Теория оптимального управления

Решение задачи оптимального управления. Составление функции Гамильтона. Выражение оптимального управления через переменные. Нахождение максимума функции и стационарной точки. Решение системы двух дифференциальных уравнений с двумя краевыми условиями.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 23.01.2014
Размер файла 106,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Филиал федерального государственного автономного образовательного

учреждения высшего профессионального образования

"Казанский (Приволжский) федеральный университет"

Контрольная работа

по дисциплине: "Теория оптимального управления"

Выполнил: Хаертдинов Р.З.

Проверил: Павликов С.В.

Набережные Челны 2013

План

1. Задание 1

2. Задание 2

Литература

1. Задание 1

Решить задачу оптимального управления, в которой управляемый процесс описывается уравнением

,

а искомый оптимальный процесс минимизирует функционал.

,

где

Составим функцию Гамильтона

,

где n=1,

Следовательно, функция Гамильтона имеет вид:

Необходимо выразить оптимальное управление через остальные переменные. функция гамильтон переменная дифференциальный

В условиях задачи отсутствует ограничение на управление, поэтому для выражения оптимального управления мы можем приравнять к нулю частную производную функции Гамильтона по переменной u (для того, чтобы найти максимум функции, необходимо вначале найти стационарную точку, в которой производная функции равна нулю). Находим:

Приравниваем выражение в правой части к нулю:

Составляем систему с учетом вида

Записываем краевые условия:

Таким образом, исходная задача свелась к решению системы двух дифференциальных уравнений с двумя краевыми условиями. Сначала решаем второе уравнение:

Для нахождения константы воспользуемся вторым краевым условием:

Следовательно:

Подставляем найденное выражение в первое уравнение и получаем:

Решаем это уравнение и находим:

Для нахождения константы воспользуемся первым краевым условием.

Следовательно:

Это есть выражение оптимальной траектории. Теперь найдем выражение для оптимального управления:

Ответ. Оптимальный процесс задается:

2. Задание 2

Задача оптимального распределение капитальных вложений. Построить в Mathcad графики кривых , графически и аналитически определить точки переключения.

Литература

1. Иванилов Ю.П., Лотов А.В. Математические модели в экономике. М.: Наука, 1979

2. Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. М.: Наука, 1973.

3. Основы теории оптимального управления. Под редакцией В.Ф. Кротова. М.: "Высшая школа", 1990

Размещено на Allbest.ru

...

Подобные документы

  • Описание основных характеристик модели трехсекторной экономики. Вывод дифференциальных уравнений для функций удельного капитала. Определение аналитической структуры функций оптимального управления на полученном условии максимума функции Понтрягина.

    курсовая работа [146,2 K], добавлен 22.01.2016

  • Определение допустимых экстремалей в задаче классического вариационного исчисления. Задача на определение оптимального управления в форме Лагранжа. Особенности составления функции Гамильтона. Решение задачи оптимального управления в форме Понтрягина.

    контрольная работа [380,8 K], добавлен 19.06.2010

  • Модель переходной экономики. Постановка задачи оптимального управления. Принцип максимума Понтрягина. Достаточное условие Эрроу. Численное решение задачи. Методы Эйлера, Рунге-Кутта III, IV порядков, Адамса-Башфорта. Концепция двухсекторной экономики.

    курсовая работа [1,2 M], добавлен 01.06.2015

  • Экономические системы, общая характеристика. Модель Солоу с непрерывным временем. Задача оптимального управления в неоклассической модели экономического роста. Постановка задачи оптимального управления. Численное моделирование переходных процессов.

    курсовая работа [1,4 M], добавлен 05.06.2012

  • Задачи оптимального управления для непрерывных и дискретных процессов. Принцип максимума Понтрягина. Оптимизация управляемых процессов и оптимальный баланс инвестиций в макроэкономической модели международного туризма при террористических угрозах.

    дипломная работа [865,5 K], добавлен 20.09.2015

  • Технология решения задачи с помощью Поиска решения Excel. Отбор наиболее эффективной с точки зрения прибыли производственной программы. Задачи на поиск максимума или минимума целевой функции при ограничениях, накладываемых на независимые переменные.

    лабораторная работа [70,0 K], добавлен 09.03.2014

  • Математическая модель планирования производства. Составление оптимального плана производственной деятельности предприятия методом линейного программирования. Нахождение оптимального способа распределения денежных ресурсов в течение планируемого периода.

    дипломная работа [8,8 M], добавлен 07.08.2013

  • Составление математической модели и решение задачи планирования выпуска продукции, обеспечивающего получение максимальной прибыли. Нахождение оптимального решения двойственной задачи с указанием дефицитной продукции при помощи теорем двойственности.

    контрольная работа [232,3 K], добавлен 02.01.2012

  • Математические и программные средства моделирования при решении конкретной производственной задачи. Метод реализации задачи планирования производства и нахождение оптимального плана с помощью симплексного метода. Программа на языке программирования С.

    курсовая работа [603,8 K], добавлен 06.06.2011

  • Составление математической модели, целевой функции, построение системы ограничений и симплекс-таблиц для решения задач линейного программирования. Решение транспортной задачи: определение опорного и оптимального плана, проверка методом потенциалов.

    курсовая работа [54,1 K], добавлен 05.03.2010

  • Выбор оптимального варианта из моделей посудомоечных машин производства компании Bosh по заданным показателям. Задача относится к классу многокритериальных задач принятия решений, в котором принимаемое решение описывается совокупностью критериев.

    курсовая работа [338,6 K], добавлен 09.06.2011

  • Исследование методом Жордана-Гаусса системы линейных уравнений. Решение графическим и симплексным методом задач линейного программирования. Экономико-математическая модель задачи на максимум прибыли и нахождение оптимального плана выпуска продукции.

    контрольная работа [177,8 K], добавлен 02.02.2010

  • Построение асимптотических логарифмических амплитудно- и фазочастотных характеристик. Расчет оптимального плана и экстремального значения функции цели с помощью симплекс-метода. Нахождение экстремума заданной функции с учетом системы ограничений.

    курсовая работа [3,2 M], добавлен 25.05.2015

  • Моделирование задачи определения оптимального плана выпуска продукции, вывод ее в канонической форме. Решение задания с помощью надстройки MS Excel "Поиск решения", составление отчетов по устойчивости и результатам. Оптимальная прибыль при заданной цене.

    курсовая работа [635,6 K], добавлен 07.09.2011

  • Основные методы решения задачи оптимального закрепления операций за станками. Разработка экономико-математической модели задачи. Интерпретация результатов и выработка управленческого решения. Решение задачи "вручную", используя транспортную модель.

    курсовая работа [1,0 M], добавлен 25.01.2013

  • Решение задачи линейного программирования симплекс-методом. План перевозок при минимальных затратах на них. Определение оптимального значения изменения численности работников. Решение матричной игры двух лиц с применением чистой и смешанной стратегий.

    контрольная работа [152,3 K], добавлен 16.05.2013

  • Типы транспортных задач и методы их решения. Поиск оптимального плана перевозок методом потенциалов. Решение задачи с использованием средств MS Excel. Распределительный метод поиска оптимального плана перевозок. Математическая модель, описание программы.

    курсовая работа [808,7 K], добавлен 27.01.2011

  • Построение оптимального плана поставок для ООО "Ресурс". Влияние отклонений от оптимального объема партии. Анализ коэффициентов линейной производственной функции комплексного аргумента предприятия. Корреляционно-регрессионная модель доходов предприятия.

    дипломная работа [1,5 M], добавлен 29.06.2011

  • Графический метод решения задачи оптимизации производственных процессов. Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством. Метод динамического программирования для выбора оптимального профиля пути.

    контрольная работа [158,7 K], добавлен 15.10.2010

  • Математическая теория оптимального принятия решений. Табличный симплекс-метод. Составление и решение двойственной задачи линейного программирования. Математическая модель транспортной задачи. Анализ целесообразности производства продукции на предприятии.

    контрольная работа [467,8 K], добавлен 13.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.