Эконометрические модели динамики
Сущность и методы, используемые при моделировании временных рядов. Тенденции и факторы, характеризующие совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Порядок и этапы проверки гипотезы о существовании тренда.
Рубрика | Экономико-математическое моделирование |
Вид | лекция |
Язык | русский |
Дата добавления | 28.11.2013 |
Размер файла | 65,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Эконометрические модели динамики
1. Методы моделирование временных рядов
При построении эконометрической модели используются два типа данных:
1) данные, характеризующие совокупность различных объектов в определенный момент времени;
2) данные, характеризующие один объект за ряд последовательных моментов времени.
Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе второго типа данных, называются моделями временных рядов.
Временной ряд (ряд динамики) - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:
1) факторы, формирующие тенденцию ряда;
2) факторы, формирующие циклические колебания ряда;
3) случайные факторы.
Рассмотрим воздействие каждого фактора на временной ряд в отдельности.
Большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Все эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.
Также изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года (например, цены на сельскохозяйственную продукцию в летний период выше, чем в зимний; уровень безработицы в курортных городах в зимний период выше по сравнению с летним). При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка.
Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты.
Очевидно, что реальные данные не следуют целиком и полностью из каких-либо описанных выше моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования отдельного временного ряда - выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.
2. Проверка гипотезы о существовании тренда
При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.
Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.
Формула для расчета коэффициента автокорреляции имеет вид:
Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .
Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:
Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило - максимальный лаг должен быть не больше .
Свойства коэффициента автокорреляции.
1. Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.
2. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.
Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.
Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.
Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.
3. Моделирование тенденции временного ряда
Распространенным способом моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
линейный тренд: ;
гипербола: ;
экспоненциальный тренд: (или );
степенная функция: ;
полиномы различных степеней: .
Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время , а в качестве зависимой переменной - фактические уровни временного ряда . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.
Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни и тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.
Выбор наилучшего уравнения в случае, когда ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации и средней ошибки аппроксимации. Этот метод легко реализуется при компьютерной обработке данных.
y1, y2, …, ym;
y2, y3, …, ym+1;
y3, y4, …, ym+2 і т.д.
4. Моделирование сезонных колебаний
Простейший подход к моделированию сезонных колебаний - это расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.
Общий вид аддитивной модели следующий:
эконометрический колебание автокорреляция
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (), сезонной () и случайной () компонент.
Общий вид мультипликативной модели выглядит так:
временной тренд эконометрический
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой (), сезонной () и случайной () компонент.
Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.
Построение аддитивной и мультипликативной моделей сводится к расчету значений , и для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
1) Выравнивание исходного ряда методом скользящей средней.
2) Расчет значений сезонной компоненты .
3) Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных () в аддитивной или () в мультипликативной модели.
4) Аналитическое выравнивание уровней () или () и расчет значений с использованием полученного уравнения тренда.
5) Расчет полученных по модели значений () или ().
6) Расчет абсолютных и / или относительных ошибок. Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.
Размещено на Allbest.ru
...Подобные документы
Статистические методы анализа одномерных временных рядов, решение задач по анализу и прогнозированию, построение графика исследуемого показателя. Критерии выявления компонент рядов, проверка гипотезы о случайности ряда и значения стандартных ошибок.
контрольная работа [325,2 K], добавлен 13.08.2010Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.
контрольная работа [37,6 K], добавлен 03.06.2009Тесты, с помощью которых можно построить эконометрические модели. Эконометрическое моделирование денежного агрегата М0, в зависимости от валового внутреннего продукта и индекса потребительских цен. Проверка рядов на стационарность и гетероскедастичность.
курсовая работа [814,0 K], добавлен 24.09.2012Классические подходы к анализу финансовых рынков, алгоритмы машинного обучения. Модель ансамблей классификационных деревьев для прогнозирования динамики финансовых временных рядов. Выбор алгоритма для анализа данных. Практическая реализация модели.
дипломная работа [1,5 M], добавлен 21.09.2016Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.
контрольная работа [1,6 M], добавлен 18.06.2012Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.
курсовая работа [722,6 K], добавлен 09.07.2019Понятие о рядах динамики, их роль. Показатели анализа ряда динамики. Средние показатели по рядам динамики. Статистическое изучение сезонных колебаний. Методы анализа основной тенденции в рядах динамики. Экстраполяция тенденции как метод прогнозирования.
курсовая работа [106,6 K], добавлен 14.10.2008Анализ временных рядов с помощью статистического пакета "Minitab". Механизм изменения уровней ряда. Trend Analysis – анализ линии тренда с аппроксимирующими кривыми (линейная, квадратическая, экспоненциальная, логистическая). Декомпозиция временного ряда.
методичка [1,2 M], добавлен 21.01.2011Влияние девальвации национальной валюты на цены активов и процентных ставок на фондовый рынок. Анализ отраслевых взаимосвязей и закономерностей в динамике биржевых индикаторов и множества других временных рядов. Оценка моделей методом "rolling window".
дипломная работа [1,7 M], добавлен 06.11.2015Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.
контрольная работа [176,4 K], добавлен 17.10.2014Структурные компоненты детерминированной составляющей. Основная цель статистического анализа временных рядов. Экстраполяционное прогнозирование экономических процессов. Выявление аномальных наблюдений, а также построение моделей временных рядов.
курсовая работа [126,0 K], добавлен 11.03.2014Задачи, функции и этапы построения экономико-математических моделей. Аналитические, анионные, численные и алгоритмические модели. Экономическая модель спортивных сооружений. Модели временных рядов: тенденции и сезонности. Теории массового обслуживания.
реферат [167,6 K], добавлен 22.07.2009Изучение особенностей стационарных временных рядов и их применения. Параметрические тесты стационарности. Тестирование математического ожидания, дисперсии и коэффициентов автокорреляции. Проведение тестов Манна-Уитни, Сиджела-Тьюки, Вальда-Вольфовитца.
курсовая работа [451,7 K], добавлен 06.12.2014Теоретические выкладки в области теории хаоса. Методы, которые используются в математике, для прогнозирования стохастических рядов. Анализ финансовых рядов и рядов Twitter, связь между сентиметными графиками и поведением временного финансового ряда.
курсовая работа [388,9 K], добавлен 01.07.2017Оценить влияние определенных факторов на изучаемый показатель и друг на друга с помощью коэффициентов линейной корреляции. Среднее квадратическое отклонение фактора. Коэффициент линейной корреляции. Линейные регрессионные модели изучаемого показателя.
контрольная работа [381,3 K], добавлен 21.04.2010Анализ и выявление значимых факторов, влияющих на объект. Построение эконометрической модели затрат предприятия для обоснований принимаемых решений. Исследование трендов временных рядов. Оценка главных параметров качества эконометрической модели.
курсовая работа [821,1 K], добавлен 21.11.2013Проверка гипотезы о нормальности распределения дневных логарифмических доходностей, рассчитанных по котировкам акций. Принятие в расчет достаточного объема выборок данных. Расчет характеристик временных рядов. Оценка статистического критерия Фроцини.
курсовая работа [307,0 K], добавлен 29.08.2015Методика отбора факторов, влияющих на выходной показатель в статистике. Выравнивание динамических рядов. Показатели анализа ряда динамики. Множественное уравнение регрессии. Проверка адекватности регрессионной модели. Осуществление прогнозных расчетов.
курсовая работа [2,0 M], добавлен 23.01.2012Анализ упорядоченных данных, полученных последовательно (во времени). Модели компонентов детерминированной составляющей временного ряда. Свободные от закона распределения критерии проверки ряда на случайность. Теоретический анализ системы линейного вида.
учебное пособие [459,3 K], добавлен 19.03.2011Расчет суммы издержек для плана выпуска продукции. Коэффициенты линейного уравнения парной регрессии. Характеристика графической интерпретации результатов. Развитие экономических процессов. Особенности эконометрического моделирования временных рядов.
контрольная работа [723,3 K], добавлен 22.02.2011