Математические методы моделирования информационных процессов и систем
Изучение основных этапов построения математической модели. Адекватное описание влияния параметров и условий функционирования на показатели качества. Условия определения состояния системы. Процесс реализации системотехнической цепочки преобразований.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 18.10.2013 |
Размер файла | 30,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Математические методы моделирования информационных процессов и систем
Основные этапы построения математической модели:
составляется описание функционирования системы в целом;
составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;
определяется перечень воздействующих на систему внешних факторов и их характеристик;
выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;
составляется формальная математическая модель системы;
составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.
Требования к математической модели:
Требования определяются, прежде всего, ее назначением, т.е. характером поставленной задачи:
"Хорошая" модель должна быть:
целенаправленной;
простой и понятной пользователю;
достаточной с точки зрения возможностей решения поставленной задачи;
удобной в обращении и управлении;
надежной в смысле защиты от абсурдных ответов;
допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.
Математическая модель, в широком смысле, это приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Что касается точности модели, то ее уровень должен обеспечивать достоверное сравнительное оценивание и ранжирование по уровню качества альтернативных вариантов.
В основе изучения и моделирования процессов функционирования технических систем всегда лежит эксперимент - реальный или логический. Суть реального эксперимента состоит в непосредственном изучении конкретного физического объекта. В ходе логического эксперимента свойства объекта исследуются не на самом объекте, а с помощью его математической или содержательной (словесной) модели, изоморфной объекту с точки зрения изучаемых эксперименте свойств.
Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе, исследователь получает возможность установить и записать математически существующую между ними связь в виде уравнения, связывающего для каждого интервала времени значения входных и выходных воздействий и потому называемого уравнением «вход-выход». Кроме того, для адекватного отражения связи между входом и выходом системы в системотехнике вводится понятие «состояние». По своему смыслу состояние z(ф) представляет собой совокупность существенных свойств (характеристик) системы, знание которых в настоящем (в момент времени ф) позволяет определить ее поведение в будущем (в моменты времени t > ф). Благодаря этому понятию, уравнение “вход-выход”-состояние принимает вид:
YT = A(T, z(ф), XT), (2.1)
где XT, YT - входной и выходной процесс на интервале времени T;
A(*)- оператор выходов.
Согласно (2.1), выходной процесс полностью определяется входным процессом и начальным состоянием и не зависит от того, каким образом система была переведена в это состояние. Отсюда ясно, что уравнение (2.1) ограничивает класс рассматриваемых систем только такими системами, функционирование которых в настоящем не зависит от того, как они функционировали в прошлом.
Для полного описания процесса функционирования системы необходимо задать условия определения состояния системы. Для этого вводится понятие уравнения состояния:
z(t) = B(фt, z(ф), Xфt), (2.2)
где B(*) - оператор, устанавливающий однозначную зависимость z(t) от пары (z(ф), Xфt), которая задана на интервале t, и называемый оператором перехода.
Уравнения (2.1) и (2.2) имеют достаточно логичное обобщение и на многомерный случай, когда каждая из компонент уравнений имеет векторный вид:
Таким образом, модель функционирования системы должна обеспечивать прогнозирование процесса функционирования на всем интервале функционирования T (множество времени) по заданному вектору начального состояния записанном в векторном виде входному процессу (T). Согласно изложенному выше, для решения этой задачи достаточно задать множества допустимых значений входных X и выходных Y процессов, а также множество возможных состояний системы Z и операторы выхода A и перехода B. Модель функционирования системы без предыстории представляет собой кортеж
MF = <T, X, Y, Z, A, B>. (2.3)
Если все компоненты в (2.3) известны, модель функционирования полностью определена и может быть использована для описания и изучения свойственных системе процессов функционирования. Множества и операторы, составляющие общесистемную модель (2.3), могут обладать различными свойствами, совокупность которых позволяет конкретизировать характер функционирования системы:
N - непрерывность;
L - линейность;
C - стационарность;
P - стохастичность (вероятность).
Наделяя систему теми или иными свойствами общесистемная модель конкретизируется до системной модели.
Системные свойства:
1). Если интервал функционирования системы Т = [] представляет отрезок оси действительных чисел, заданный началом и концом , то система функционирует в непрерывном времени. Если, кроме того непрерывны операторы А и В, то система наз. непрерывной.
2). С т.зр. реакции на внешнее воздействие объекты подразделяют на линейные и нелинейные. Линейными наз. такой объект, реакция которого на совместное воздействие 2-х любых внешних возмущений равно сумме реакций на каждое из этих воздействий, приложенных к системе порознь.
- принцип суперпозиции,
(0)=0 (начальное состояние системы),
где - оператор объекта, устанавливает связь входа и выхода.
Для линейных систем выполняется принцип суперпозиции.
3). Поскольку стационарная система при фиксированном начальном состоянии Z(t0) одинаково реагирует на эквивалентные, отличающиеся только сдвигом по времени, входные воздействия, то наложение интервала t0, t на оси времени не оказывает влияния на процесс функционирования системы. Модель М для стационарных систем не содержит в явном виде интервал функционирования Т.
4) Если в модели М операторы А и В каждой паре (X, V, Z(t0)) (вход, состояние) ставят в соответствие единственные значения Y и Z, описываемая этой моделью система называется детерминированной. Для стохастической (вероятностной) системы Y и Z, случайные величины, заданные законами распределения.
Общесистемная и системные модели функционирования (в дальнейшем термин «модель функционирования» для краткости может заменяться термином «модель» с сохранением исходного смысла) обладают исключительно высокой степенью общности. Они, безусловно, необходимы для теоретических исследований и полезны, так как выявляют общие закономерности, присущие весьма широкому классу систем. Но в повседневной практической деятельности инженеры традиционно используют так называемые конструктивные модели - гораздо менее общие, но позволяющие производить конкретные вычисления. Конструктивные модели в сущности представляют собой алгоритмы, пользуясь которыми, можно определить значения одних переменных, характеризующих данную систему, по заданным или измеренным значениям других переменных. Однако между системными и конструктивными моделями нет противоречия. По мере накопления знаний о системе, уточнения и конкретизации ее свойств и характеристик системная модель естественным образом преобразуется в конструктивную. Следовательно, конструктивная модель может и должна закономерно вырастать из более общей системной модели. Такой - истинно системотехнический подход - представляется более обоснованным, чем априорное задание конструктивной модели исследователем, использующим для этого лишь свою интуицию и субъективные представления о возможностях тех или иных математических схем.
Таким образом, наиболее важные и принципиальные этапы построения модели функционирования системы определяются процессом реализации системотехнической цепочки преобразований «общесистемная модель системная модель конструктивная модель машинная модель».
Моделирование процессов функционирования конкретной системы должно начинаться с записи всех компонент общесистемной модели (2.3), определения их содержательного смысла и областей изменения. Согласно модели (2.3), необходимо определить: интервал времени, на котором нас интересует функционирование системы; множество входных и выходных воздействий и области их возможных изменений; множество характеристик состояния системы и область их возможных изменений.
Классификация системных моделей
Размещено на http://www.allbest.ru/
MNLCP - легко мат. описание MNLCP - нет адекватного мат. описания (трудно)
Инверсия (N) - данное свойство не выполняется, например, нет свойства непрерывности
Общесистемная и системные модели обладая высшей степенью общности устанавливают закономерности, которые присущи всем или достаточно широкому классу систем. В инженерной практике используют так называемые конструктивные модели, пригодные для инженерных расчетов.
КМ - алгоритмы, пользуясь которыми можно определить значения одних переменных, характеризующих систему по заданным или измеренным значениям других переменных.
КМ - может и должна вырастать из большой общей системной модели путем конкретизации ее свойств.
При построении моделей функционирования систем применяют следующие подходы:
непрерывно-детерминированный подход (дифференцированные уравнения);
дискретно-детерминированный (конечные автоматы);
дискретно-стохастический подход (вероятностные автоматы);
непрерывно-стохастический подход (системы СМО)
обобщенный / универсальный подход (агрегитивные системы)
математический системотехнический цепочка
Размещено на Allbest.ru
...Подобные документы
Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.
реферат [192,1 K], добавлен 15.06.2015Особенности управления состоянием сложных систем. Способы нахождения математической модели объекта (системы) методом площадей в виде звена 2-го и 3-го порядков. Формы определения устойчивости ЗСАУ. Нахождение переходной характеристики ЗСАУ и основных ПКР.
курсовая работа [112,5 K], добавлен 04.02.2011Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.
реферат [431,4 K], добавлен 11.02.2011Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.
лекция [124,5 K], добавлен 15.06.2004Классификация бизнес-процессов, различные подходы к их моделированию и параметры качества. Методология и функциональные возможности систем моделирования бизнес-процессов. Сравнительная оценка систем ARIS и AllFusion Process Modeler 7, их преимущества.
дипломная работа [1,6 M], добавлен 11.02.2011Гомоморфизм - методологическая основа моделирования. Формы представления систем. Последовательность разработки математической модели. Модель как средство экономического анализа. Моделирование информационных систем. Понятие об имитационном моделировании.
презентация [1,7 M], добавлен 19.12.2013Разделение моделирования на два основных класса - материальный и идеальный. Два основных уровня экономических процессов во всех экономических системах. Идеальные математические модели в экономике, применение оптимизационных и имитационных методов.
реферат [27,5 K], добавлен 11.06.2010Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.
курсовая работа [1,3 M], добавлен 02.10.2009Основные категории и критерии инструментальных средств, предназначенных для моделирования информационных систем. Проведение анализа предметной области проекта автомастерской массового обслуживания и построение математической модели данной системы.
курсовая работа [1,3 M], добавлен 18.08.2012Основные математические модели макроэкономических процессов. Мультипликативная производственная функция, кривая Лоренца. Различные модели банковских операций. Модели межотраслевого баланса Леонтьева. Динамическая экономико-математическая модель Кейнса.
контрольная работа [558,6 K], добавлен 21.08.2010Нахождение оптимальных условий для производства мясных рубленых полуфабрикатов. Проведение факторного эксперимента. Сбор априорной информации, выбор параметров. Построение матрицы планирования эксперимента, проверка адекватности математической модели.
курсовая работа [42,1 K], добавлен 03.11.2014Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.
контрольная работа [73,9 K], добавлен 23.01.2009Сущность математического моделирования и формализации. Выявление управляемых и неуправляемых параметров. Математическое описание посредством уравнений, неравенств, функций и иных отношений взаимосвязей между элементами модели (параметрами, переменными).
курсовая работа [116,8 K], добавлен 17.12.2009Сопоставление множества различных вариантов по локальным критериям и выбор наиболее целесообразного с помощью методов математического моделирования. Анализ влияния факторов технологического режима на процесс подготовки массы. Коэффициенты регрессии.
курсовая работа [200,3 K], добавлен 02.05.2017Изучение методики математического моделирования технических систем на макроуровне. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрической оптимизации системы, обзор синтеза расчётной структуры.
курсовая работа [129,6 K], добавлен 05.04.2012Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.
контрольная работа [168,7 K], добавлен 08.10.2009Теоретико-методическое описание моделирования макроэкономических процессов. Модель Харрода-Домара, модель Солоу как примеры модели макроэкономической динамики. Практическое применение моделирования в планировании и управлении производством предприятия.
курсовая работа [950,4 K], добавлен 03.05.2009Построение модели управления запасами в условиях детерминированного спроса. Методы и приемы определения оптимальных партий поставки для однопродуктовых и многопродуктовых моделей. Определение оптимальных параметров системы управления движением запасов.
реферат [64,5 K], добавлен 11.02.2011Математические методы прогнозирования инновационных процессов в экономике, применяемых для построения интегральных моделей в экономической сфере. Метод стратегических сетей, разработанный М. Джексоном, М. Конигом, основанный на современной теории графов
статья [712,4 K], добавлен 07.08.2017Развитие экономико-математических методов и моделирования процессов в землеустройстве. Задачи схем и проектов. Математические методы в землеустройстве. Автоматизированные методы землеустроительного проектирования. Виды землеустроительной информации.
контрольная работа [23,5 K], добавлен 22.03.2015