Аналіз коефіцієнтів лінійних моделей

Побудова симплекс-таблиці для знаходження коефіцієнтів цільової функції. Розрахунок інтервалів базисних та небазисних змінних. Обчислення оптимального плану виробництва, за допомогою двоїстої математичної моделі. Прогнозування додаткових обмежень.

Рубрика Экономико-математическое моделирование
Вид лекция
Язык украинский
Дата добавления 28.11.2013
Размер файла 488,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЛЕКЦІЯ 7

АНАЛІЗ КОЕФІЦІЄНТІВ ЛІНІЙНИХ МОДЕЛЕЙ

Анотація

Аналіз коефіцієнтів цільової функції. Приклад практичного використання двоїстих оцінок у аналізі економічної задачі.

1. Аналіз коефіцієнтів цільової функції

Під впливом різних обставин ціна виробленої на підприємстві одиниці продукції може змінюватися (збільшуватися чи зменшуватися). І тому завжди цікаво і важливо знати, у межах яких змін цін на продукцію кожного виду структура оптимального плану виробництва ще може залишатися такою самою, тобто оптимальною (найкращою) навіть за цих певних змін.

Перетворення симплексної таблиці за змін коефіцієнтів цільової функції стосуються лише елементів оцінкового рядка.

Дослідимо питання зміни коефіцієнтів цільової функції для прикладу 1. Нехай змінюється ціна на одиницю продукції виду С, тобто початкове значення 3 ум. од. подамо як , де - величина зміни ціни одиниці продукції виду С.

Тоді симплексні перетворення матимуть вигляд:

Симплекс-таблиця, яка відповідає оптимальному плану, зберігає свій вигляд за винятком елементів стовпчика «Сбаз» що, у свою чергу, впливає на значення всіх ненульових оцінок (Zj - cj).

Для базисної змінної х3 зміна коефіцієнта цільової функції на c3 приведе до таких оцінок:

Враховуючи умову:

- нові значення оцінок мають задовольняти умову оптимальності. Тому:

Отже, ціна одиниці продукції виду С може збільшуватися чи зменшуватися на 1 ум. од. і бути в межах від 2 до 4 ум. од., але оптимальним планом виробництва продукції залишається Х* = (0, 0, 35, 45). Для базисної невідомої х4 інтервал зміни коефіцієнта с4 розраховується аналогічно:

Якщо за інших однакових умов ціна одиниці продукції D зменшиться до 3 ум. од. або збільшиться до 6 ум. од., то визначений оптимальний план виробництва продукції на підприємстві (Х* = (0, 0, 35, 45)) немає необхідності змінювати.

Розрахунок інтервалів зміни значень коефіцієнтів цільової функції для небазисних змінних виконується згідно із співвідношенням:

Симплекс-таблиця, яка відповідає оптимальному плану, зберігає свій вигляд за винятком ненульових значень оцінкового рядка (Zj - cj). Нові оцінки (Zj - cj) мають задовольняти умову оптимальності задачі максимізації цільової функції, тобто бути невід'ємними.

Зміну коефіцієнта с1 позначимо через с1.

Оскільки х1 - небазисна змінна, то в симплекс-таблиці зміниться лише відповідна їй оцінка Z1 - c1:

(Z1 - c1) = 4(-2) + 0(-1) +35 - (2 + c1) = 5 - c1

За умови c1 0 дістанемо нерівність c1 0, тобто c1 ? 5.

Це означає, що коли ціна одиниці продукції виду А за інших однакових умов зросте не більш як на 5 ум. од., то оптимальним планом виробництва продукції на підприємстві все одно залишиться Х* = (0, 0, 35, 45).

Лише максимальна виручка зміниться на:

Аналогічно розраховується інтервал зміни коефіцієнта c2:

(Z2 - c2) = 5/2 - c2 ? 0c2 ? 5/2

Зі зростанням ціни одиниці продукції виду В не більш як на 5/2 ум. од. за інших однакових умов оптимальний план виробництва продукції не зміниться, а Z = c2x2.

Якщо ж коливання ціни продукції вийдуть за визначені межі, то план Х = (0, 0, 35, 45) вже не буде оптимальним, і його необхідно буде поліпшити згідно з алгоритмом симплекс-методу, тобто продовжити розв'язання задачі.

2. Приклад практичного використання двоїстих оцінок у аналізі економічної задачі

Приклад. Фірма виготовляє продукцію трьох видів: А, В і С. Потрібний певний час для обробки одиниці кожного виду продукції на різному обладнанні (табл. 1).

Таблиця 1:

Ціна одиниці продукції видів А, В і С дорівнює 90 дол., 110 дол. та 150 дол. відповідно.

Визначити, яку продукцію і в якому обсязі слід виготовляти, щоб фірма отримувала найбільший дохід.

Розв'язавши цю задачу симплекс-методом, отримаємо таку останню симплексну таблицю:

Таблиця 2:

Керівництво фірми цікавить відповідь на таке запитання: «Чи зміниться оптимальний план виробництва продукції і якщо зміниться, то яким буде новий оптимальний план у кожній з наведених нижче ситуацій?».

1. Фірма може збільшити тривалість роботи обладнання типів 2 та 3 відповідно на 100 і 80 год на місяць, орендуючи для цього додаткове обладнання, але орендна плата становитиме 5000 дол. Чи вигідно це? Якщо вигідно, то яким має бути новий оптимальний план виробництва продукції?

2. Фінансовий відділ фірми вважає, що загострення конкуренції на ринку збуту може призвести до зниження ціни на продукцію В на 25 дол. Як це позначиться на оптимальному плані виробництва продукції фірми?

3. Відділ досліджень і розробок фірми пропонує виготовляти дешевшу модифікацію продукції С. Тривалість обробки одиниці цієї нової продукції на обладнанні типів 1, 2 та 3 становить відповідно 4, 3 і 1 год. Орієнтовна ціна одиниці нової продукції дорівнює 120 дол. Керівництво фірми цікавить, чи буде за таких умов виробництво нової продукції вигідним.

4. Споживач продукції виду А за певних обставин порушив попередню домовленість і відмовився прийняти більш як 100 од. продукції. Визначити, як слід змінити план виробництва своєї продукції, щоб уникнути втрат, пов'язаних із надвиробництвом цього виду продукції.

Розв'язання.

Із наведеної в умові задачі симплекс-таблиці маємо: Х* = (180, 40, 0, 100, 0, 0):

F = 20600;

Y* = (0, 10, 70).

Оптимальним планом виробництва продукції на фірмі є випуск 180 од. продукції виду А та 40 од. продукції виду В. Виготовлення продукції виду С не передбачається. При цьому фірма отримає максимальну виручку обсягом 20600 дол. на місяць.

1. Збільшення тривалості роботи обладнання дасть змогу збільшити випуск продукції, тобто змінити оптимальний план і дохід фірми. Оскільки:

b1 = 0;

b2 = 100;

b3 = 80.

Тоді новий оптимальний план визначається так:

Новий план допустимий (всі хj 0), і тому оптимальні значення двоїстих оцінок зберігаються: Y* = (0, 10, 70). Приріст доходу фірми в результаті зміни оптимального плану виробництва продукції розраховується так:

Оскільки дохід фірми від додаткового використання обладнання груп 2 і 3 перевищує витрати на його оренду (6600 > 5000), то природно, що така тактика фірми буде вигідною. При цьому оптимальним планом виробництва стане випуск 290 од. продукції виду А і 10 од. продукції виду В. Невикористаний час роботи обладнання типу І зменшиться до 50 год на місяць, а дохід фірми за відрахуванням витрат на оренду обладнання дорівнюватиме 20600 + (6600 - 5000) = 22200 дол. на місяць.

2. Зниження ціни одиниці продукції В на c2 (-25 дол.) стосується всього оцінкового рядка симплекс-таблиці, оскільки х2 є базисною змінною. Нові Fj - cj матимуть такі значення:

Якби всі здобуті оцінки задовольняли умову cj 0, то це означало б, що попри зниження ціни план виробництва продукції на фірмі не зміниться. Але оцінка F5 -c5 не задовольняє умову оптимальності задачі на максимум, і тому можна висновувати, що істотне зниження ціни одиниці продукції виду В порушує визначений раніше оптимальний план виробництва продукції, оскільки випуск цієї продукції стає для фірми невигідним, нерентабельним.

Новий оптимальний план визначається у процесі подальшого розв'язання задачі симплекс-методом:

Таблиця 3:

Отже, у розглянутій ситуації зниження ціни одиниці продукції виду В на 25 дол. різко змінить структуру та обсяги виробництва продукції на фірмі. Вигідним стане випуск лише продукції виду А обсягом 220 од.: при цьому можливий час роботи обладнання типів 1 та 2 використовуватиметься не повністю. Усе це призведе до зменшення виручки фірми до 19800 дол. на місяць.

3. Обсяг виробництва нової продукції в оптимальному плані позначимо через х7. Тоді математична модель прямої задачі матиме такий вигляд:

У математичній моделі двоїстої задачі змінній х7 відповідатиме таке обмеження:

Оцінимо рентабельність виробництва нової продукції за допомогою двоїстих оцінок: 4·0 + 3·10 + 1·70 = 100, що є меншим за 120. Отже, загальна вартість усіх ресурсів, що витрачаються на випуск одиниці нової продукції, не перевищує орієнтовної ціни цієї продукції, і тому її виробництво для фірми є вигідним, рентабельним. Завдяки цьому визначений раніше оптимальний план виробництва продукції можна поліпшити за рахунок уведення в нього х7.

Для цього за допомогою оберненої матриці необхідно визначити елементи стовпчика «х7» останньої симплекс-таблиці:

Результати однієї ітерації симплекс-методу, що приводить до нового оптимального плану задачі, наведено нижче.

Таблиця 4:

Отже, оптимальним планом є Х* = (160, 20, 0, 0, 0, 0, 40), а Z = 21 400. Керівництво фірми має підтримати пропозицію відділу досліджень та розробок і налагодити виробництво нової продукції, яка є рентабельною. Виготовляючи її обсягом 40 од., а також продукцію видів А та В обсягом 160 і 20 од. відповідно, фірма зможе збільшити обсяг виручки до 21400 дол. на місяць згідно з новим оптимальним планом виробництва продукції.

4. Четверта запропонована ситуація математично пов'язана із введенням в умову задачі додаткового обмеження, що може привести до таких наслідків:

а) нове обмеження для визначеного оптимального плану виконується. Тоді воно є надлишковим, зайвим і його включення до моделі не змінює визначеного плану;

б) нове обмеження для визначеного оптимального плану не виконується, і тоді за допомогою двоїстого симплекс-методу необхідно знайти новий оптимальний план.

За умовою задачі додатковим є обмеження х1 < 100. Але воно суперечить оптимальному обсягу продукції виду А, що дорівнює 180 од. Тому необхідно приєднати це додаткове обмеження до симплекс-таблиці та продовжити розв'язання задачі, але вже за допомогою двоїстого симплекс-методу. Для цього спочатку зведемо додаткове обмеження до канонічного вигляду:

х1 + х7 = 100

Оскільки в оптимальному плані змінна х1 є базисною, то її необхідно записати через небазисні невідомі. Це робиться так. У симплекс-таблиці, яку наведено в умові задачі, рядок змінної «х1» подається рівнянням:

1·х1 + 0·х2 + 3·х3 + 0·х4 - 1/2·х5 + 2·х6 = 180

З нього запишемо вираз для х1:

х1 = 180 - 3х3 + 1/2х5 - 2х6

Підставивши цей вираз в додаткове обмеження, отримаємо:

180 - 3х3 + 1/2х5 - 2х6 + х7 = 100

Або:

- 3х3 + 1/2х5 - 2х6 + х7 = - 80

У такому вигляді додаткове обмеження допишемо в симплекс-таблицю. Застосування двоїстого симплекс-методу приведе до нового оптимального плану задачі.

Таблиця 5:

В останній таблиці маємо: Х* = (100, 200/3, 80/3, 20, 0, 0), а Z = 61000/3 20333. коефіцієнт двоїстий математичний

Проаналізуємо цей план. Прийнявши до уваги ситуацію, що склалася, керівництво фірми змушене змінити структуру виробництва продукції. Тепер з урахуванням вимог споживача фірма виготовлятиме 100 од. продукції виду А, 200/3 од. продукції виду В і 80/3 од. продукції виду С. У результаті такого плану випуску продукції виручка фірми дещо зменшиться (до 20333 дол. на місяць).

Размещено на Allbest.ru

...

Подобные документы

  • Аналіз коефіцієнтів лінійних моделей: розрахунок коефіцієнтів цільової функції. Аналіз діапазону зміни компонент вектора обмежень. Приклад практичного використання двоїстих оцінок у аналізі економічної задачі. Складання по ній симплексної таблиці.

    лекция [543,5 K], добавлен 10.10.2013

  • Статистичний і економічний зміст коефіцієнтів кореляції і детермінації. Економічне тлумачення довірчих інтервалів коефіцієнтів моделі, точкового значення прогнозу. Форма відображення статистичних даних моделі. Параметри стандартного відхилення асиметрії.

    контрольная работа [20,1 K], добавлен 03.08.2010

  • Аналіз розв’язків спряжених економіко-математичних задач. Оцінка рентабельності продукції, яка виробляється і нової продукції. Аналіз обмежень дефіцитних і недефіцитних ресурсів. Аналіз діапазону зміни коефіцієнтів матриці обмежень та цільової функції.

    лекция [402,7 K], добавлен 10.10.2013

  • Оптимальні обсяги виробництва електроплит різних моделей, що максимізують дохід фірми. Оптимальний план двоїстої задачі до поставленої задачі лінійного програмування. Побудова математичної моделі транспортної задачі. Мінімальне значення цільової функції.

    контрольная работа [274,1 K], добавлен 28.03.2011

  • Складання математичної моделі задачі. Побудова симплексної таблиці. Розв’язок задачі лінійного програмування симплексним методом. Рішення двоїстої задачі та складання матриці. Знаходження графічним методом екстремумів функцій, визначеній нерівностями.

    контрольная работа [239,0 K], добавлен 28.03.2011

  • Задачі лінійного програмування. Побудова першого опорного плану системи нерівностей. Введення додаткових змінних. Індексний рядок та негативні коефіцієнти. Побудова математичної моделі. Визначення потенціалів опорного плану. Область допустимих значень.

    контрольная работа [232,3 K], добавлен 28.03.2011

  • Поняття лагової змінної; загальна характеристика моделі розподіленого лага, його структура. Інтерпретація коефіцієнтів моделей з розподіленим лагом. Побудова моделі, процедура застосування методу Алмон. Оцінка моделей с лагами в незалежних змінних.

    курсовая работа [264,3 K], добавлен 18.12.2014

  • Особливість проведення розрахунків параметрів чотирьохфакторної моделі, обчислення розрахунків значень Yр за умови варіювання. Аналіз методів перевірки істотності моделі за допомогою коефіцієнтів кореляції і детермінації, наявності мультиколінеарності.

    контрольная работа [36,2 K], добавлен 24.01.2010

  • Побудування математичної моделі задачі. Розв'язання задачі за допомогою лінійного програмування та симплексним методом. Наявність негативних коефіцієнтів в індексному рядку. Основний алгоритм симплексного методу. Оптимальний план двоїстої задачі.

    контрольная работа [274,8 K], добавлен 28.03.2011

  • Побудова математичної моделі плану виробництва, який забезпечує найбільший прибуток. Розв’язок задачі симплекс-методом, графічна перевірка оптимальних результатів. Складання опорного плану транспортної задачі. Пошук екстремумів функцій графічним методом.

    контрольная работа [286,4 K], добавлен 28.03.2011

  • Аналіз чутливості і інтервалу оптимальності при зміні коефіцієнтів цільової функції. Моделювання випадкових подій. Визначення оптимальної виробничої стратегії. Розробка моделі функціонування фірм на конкурентних ринках. Оцінка ризику інвестування.

    контрольная работа [333,9 K], добавлен 09.07.2014

  • Методика та головні етапи складання математичної моделі рішення заданої задачі, її елементи: цільові функції, обчислення. Розв’язок задачі за допомогою методу Гоморі: алгоритм програми, ітерації. Розрахунок задачі методом "Розгалуджень та обмежень".

    курсовая работа [88,1 K], добавлен 31.08.2014

  • Складання математичної моделі задачі забезпечення приросту капіталу. Її рішення за допомогою електронних таблиць Microsoft Excel. Облік максимальної величини сподіваної норми прибутку. Оцінка структури оптимального портфеля. Аналіз отриманого розв’язку.

    контрольная работа [390,5 K], добавлен 24.09.2014

  • Побудова опорного плану систему нерівностей. Постановка задачі на максимум. Індексний рядок та негативні коефіцієнти. Задача лінійного програмування. Рішення задачі симплексним методом. Введення додаткових змінних. Оптимальний план двоїстої задачі.

    контрольная работа [278,4 K], добавлен 28.03.2011

  • Знаходження плану випуску продукції, що дає максимальну виручку. Побудування таблиці, що відображає умову задачі та математичну модель. Запис двоїстої задачі та розрахунок рентабельності продукції з застосуванням табличного процесору "Microsoft Excel".

    лабораторная работа [1,0 M], добавлен 26.11.2014

  • Часові ряди і їх попередній аналіз. Трендові моделі на основі кривих росту, оцінка їх адекватності й точності. Вибір та знаходження параметрів моделей прогнозування, побудова прогнозу. Автоматизація процесу прогнозування видобутку залізної руди.

    дипломная работа [2,6 M], добавлен 06.09.2013

  • Максимальна негативна кількість та індексний рядок. Розв'язання задачі лінійного програмування симплексним методом. Побудова першого опорного плану системи нерівностей. Метод штучного базису та матриця коефіцієнтів. Основний алгоритм симплекс-методу.

    контрольная работа [302,8 K], добавлен 28.03.2011

  • Економіко-математичне моделювання як спосіб вивчення господарської діяльності. Аналіз коефіцієнтів оборотності капіталу. Оцінка факторів, що впливають на ділову активність. Застосування моделей прогнозування для підприємств гірничообробної промисловості.

    курсовая работа [274,5 K], добавлен 06.09.2013

  • Вихідні поняття прогнозування, його сутність, принципи, предмет і об'єкт. Суть адаптивних методів. Прогнозування економічної динаміки на основі трендових моделей. Побудова адаптивної моделі прогнозування прибутку на прикладі стоматологічної поліклініки.

    дипломная работа [1,2 M], добавлен 18.06.2015

  • Складання математичної моделі задачі комівояжера. Її розв'язок за допомогою електронних таблиць Microsoft Excel. Знаходження оптимального плану обходу міст комівояжером за заданими критеріями. Інтерпретація графічно отриманого розв’язку даної задачі.

    контрольная работа [244,8 K], добавлен 24.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.