МНК в экономическом анализе
Принципы использования алгоритмов вычисления оценок для решения задач распознавания. Свойства произвольной функции по методу наименьших квадратов для разных видов уравнений множественной регрессии. Косвенный МНК и его значение для линейной функции.
Рубрика | Экономико-математическое моделирование |
Предмет | Математические методы в экономике |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Бикбаева З.Я. |
Дата добавления | 06.02.2014 |
Размер файла | 396,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.
курсовая работа [449,1 K], добавлен 22.01.2015Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.
курсовая работа [477,2 K], добавлен 05.12.2009Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.
курсовая работа [418,3 K], добавлен 24.06.2015Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.
практическая работа [79,4 K], добавлен 20.10.2015Системы эконометрических уравнений. Структурные и приведенные системы одновременных уравнений. Проблема идентификации. Необходимое и достаточное условие идентификации. Оценивание параметров структурной модели. Косвенный метод наименьших квадратов.
контрольная работа [900,9 K], добавлен 29.06.2015Расчет зависимости товарооборота за месяц. Параметры уравнения множественной регрессии, их оценка методом наименьших квадратов. Получение системы нормальных уравнений, ее решение по методу Крамера. Экономическая интерпретация параметров уравнения.
контрольная работа [45,6 K], добавлен 13.04.2014Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.
лабораторная работа [67,8 K], добавлен 26.12.2010Моделирование экономических процессов с помощью однофакторной регрессии. Оценка параметров проекта методом наименьших квадратов. Расчет коэффициента линейной корреляции. Исследование множественной эконометрической линейной схемы на мультиколлинеарность.
курсовая работа [326,5 K], добавлен 19.01.2011Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.
контрольная работа [1,4 M], добавлен 25.06.2010Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.
контрольная работа [99,2 K], добавлен 27.04.2011Эконометрические регрессионные модели и прогнозирование на их основе. Построение множественной линейной регрессии с использованием метода наименьших квадратов. Расчет минеральных удобрений сельскохозяйственной организации по полям и кормовым угодьям.
курсовая работа [2,6 M], добавлен 29.11.2014Анализ влияния основных социально-экономических показателей на результативный признак. Особенности классической линейной модели множественной регрессии, ее анализ на наличие или отсутствие гетероскедастичности в регрессионных остатках и их автокорреляции.
лабораторная работа [573,8 K], добавлен 17.02.2014Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.
курсовая работа [3,4 M], добавлен 10.02.2014Особенности расчета параметров уравнений линейной, степенной, полулогарифмической, обратной, гиперболической парной и экспоненциальной регрессии. Методика определения значимости уравнений регрессии. Идентификация и оценка параметров системы уравнений.
контрольная работа [200,1 K], добавлен 21.08.2010Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.
курсовая работа [243,1 K], добавлен 17.01.2016Оценка линейной, степенной и показательной моделей по F-критерию Фишера. Прогноз заработной платы у при известном значении среднедушевого прожиточного минимума х. Построение уравнения множественной регрессии в стандартизованной и естественной формах.
контрольная работа [239,7 K], добавлен 17.01.2012Исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР) методом наименьших квадратов. Исследование зависимости производительности труда от уровня механизации. Анализ развития товарооборота по данным о розничном товарообороте региона.
контрольная работа [23,8 K], добавлен 08.12.2008Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.
контрольная работа [192,2 K], добавлен 23.06.2012