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Сочинский государственный университет
Социально-педагогический факультет
Кафедра общей и профессиональной педагогики
Контрольная работа
по дисциплине: "Методы математической статистики в психологии и педагогике"
Тема: "Понятия вариационного ряда"
Выполнила: студентка 2-го курса
группы 11-ЗСП
Бурлаченко Елена Сергеевна
Проверил преподаватель: к.п.н., доцент
Холодкова Т.Г.
Сочи 2013
Содержание
Введение
1. Понятие вариации. Абсолютные и относительные показатели вариации
2. Размах вариации. Среднее линейное отклонение
3. Дисперсия. Виды дисперсий
4. Среднее квадратическое (стандартное) отклонение. Коэффициент вариации
5. Структурные показатели вариационного ряда: мода, медиана, квартили, децили
6. Показатели дифференциации
7. Пример нахождения вариационного ряда
Список литературы
Введение
С незапамятных времен человечество осуществляло учет многих сопутствующих его жизнедеятельности явлений и предметов и связанные с ним вычисления. Люди получали разносторонние, хотя и различающиеся полнотой на различных этапах общественного развития. Данные, упитывавшиеся повседневно в процессе принятия хозяйственных решений, а в обобщенном виде и на государственном уровне при определении русла экономической и социальной политики и характера внешнеполитической деятельности.
Руководствуясь соображениями зависимости благосостояния нации от величины создаваемого полезного продукта, интересов стратегической безопасности государств и народов от численности взрослого мужского населения, доходов казны от размера налогооблагаемых ресурсов и т. д., издавна отчетливо осознавалась и реализовывалась в форме различных учетных акций.
С учетом достижений экономической науки стал возможен расчет показателей, обобщенно характеризующих результаты воспроизводственного процесса на уровне общества: совокупного общественного продукта, национального дохода, валового национального продукта.
Всю перечисленную информацию в постоянно возрастающих объемах предоставляет обществу статистика, являющаяся необходимо принадлежностью государственного аппарата. Статистические данные, таким образом, способны сказать языком статистических показателей о многом в весьма яркой и убедительной форме.
1. Понятие вариации. Абсолютные и относительные показатели вариации
Вариационными называют ряды распределения, построенные по количественному признаку. Значения количественных признаков у отдельных единиц совокупности непостоянны, более или менее различаются между собой.
Вариация - колеблемость, изменяемость величины признака у единиц совокупности. Отдельные числовые значения признака, встречающиеся в изучаемой совокупности, называют вариантами значений. Недостаточность средней величины для полной характеристики совокупности заставляет дополнять средние величины показателями, позволяющими оценить типичность этих средних путем измерения колеблемости (вариации) изучаемого признака.
Наличие вариации обусловлено влиянием большого числа факторов на формирование уровня признака. Эти факторы действуют с неодинаковой силой и в разных направлениях. Для описания меры изменчивости признаков используют показатели вариации.
Задачи статистического изучения вариации:
1) изучение характера и степени вариации признаков у отдельных единиц совокупности;
2) определение роли отдельных факторов или их групп в вариации тех или иных признаков совокупности.
В статистике применяются специальные методы исследования вариации, основанные на использовании системы показателей, с помощью которых измеряется вариация.
Исследование вариаций имеет важное значение. Измерение вариаций необходимо при проведении выборочного наблюдения, корреляционном и дисперсионном анализе и т. д.
По степени вариации можно судить об однородности совокупности, об устойчивости отдельных значений признаков и типичности средней. На их основе разрабатываются показатели тесноты связи между признаками, показатели оценки точности выборочного наблюдения.
Различают вариацию в пространстве и вариацию во времени.
Под вариацией в пространстве понимают колеблемость значений признака у единиц совокупности, представляющих отдельные территории. Под вариацией во времени подразумевают изменение значений признака в различные периоды времени.
Для изучения вариации в рядах распределения проводят расположение всех вариантов значений признака в возрастающем или убывающем порядке. Этот процесс называют ранжированием ряда.
Самыми простыми признаками вариации являются минимум и максимум - самое наименьшее и наибольшее значение признака в совокупности. Число повторений отдельных вариантов значений признаков называют частотой повторения (fi). Частоты удобно заменять частостями - wi. Частость - относительный показатель частоты, который может быть выражен в долях единицы или процентах и позволяет сопоставлять вариационные ряды с различным числом наблюдений. Выражается формулой:
Для измерения вариации признака применяются различные абсолютные и относительные показатели. К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение. К относительным показателям колеблемости относят коэффициент осцилляции, относительное линейное отклонение, коэффициент вариации.
2. Размах вариации. Среднее линейное отклонение
вариация дисперсия мода медиана
Абсолютные и средние величины не могут дать всесторонней характеристики изучаемой совокупности, не позволяют судить о структуре совокупности, о внутреннем ее строении. Более полное представление об изучаемой совокупности может быть получено путем исследования различий между единицами совокупности с помощью измерения колеблемости изучаемого признака.
Размах вариации (R) представляет собой разность между максимальным и минимальным значениями признака в изучаемой совокупности
R = Хmax- Xmin.
Этот показатель дает самое общее представление о колеблемости изучаемого признака, так как показывает разницу только между предельными значениями вариантов. Зависимость от крайних значений признака придает размаху вариации неустойчивый, случайный характер.
Размах вариации не связан с частотами в вариационном ряду, т.е. с характером распределения. Размах вариации не дает никакой информации об особенностях исследуемых совокупностей и не позволяет оценить степень типичности полученных средних. Область применения этого показа-геля ограничена достаточно однородными совокупностями.
Для характеристики вариации признака нужно знать не только амплитуду (размах) его значений, но и уметь обобщить отклонения всех этих значений от какой-либо типичной для изучаемой совокупности величины. В качестве такой величины используют среднюю арифметическую. Такие показатели вариации, пак среднее линейное отклонение, дисперсия и среднее квадратическое отклонение, основаны на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической.
Среднее линейное отклонение представляет собой среднюю арифметическую из абсолютных значений отклонений отдельных вариантов от их средней арифметической:
где d - среднее линейное отклонение;
|| - абсолютное значение (модуль) отклонения варианта от средней арифметической;
f-частота.
Первая формула применяется, если каждый из вариантов встречается в совокупности только один раз, а вторая - в рядах с неравными частотами. Необходимость использования в формулах среднего линейного отклонения модулей отклонений вариантов от средней вызвана тем, что алгебраическая сумма этих отклонений равна нулю по свойствам средней арифметической. Среднее линейное отклонение показывает, насколько в среднем колеблется величина признака у единиц исследуемой совокупности, и выражается в тех же единицах измерения, что и варианты.
3. Дисперсия. Виды дисперсий
Дисперсия () - средняя из квадратов отклонений вариантов значений признака от их средней величины:
Или
для не сгруппированных данных,
для сгруппированных данных.
Свойства дисперсии.
1. Дисперсия постоянной величины равна 0.
2. Уменьшение всех значений признака на одну и ту же величину не изменяет величину дисперсии:
3. Уменьшение всех значений признака в к раз уменьшает дисперсию в k2 раз:
4. Средний квадрат отклонений, исчисленный от среднего арифметического, всегда будет меньше среднего квадрата отклонений, исчисляемого от любой другой величины: > . Величина различия между ними вполне определенная, это квадрат разности между средней и этой условной величиной А.
Дисперсия альтернативного признака, т. е. признака, имеющего два противоположных значения. В таких случаях наличие признака обозначается единицей, а его отсутствие - нулем. Доля единиц, обладающих признаком, обозначается через р, доля остальных единиц
- q= 1 - р.
Средняя величина альтернативного признака:
Дисперсия альтернативного признака:
Cреднее квадратическое отклонение альтернативного признака:
Общая дисперсия измеряет вариацию признака во всей совокупности, возникающую под влиянием всех факторов. Исчисляется по формуле:
Групповые средние и дисперсии обозначим соответственно х. и о'. Внутригрупповые дисперсии показывают величину вариации, вызванную всеми признаками, кроме признака, положенного в основу группировки.
Межгрупповая дисперсия является мерой вариации признака между группами и характеризует колеблемость групповых средних (Т) около общей средней (Т) (среднее квадратическое отклонение групповых средних от общей средней):
4. Среднее квадратическое (стандартное) отклонение. Коэффициент вариации
Среднее квадратическое отклонение основано на рассмотрении отклонений значений признака отдельных единиц совокупности от средней арифметической. При этом используется способ усреднения отклонений вариантов от средней арифметической, позволяющий обойти трудность, обусловленную равенством нулю их алгебраической суммы. Данный способ сводится к расчету квадратов отклонений вариантов от средней с их последующим усреднением.
Дисперсия (о*) - средняя из квадратов отклонений вариантов значений признака от их средней величины:
вторая формула применяется при наличии у вариантов своих весов (или частот вариационного ряда).
Среднее квадратическое отклонение (о) представляет собой корень квадратный из дисперсии:
Среднее квадратическое отклонение показывает, насколько е среднем колеблется величина признака у единиц исследуемой совокупности, и выражается в тех же единицах измерения, что и варианты.
В статистической практике часто возникает необходимость сравнения вариации различных признаков. При сравнении изменчивости различных признаков в совокупности, для оценки интенсивности вариации, для сравнения ее в разных совокупностях 1 и для разных признаков удобно применять относи - тельные показатели вариации. Эти показатели вычисляются как отношение абсолютных показателей к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, получают относительные показатели колеблемости:
(коэффициент осцилляции);
(относительное линейное отклонение).
Коэффициент вариации - наиболее часто применяемый показатель относительной колеблемости, характеризующий однородность совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % для распределений, близких к нормальному. Коэффициент вариации применяется для сравнения колеблемости разнородных признаков. Коэффициент вариации часто используется для сравнения размеров вариации в совокупностях, отличающихся друг от друга величиной средней (в совокупностях с разными уровнями):
Оценка степени интенсивности вариации возможна только для каждого отдельного признака и совокупности определенного состава. При этом при равенстве коэффициентов вариации для различных признаков или в разных совокупностях вариация в одних случаях может считаться как сильная, а в других - как слабая. Различная сила, интенсивность вариации обусловлены объективными причинами.
5. Структурные показатели вариационного ряда: мода, медиана, квартили, децили
Основные структурные показатели вариационного ряда, мода; медиана; квартили; децили.
Мода - это наиболее часто встречающееся в совокупности значение признака. Для дискретного вариационного ряда мода определяется по частотам вариант и соответствует варианте с максимальной частотой.
Особенности применения моды:
1) если все значения вариационного ряда имеют одинаковую частоту, то говорят, что этот вариационный ряд не имеет моды;
2) если две соседних варианты имеют одинаковую доминирующую частоту, то мода вычисляется как среднее арифметическое этих вариант;
3) если две несоседних варианты имеют одинаковую доминирующую частоту, то такой вариационный ряд называется бимодальным;
4) если таких вариант более двух, то ряд полимодальный.
Определение модального интервала в случае интервального вариационного ряда:
1) с равными интервалами модальный интервал определяется по наибольшей частоте;
2) при неравных интервалах - по наибольшей плотности.
Формула определения моды при равных интервалах внутри модального интервала:
Применение моды:
1) в практике мода и медиана иногда используются вместо средней арифметической или вместе с ней;
2) фиксируя средние цены товаров или продуктов на рынке, записывают наиболее часто встречающуюся цену на рынке (моду цены).
Медиана - это значение изучаемого признака, приходящееся на середину ранжированной совокупности.
Порядок вычисления медианы:
при вычислении медианы интервального вариационного ряда сначала находят медианный интервал. Для этого можно использовать кумулятивное распределение частот или относительных частот. Медианному интервалу соответствует тот, в котором содержится накопленная частота, равная 1/2; внутри найденного интервала расчет медианы производится по формуле:
где Wcm, - кумулятивная частота интервала, предшествующего медианному;
Wm- относительная частота медианного интервала.
Применение свойства медианы:
при проектировании оптимального положения остановок общественного транспорта; при проектировании складских помещений; при сооружении бензозаправок и т. д.
Квартили - это порядковые характеристики, отделяющие четверти ранжированных совокупностей.
Особенности вычисления квартили:
первый квартиль (нижний) отделяет четверть ранжированной совокупности снизу и вычисляется по формуле:
для интервального:
Медиану можно рассматривать как второй квартиль. Верхний квартиль:
6. Показатели дифференциации
Для изучения характера вариации используются средние значения разных степеней отклонений отдельных величин признака от его средней арифметической величины. Эти показатели называют центральными моментами распределения порядка, соответствующего степени, в которую возводятся отклонения. Согласно свойству средней арифметической центральный момент первого порядка равен нулю, второй центральный момент представляет собой дисперсию. Величина третьего момента m3: зависит, как и его знак, от преобладания положительных отклонений в кубе над отрицательными либо наоборот.
При нормальном и любом другом строго симметричном распределении сумма положительных отклонений в кубе строго равна сумме отрицательных отклонений в кубе.
Момент третьего порядка используется при оценке асимметрии.
В анализе вариационных рядов применяются также специальные показатели, позволяющие охарактеризовать расхождения между эмпирическим и нормальным распределениями как с качественной, так и с количественной стороны. Нормальное распределение строго симметрично. Фактически распределения, построенные по эмпирическим данным, как правило, асимметричны, т. е. смещены по отношению к оси симметрии нормального распределения влево или вправо. Для определения направления величины этого смещения (скошенности) употребляется коэффициент асимметрии:
где m3- центральный момент третьего порядка;
- куб среднего квадратического отклонения. в эмпирических распределениях центральный момент нечеткого порядка будет отличаться от нуля в зависимости от характера асимметрии: при левосторонней асимметрии он будет меньше нуля, при правосторонней - больше нуля. Коэффициент асимметрии позволяет проводить сравнения между собой различных распределений.
На основе разности между средней величиной и модой вычисляют другой показатель асимметрии:
который при левосторонней асимметрии отрицателен, а при правосторонней - положителен.
Четвертый центральный момент:
используется для оценки эксцесса распределения, т. е. его островершинности по отношению к нормальному распределению. Центральный момент четвертого порядка mt/o> для нормального распределения равен 3. Коэффициент эксцесса для эмпирического распределения представляет собой величину:
Этот коэффициент положителен при островершинности изучаемого распределения по отношению к нормальному и отрицателен при плосковершинности.
7. Пример нахождения вариационного ряда
Задание № 1. По данной выборке:
а) Найти вариационный ряд;
б) Построить функцию распределения;
в) Построить полигон частот;
г) Вычислить среднее значение СВ, дисперсию, среднеквадратичное отклонение.
№=42. Элементы выборки:
1 5 1 8 1 3 9 4 7 3 7 8 7 3 2 3 5 3 8 3 5 2 8 3 7 9 5 8 8 1 2 2 5 1 6 1 7 6 7 7 6 2
Решение.
а) построение ранжированного вариационного ряда:
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 5 5 5 5 5 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 9 9
б) построение дискретного вариационного ряда.
Вычислим число групп в вариационном ряду пользуясь формулой Стерджесса:
Примем число групп равным 7.
Зная число групп, рассчитаем величину интервала:
Для удобства построения таблицы примем число групп равным 8, интервал составит 1.
Таблица 2
xj |
1-2 (+) |
2-3 |
3-4 |
4-5 |
5-6 |
6-7 |
7-8 |
8-9 |
Итого |
|
fj |
11 |
7 |
1 |
5 |
3 |
7 |
6 |
2 |
42 |
|
Середина интервала xj' |
1,5 |
2,5 |
3,5 |
4,5 |
5,5 |
6,5 |
7,5 |
8,5 |
||
xj'fj |
16,5 |
17,5 |
3,5 |
22,5 |
16,5 |
45,5 |
45 |
17 |
184 |
|
Накопленная частота fj' |
11 |
18 |
19 |
24 |
27 |
34 |
40 |
42 |
в) построение функции распределения:
С помощью ряда накопленных частот построим кумулятивную кривую распределения.
Диаграмма 1
в) построение полигона частот:
Диаграмма 2
г) вычисление среднего значения СВ, дисперсии, среднеквадратичного отклонения:
Список литературы
1. Асимптотические методы для обыкновенных дифференциальных уравнений: Р.П. Кузьмина - Санкт-Петербург, Едиториал УРСС, 2003 г.- 336 с.
2. Вариационные методы. Приложения к нелинейным уравнениям в частных производных и гамильтоновым системам: М. Струве - Санкт-Петербург, МЦНМО, 2010 г.- 320 с.
3. Высшая математика. Том 2. Дифференциальное и интегральное исчисление: Я.С. Бугров, С.М. Никольский - Москва, Дрофа, 2007 г.- 512 с.
4. Интегралы и ряды. В 3 томах. Том 1. Элементарные функции: А.П. Прудников, Ю.А. Брычков, О.И. Маричев - Санкт-Петербург, ФИЗМАТЛИТ, 2003 г.- 632 с.
5. Интегралы и ряды. В 3 томах. Том 2. Специальные функции: А.П. Прудников, Ю.А. Брычков, О.И. Маричев - Санкт-Петербург, ФИЗМАТЛИТ, 2003 г.- 664 с.
Размещено на Allbest.ru
...Подобные документы
Расчет показателей вариации: среднее арифметическое, мода, медиана, размах вариации, дисперсия, стандартное и среднее линейное отклонения, коэффициенты осцилляции и вариации. Группировка данных по интервалам равной длины, составление вариационного ряда.
курсовая работа [429,7 K], добавлен 09.06.2011Средняя величина анализируемого признака. Размах и коэффициент вариации. Среднее линейное и квадратическое отклонение. Мода, медиана, первый и третий квартиль. Расчет медианы для интервального ряда. Основные аналитические показатели рядов динамики.
контрольная работа [301,9 K], добавлен 22.04.2015Построение интервального вариационного ряда распределения предприятий по объему реализации. Графическое изображение ряда (гистограмма, кумулята, огива). Расчет средней арифметической; моды и медианы; коэффициента асимметрии; показателей вариации.
контрольная работа [91,1 K], добавлен 10.12.2013Использование статистических характеристик для анализа ряда распределения. Частотные характеристики ряда распределения. Показатели дифференциации, абсолютные характеристики вариации. Расчет дисперсии способом моментов. Теоретические кривые распределения.
курсовая работа [151,4 K], добавлен 11.09.2010Характеристика способов определения средней арифметической вариационного дискретного ряда без испытуемого элемента. Анализ этапов расчета квадратичной ошибки коэффициента корреляции. Рассмотрение основных особенностей отбора факторных признаков.
контрольная работа [164,3 K], добавлен 18.10.2013Предмет, метод, показатели статистики. Понятия и категории статистического наблюдения. Показатели вариации, абсолютные и относительные величины, графический и индексный методы. Взаимосвязь социально-экономических явлений. Сглаживание рядов динамики.
курс лекций [132,9 K], добавлен 23.02.2009Абсолютные и относительные величины. Виды средних величин. Формы количественного выражения статистических показателей. Абсолютные размеры явлений и их признаков. Выбор единиц измерения величин. Индивидуальные, групповые и общие абсолютные величины.
презентация [135,5 K], добавлен 16.03.2014Понятие о средних величинах как обобщении в экономике. Виды средних величин: арифметическая, гармоническая, геометрическая, квадратическая и кубическая. Показатели вариации. Методика и примеры решения типовых задач на нахождение средних величин.
курсовая работа [27,7 K], добавлен 31.05.2008Определение средней фактической трудоемкости одной детали при поточном производстве. Алгоритм построения интервального вариационного ряда. Определение показателей динамики производства цемента. Вычисление агрегатных индексов себестоимости продукции.
контрольная работа [152,0 K], добавлен 06.02.2014Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.
контрольная работа [2,0 M], добавлен 05.04.2014Расчет показателей показательной статистики, построение графического изображения вариационного ряда с их использованием и оценка изучаемого явления, общая характеристика. Расчет средней арифметической, методы расчета. Уровень доверительной вероятности.
контрольная работа [592,1 K], добавлен 10.02.2009Расчет выборочной средней, дисперсии, среднего квадратического отклонения и коэффициента вариации. Точечная оценка параметра распределения методом моментов. Решение системы уравнений по формулам Крамера. Определение уравнения тренда для временного ряда.
контрольная работа [130,4 K], добавлен 16.01.2015Структурная, аналитическая и комбинационная группировка по признаку-фактору. Расчет среднего количества балансовой прибыли, среднего арифметического значения признака, медианы, моды, дисперсии, среднего квадратического отклонения и коэффициента вариаций.
контрольная работа [194,5 K], добавлен 06.04.2014Построение рядов распределения с произвольными интервалами и с помощью формулы Стерджесса. Построение статистических графиков. Расчет и построение структурных характеристик вариационного ряда. Общая характеристика исследуемых статистических совокупностей.
курсовая работа [654,9 K], добавлен 12.04.2009Использование принципа дисконтирования информации в методах статистического прогнозирования. Общая формула расчета экспоненциальной средней. Определение значения параметра сглаживания. Ретроспективный прогноз и средняя квадратическая ошибка отклонений.
реферат [9,8 K], добавлен 16.12.2011Оценка среднего значения выручки по кварталам на примере ОАО "РуссНефть". Оценка моды, медианы, абсолютных и относительных показателей. Построение тренда на 3 периода вперед. Анализ колеблемости и экспоненциальное сглаживание динамического ряда.
курсовая работа [1,4 M], добавлен 18.04.2011Анализ распределений для выявления закономерности изменения частот в зависимости от значений варьирующего признака и анализ различных характеристик изучаемого распределения. Характеристика центральной тенденции распределения и оценка вариации признака.
лабораторная работа [606,7 K], добавлен 13.05.2010Построение временной ряда величины по данным об уровне безработицы в России за 10 месяцев 2010 г., вычисление ее числовых характеристик. Регрессионная модель временного тренда. Краткосрочный и долгосрочный прогнозы изменения рассматриваемой величины.
контрольная работа [118,1 K], добавлен 26.02.2012Решение задачи изучения изменения анализируемых показателей во времени при помощи построения и анализа рядов динамики. Элементы ряда динамики: уровни динамического ряда и период времени, за который они представлены. Понятие переменной и постоянной базы.
методичка [43,0 K], добавлен 15.11.2010Комбинационную группировку по признаку-фактору и признаку-результату. Вариационные ряды распределения. Мода и медиана. Предельная ошибка выборки. Расчет абсолютного прироста населения в Себежском районе. Индивидуальный индекс физического объема и цены.
контрольная работа [520,7 K], добавлен 31.08.2014