Дискретно-стохастические модели (P-схемы)

Изучение вероятностного автомата или дискретного потактного преобразователя информации с памятью. Математическое понятие Р-автомата. Вероятностный автомат Мили и Мура. Оценка суммарных финальных вероятностей пребывания Р-автомата в разных состояниях.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 18.10.2013
Размер файла 48,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДИСКРЕТНО-СТОХАСТИЧЕСКИЕ МОДЕЛИ (P-схемы)

Вероятностный автомат [англ, probabilistic automat) (ВА) - это дискретный потактный преобразователь информации с памятью, функционирование которого в каждом такте зависит только от состояния памяти нем и может быть описано статистически.

Схемы вероятностных автоматов (Р-схем) применяются:

- в проектировании дискретных систем, проявляющих статистически закономерное случайное поведение;

- в определении алгоритмических возможностей систем;

- в обосновании границ целесообразности их использования;

- в решении задач синтеза по выбранному критерию дискретных стохастических систем, удовлетворяющих заданным ограничениям.

Математическое понятие Р-автомата формируется на понятиях, введенных для F-автомата.

Пусть множество G, элементами которого являются всевозможные пары где xi и zs -- элементы входного подмножества X и подмножества состояний Z соответственно . Если существуют две такие функции и , то с их помощью осуществляются отображения и , то говорят, что (1) определяет конечный автомат детерминированного типа.

Введем более общую математическую схему. Пусть Ф -- множество всевозможных пар вида (zk, yj), где yj -- элемент выходного подмножества Y, т.е. . Пусть в любой элемент множества G индуцирует на множестве Ф некоторый закон распределения следующего вида:

Таблица 1

Элементы из Ф

***

(z1, y1)

***

(z1, y2)

***

(zK, yJ-1)

(zK, yJ)

(zk, yj)

***

b11

b12

bk(j-1)

bkj

При этом , (2) где bkj -- вероятности перехода автомат в состояние zk и выдаче на выходе сигнала yj, если автомат был в состоянии z.S, и на его вход в момент времени поступил сигнал хi. Число таких распределений, представленных в виде таблиц, равно числу элементов множества G.

Обозначим множество этих таблиц через В. Тогда четверка элементов (3) называется вероятностным автоматом (Р-автоматом).

Вероятностный автомат Мили

Пусть элементы множества G индуцируют некоторые законы распределения на подмножествах Y и Z, которые можно представить соответственно в виде:

Таблица 2

Элементы из Y

***

y1

y2

***

YJ-1

y J

***

q1

q2

***

q J-1

q J

Элементы из Z

***

z1

z2

***

zK-1

zK

***

1

2

***

K-1

K

При этом и (4)-- вероятности перехода Р-автомата в состояние zk и выдачи выходного сигнала yk при условии, что Р-автомат находился в состоянии zS и на его вход поступил входной сигнал xt.

Если для всех k и j имеет место соотношение (5), то такой автомат называется вероятностным автоматом Мили. Представленное требование означает выполнение условия независимости распределений для нового состояния Р-автомата и его выходного сигнала.

Вероятностный автомат Мура

Пусть выходной сигнал Р-автомата зависит лишь от того состояния, в котором находится автомат в данном такте работы, каждый элемент выходного подмножества Y индуцирует распределение вероятностей выходов, имеющее следующий вид:

Таблица 3

Элементы из Ф

***

yl

у2

***

yk-1

yk

(zk, yj)

***

s1

S2

***

SI-1

SI

Здесь ,(6) где Si, -- вероятность появления сигнала на выходе yi при условии, что Р-автомат находился в состоянии zk.

Частным случаем Р-автомата являются автоматы, у которых либо переход в новое состояние, либо выходной сигнал определяются детерминированно. Такой автомат называется Y-детерминированным вероятностным автоматом.

Если состояние Р-автомата определяется детерменированно, то такой автомат называется Z-детерминированным вероятностным автоматом.

Аналогично, Z-детерминированным вероятностным автоматом называется Р-автомат, у которого выбор нового состояния является детерминированным.

Рассмотрим пример У-детерминированного Р-автомата

Пусть У-детерминированный Р-автомат, задан таблицей переходов.

Таблица 4

zk

zk

z1

z2

zK-1

zk

z1

p11

p12

p1(K-1)

p1K

z2

p21

P22

p2(K-1)

p2K

p3(K-1)

p3K

zk

pK1

pK1

pK(K-1)

pK

где pij - вероятность перехода автомата из состояния zi в состояние zj

Можем записать

(7)

Таблица выходов представлена следующим образом:

Таблица 5

Z.... z1

z2.... zk-

zk

Y.... уi1

уi2... yik-1

yik

Первую из этих таблиц можно представить в виде квадратной матрицы размерности К x К, которая называется матрицей переходных вероятностей или просто матрицей переходов Р-автомата. В общем случае матрица переходов имеет вид

(8)

Для полного описания У-детерминированного Р-автомата необходимо задать начальное распределение вероятностей вида

Таблица 6

Z.... z1

z2.... zk-

zk

D.... d1

d2.... dK-1

dK

где dK -- вероятность того, что в начале работы автомат находится в состоянии zk

При этом . (9)

Будем предполагать, что до начала работы (до нулевого такта времени) Р-автомат всегда находится в состоянии z0, в нулевом такте времени меняет свое состояние в соответствии с распределением D. Дальнейшая смена состояний Р-автомата определяется матрицей переходов РР. Информацию о начальном состоянии Р-автомата удобно внести в матрицу РР/, увеличив ее размерность до (10). При этом первая строка такой матрицы, сопоставляемая состоянию z0, будет иметь вид (0, dt, d2,......, dK), а первый столбец будет нулевым.

- сопоставляется со состоянием z0 (11)

Описанный У-детерминированный Р-автомат можно задать в виде ориентированного графа, вершины которого сопоставляются состояниям автомата, а дуги -- возможным переходам из одного состояния в другое. Дуги имеют веса, соответствующие вероятностям перехода рij, а около вершин графа пишутся значения выходных сигналов, индуцируемых этими состояниями.

Рассмотрим следующий пример. У-детерминированный Р-автомат задан матрицей

(12)

Таблица 7

Z

z0

z1

z2

z3

z4

Y

0

0

1

1

0

Граф переходов имеет вид (Рис.1).

Рис. 1

вероятностный автомат дискретный преобразователь

Требуется оценить суммарные финальные вероятности пребывания этого Р-автомата в состояниях z2 и z3.

При использовании аналитического подхода можно записать известные соотношения из теории марковских цепей и получить систему уравнений для определения финальных вероятностей. Начальное состояние za можно не учитывать, так как начальное распределение не оказывает влияния на значения финальных вероятностей. Тогда имеем

- матрица финальных состояний (13)

(14), где ck - финальная вероятность пребывания Р-автомата в состоянии zk.

Получаем систему уравнений

(15)

Добавим к этим уравнениям условие нормировки с12 + с3 + с4 = 1 (16). Тогда, решая систему уравнений, получим с1 = 5/23, с2=8/23, c3 = 5/23, с4 = 5/23 (17). Таким образом, с23= 13/23 =0,5652 (18). Другими словами, при бесконечной работе заданного в этом примере У-детерминированного Р-автомата на его выходе формируется двоичная последовательность с вероятностью появления единицы, равной 0,5652.

Подобные Р-автоматы могут использоваться как генераторы марковских последовательностей, которые необходимы при построении и реализации процессов функционирования систем S или воздействий внешней среды Е.

Для оценки различных характеристик исследуемых систем, представляемых в виде Р-схем, кроме рассмотренного случая аналитических моделей можно применять и имитационные модели, реализуемые, например, методом статистического моделирования.

Размещено на Allbest.ru

...

Подобные документы

  • Имитационное моделирование на цифровых вычислительных машинах. Разработка модели процесса инвестирования по заданному его математическому описанию и структуре гибридного автомата, реализующего данную модель. Запуск пакета MVS и создание нового проекта.

    курсовая работа [1,3 M], добавлен 27.02.2015

  • Нахождение вероятности за определенный промежуток времени. Плотность распределения вероятностей. Математическое ожидание и среднеквадратическое отклонение. Интегральная теорема Лапласа, распределение Стьюдента. Исправленная выборочная дисперсия.

    контрольная работа [110,5 K], добавлен 28.05.2012

  • Статистические модели принятия решений. Описание моделей с известным распределением вероятностей состояния среды. Рассмотрение простейшей схемы динамического процесса принятия решений. Проведение расчета вероятности произведенной модификации предприятия.

    контрольная работа [383,0 K], добавлен 07.11.2011

  • Стохастические игры как разновидность многошаговых игр, в которых переход от одной позиции к другой совершается с определенной вероятностью. Расчетные методы их решения. Разработка и тестирование программного средства для решения игры "Герб-Решетка".

    контрольная работа [364,0 K], добавлен 20.02.2013

  • Множественная корреляция и линейная регрессия. Оценка прогнозных качеств модели. Простейшие методы линеаризации. Вероятностный эксперимент, событие или вероятность. Фиктивные переменные в регрессионных моделях. Системы эконометрических уравнений.

    курс лекций [2,0 M], добавлен 13.02.2014

  • Построение и изучение математической модели случайного стационарного эргодического процесса с вероятностными характеристиками: ожидание и дисперсия. Построение графиков динамики изменения эмпирических данных и гистограмм распределения для всех выборок.

    курсовая работа [217,2 K], добавлен 18.03.2012

  • Модели движения людских потоков на основе уравнений динамики жидкости и газов, основанные на социальных силах и теории клеточных автоматов. Численное исследование полевой стохастической дискретно-непрерывной модели движения людей на примере "коридор".

    дипломная работа [1,1 M], добавлен 18.12.2013

  • Динамические, стохастические, дискретные модели имитационного моделирования. Предпосылки, технологические этапы машинного моделирования сложной системы. Разработка имитационной модели автоматизированного участка обработки деталей, ее верификация.

    дипломная работа [224,3 K], добавлен 05.09.2009

  • Составление математической модели транспортной задачи закрытого типа, представленной в матричной форме, с ограничениями пропускной способности. Поиск оптимального плана, при котором выполняется условие наименьшего суммарного пробега порожних вагонов.

    контрольная работа [60,5 K], добавлен 20.03.2014

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.

    контрольная работа [26,7 K], добавлен 23.12.2013

  • Статистический анализ в Excel. Очистка информации от засорения, проверка закона распределения, корреляционный и регрессионный анализ двумерной и трехмерной модели. Математическая модель и решение задачи оптимального управления экономическим процессом.

    контрольная работа [447,2 K], добавлен 04.11.2009

  • Теоретические основы первичной обработки статистической информации. Особенности определения минимального числа объектов наблюдения при оценке показателей надежности. Анализ вероятностной бумаги законов нормального распределения и распределения Вейбулла.

    курсовая работа [163,5 K], добавлен 22.03.2010

  • Создание математической модели для оперативного мониторинга продажи услуг в Региональном филиале ОАО "Сибирьтелеком"-"Томсктелеком". Преимущества, стоимость и основные перспективы развития услуг ISDN. Математическое моделирование dial-up подключений.

    дипломная работа [2,8 M], добавлен 20.09.2010

  • Изучение экономических показателей и особенностей повышения эффективности химического производства, которое достигается различными методами, одним из которых является метод математического моделирования. Анализ путей снижения затрат на производство.

    курсовая работа [41,2 K], добавлен 07.09.2010

  • Моделирование приращений цены, процентной ставки, кредитного риска. Хеджирование и динамическое управление капиталом. Определение величины скачков цен. Модели с использованием байесовского подхода (формула пересчета вероятностей). Алгоритм Монте-Карло.

    презентация [263,4 K], добавлен 23.06.2015

  • Разработка оптимального режима процесса получения максимального выхода химического вещества. Обоснование выбора методов получения математической модели и оптимизации технологического процесса. Входная и выходная информация, интерпретация результатов.

    курсовая работа [114,9 K], добавлен 08.07.2013

  • Сущность математического моделирования и формализации. Выявление управляемых и неуправляемых параметров. Математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными).

    курсовая работа [116,8 K], добавлен 17.12.2009

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Построение имитационной схемы для модели Солоу и прослеживание ее динамики на протяжении 30 лет. Вычисление стационарного значения фондовооруженности. Проверка "золотого правила накопления". Изучение поведения модели при смене некоторых параметров.

    лабораторная работа [722,3 K], добавлен 11.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.