Экономико-статистические методы в прогнозировании

Использование методов математической экстраполяции для количественной характеристики прогнозируемых процессов. Стадии разработки экономико-статистической модели. Построение матрицы перераспределения земель между сельскохозяйственными организациями.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 18.06.2014
Размер файла 87,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ

2. ПРИМЕР ИСПОЛЬЗОВАНИЯ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ ПРОГНОЗИРОВАНИЯ

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

В переводе с греческого слово «прогноз» означает предвидение, предсказание о развитии чего-либо, основанное на определенных фактических данных. В общем виде под прогнозом следует понимать научно обоснованное суждение о возможных состояниях объекта в будущем, об альтернативных путях и сроках его осуществления.

Цель прогнозирования состоит в создании научных предпосылок, включающих научный анализ тенденций развития экономики; вариантное предвидение предстоящего развития общественного воспроизводства, учитывающее как сложившиеся тенденции, так и намеченные цели; оценку возможных последствий принимаемых решений; обоснование направлений социально-экономического и научно-технического развития для принятия управляющих решений.

Прогнозы природных ресурсов характеризуют вовлечение последних в хозяйственный оборот и охватывают все виды общественного воспроизводства и природную среду: топливо и минеральные ресурсы, ресурсы Мирового океана, некоторые виды энергии, растительный и животный мир, а также охрану окружающей среды.

1. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ

Математические методы прогнозирования имеют высокую достоверность получаемой информации. При прогнозировании наибольшее распространение получили методы математической экстраполяции, экономико-статистического и экономико-математического моделирования.

Методы математической экстраполяции позволяют количественно охарактеризовать прогнозируемые процессы. Он основан на изучении сложившихся в прошлом закономерностей развития изучаемого явления и распространения их на будущее. Метод исходит из того, что в экономической жизни действует принцип инерции, т.е. наблюдаемые закономерности достаточно устойчивы в течение некоторого периода времени.

Экстраполяция в прогнозировании осуществляется с помощью выравнивания статистических рядов вне их связи с другими рядами экономической динамики, влияние которых учитывается в усредненном виде лишь на основе опыта прошлого.

Предпосылка о сохранении неизменности условий предшествующего периода при экстраполяции ограничивает возможности применения этого метода сравнительно непродолжительными периодами, в течение которых не происходит существенных качественных изменений. Наиболее достоверны результаты прогнозирования при соотношении продолжительности предшествующего периода (ретроспекции) и периода упреждения (проспекции).

Для применения данного метода необходимо иметь продолжительный ряд показателей за прошедшей период. Данная информация изучается и обрабатывается. Фактический временной ряд выравнивается путем графоаналитического или статистического подбора аппроксимирующей функции. Далее разрабатывают гипотезы изменения объекта в прогнозный период (период упреждения) и формализуют их в виде количественных показателей (тенденций). При этом значения показателей можно прогнозировать не только на конец прогнозного срока, но и на промежуточных этапах.

Методы и приемы математической статистики, теории вероятности дают возможность использовать широкий круг функций для прогнозирования необходимого показателя во времени.

Данные методы имеют недостатки, так как не может быть дан достоверный прогноз на длительный срок, если имеются скачкообразные изменения данных; нет возможности определить качественные характеристики прогнозируемых объектов.

Методы математической экстраполяции применяются при прогнозировании отводов земель для несельскохозяйственных нужд, установления урожайности сельскохозяйственных культур и т.д.

Наиболее часто применяются при прогнозировании экономико-статистические модели. На основе их рассчитывают урожайность сельскохозяйственных культур, продуктивность животных, выход продукции с сельскохозяйственных земель, прогнозные нормативы (облесенность территории, сельскохозяйственная освоенность земель и др.). Данный метод позволяет научно обосновать показатели и нормативы, используемые при планировании.

Экономико-статистической моделью называют функцию, связывающую результативный и факторные показатели, выраженную в аналитическом, графическом, табличном или ином виде, построенную на основе массовых данных и обладающую статистической достоверностью. Такие функции называют производственными, так как они описывают зависимость результатов производства от имеющихся факторов.

Процесс разработки экономико-статистической модели (моделирование) состоит из следующих стадий:

1. Экономический анализ производства. Определение зависимой переменной (результативный показатель) и выявление факторов, влияющих на неё (факторный показатель).

2. Сбор статистических данных и их обработка.

3. Установление математической формы связи (вид уравнения) между результативными и факториальными показателями.

4. Определение числовых параметров экономико-статистической модели.

5. Оценка степени соответствия экономико-статистической модели изучаемому процессу.

6. Экономическая интерпретация модели.

Экономический анализ производства заключается в определении цели, задачи и выборе результативного показателя, который отражает эффективность прогнозного решения. При анализе интенсивности использования земель в сельскохозяйственных организациях в качестве результативного показателя могут быть использованы стоимость валовой продукции в расчёте на 100 га сельхозземель (пахотных земель), урожайность культур, продуктивность земель и др.

В качестве факторных показателей используют балл плодородия почв, сельскохозяйственную освоенность и распаханность, энерговооруженность, трудообеспеченность и т. д.

При выборе независимых факторов руководствуются определенными правилами:

1. Точность производственных функций выше при большем числе эмпирических данных (при крупных выборках).

2. Факторы-аргументы должны оказывать наиболее существенное влияние на изучаемый процесс, количественно измеряться и представляться лишь одним признаком.

3. Количество отобранных факторов не должно быть большим, так как это усложняет модель и повышает трудоёмкость её использования.

4. Включаемые в модель факторы не должны находиться между собой в состоянии функциональной связи (автокорреляция), так как они характеризуют одну и ту же сторону изучаемого явления и дублируют друг друга. При использовании их в экономико-статистической модели изучаемые зависимости и результаты расчётов могут быть искажены.

Сбор статистических данных и их обработку производят после определения зависимой переменной (результативного показателя) и факторов-аргументов. При сборе информации используют экспериментальный и статистический методы. Первый предполагает изучение данных, получаемых в результате проведения опытов, условия которых можно контролировать. Но в землеустройстве процесс экспериментирования затруднён, а при решении отдельных вопросов вообще невозможен.

Второй метод основан на использовании статистических данных (сплошных или выборочных). Например, если при анализе размеров землепользования используются данные по всем сельскохозяйственным предприятиям области, то статистическая информация является сплошной, а изучаемая совокупность - генеральной.

Однако размер генеральных совокупностей бывает слишком большим - несколько сотен единиц и более. Поэтому для сокращения расчётов и экономии времени число наблюдений сокращают, получая выборочные данные (формируя выборочную совокупность) различными методами, позволяющими сохранить достоверность вычислений и распространить результаты исследований на генеральную совокупность.

Во всех случаях выборка должна быть однородной; исключать аномальные объекты и данные (сильно отличающиеся от всех остальных); включать только факторы, которые измеряются однозначно некоторым числом или системой чисел.

Определение математической формы связи переменных производят, логически анализируя процесс. Анализ позволяет установить вид уравнения (линейное, нелинейное), форму связи (парная или множественная) и т. д.

Определение параметров модели включает расчёт числовых характеристик математической зависимости (уравнения). Например, если для установления зависимости урожайности сельскохозяйственных культур (у) от балла плодородия ночв (х) выбрана линейная зависимость вида, то данная стадия моделирования заключается в получении численных значений коэффициентов и.

Для определения параметров уравнения могут применяться различные методы, но практика показывает, что самые точные результаты даёт метод наименьших квадратов. Оценка степени соответствия экономико-статистической модели изучаемому процессу осуществляется с использованием специальных коэффициентов (корреляции, детерминации, существенности и др.). Данные коэффициенты показывают соответствие математического выражения изучаемому процессу, можно ли использовать полученную модель для проведения последующих расчётов и принятия землеустроительных решений, насколько точно определяется результативный показатель и с какой вероятностью можно доверять ему.

Экономическое применение модель находит при научном обосновании нормативов, экономическом обосновании показателей в прогнозных разработках. математический экстраполяция сельскохозяйственный

Наиболее распространённым видом экономическо-статистических моделей являются производственные функции.

Производственная функция - это математически выраженная зависимость результатов производства от производственных факторов.

С помощью производственных функций при прогнозировании анализируют состояние и использование земель; подготавливают исходную информацию для экономико-математических задач по оптимизации различных решений; устанавливают уровень результативного признака на перспективу при планировании и прогнозировании использования земель в схемах и проектах землеустройства; определяют экономические оптимумы, коэффициенты эластичности, эффективности и взаимозаменяемости факторов. Для выражения зависимостей при прогнозировании наиболее часто употребляется линейная зависимость, поскольку она проста в применении. Реже применяются степенные, гиперболические, полиномиальные и другие.

Экономико-математическое моделирование предполагает создание модели, которая изучает экономический объект и представляет его описание с помощью знаков и символов (математических уравнений и неравенств, матриц, формул и др.).

Решение любой экономико-математической задачи при планировании и прогнозировании в землеустройстве связано с большим количеством информации. Для моделирования необходимо получить исходную информацию, ее обработать, проанализировать и оценить. Собранная информация должна быть полной, достоверной, своевременной, оперативной, представляться в удобной форме для дальнейшего использования. При этом затраты на сбор, обработку, передачу, хранение информации. При планировании и прогнозировании в землеустройстве используют следующие виды и источники информации: геоинформационные данные, статистические и отчетные данные по объекту планирования, плановая информация, нормативная информация.

Основой экономико-математической модели является матрица - специальная таблица, содержащая смысловые или кодовые обозначения функции цели; переменных и ограничений; их числовое выражение в виде коэффициентов или ограничений;

Целевая функция это аналитическая форма выражения критерия оптимальности. При моделировании в зависимости от уровня объекта (процесса) выделяют глобальный, отраслевой, локальный и частные критерии оптимальности;

Размер матрицы определяется перечнем переменных величин. В качестве переменных величин используют площади земель; показатели производственной деятельности сельскохозяйственной отрасли (по растениеводству, животноводству в целом; по сельскохозяйственным культурам; по видам скота).

Нахождение при прогнозировании оптимальных решений зависит от правильного определения состава ограничений. Ограничения формулируют в виде системы неравенств и уравнений, выражающей возможности производства и баланс ресурсов.

Ограничения могут быть основными, которые накладываются на все или большинство переменных (площади земель, рабочих участков, дозы внесения удобрений и т. д.), дополнительными - накладываются на отдельные переменные или небольшие группы (объёмы производства отдельных видов продукции, потребление некоторыми группами животных некоторых видов кормов и т. д.) и вспомогательными (не имеют самостоятельного экономического значения, используются для правильной формулировки экономических требований и математической записи).

Используют различные виды экономико-математических моделей: корреляционные модели и производственные функции, балансовые модели, модели оптимизации. При разработке схемы землеустройства административного района решаются следующие основные экономико-математические задачи: распределение земель административного района по категориям; оптимизация мероприятий по освоению и интенсификации использования земель; оптимизация размещения, специализации и уровня концентрации сельскохозяйственного производства в административном районе; установление оптимальных размеров сельскохозяйственных организаций; перераспределения земель между сельскохозяйственными организациями и др. Данные задачи часто состоят из блоков, каждый из которых имеет свой критерий оптимальности.

Например: в основу модели по оптимизации размещения, специализации и уровня концентрации сельскохозяйственного производства в административном районе положены две модели: по определению оптимального сочетания отраслей сельскохозяйственного производства и по установлению оптимального размера землепользований сельскохозяйственных организаций.

Данная задача состоит из блоков, в качестве которых выступают сельскохозяйственные организации.

В качестве переменных используют неизвестные: посевные площади сельскохозяйственных культур; виды и подвиды земель; трансформируемые земли; виды внутрихозяйственных ресурсов и другие переменные, которые учитывают особенности района.

Выделяют следующие группы ограничений:

1. Условия использование земель (по площадям, по качественным условиям) и возможность их трансформации.

2. Соотношение площадей земель.

3. Агробиологические и зоотехнические условия ведения сельскохозяйственного производства.

4. Ограничения по производству и использованию кормов.

5. Рекомендуемый размер землепользований сельскохозяйственных организаций в зависимости от специализации.

6. Ресурсные ограничения (по объему продаж продукции, по затратам труда, по денежным затратам на тех. средства, мин. удобрения, семена и др.).

7. Ограничения, учитывающие особенности расселения, а также использование трудовых и механизированных ресурсов.

8. Общерайонные условия и пропорции (баланс распределения материально-технических фондов по району, численность занятых в сельском хозяйстве и всего населения по району и др.).

В качестве критерия оптимальности при решении данной задачи используют, как правило, минимум приведенных затрат на фиксированный объем производства продукции.

В результате решения задачи устанавливают: состав и соотношение земель по отдельным землепользованиям и в целом по району; площади земель, подлежащие улучшению, освоению и трансформации; посевные площади сельскохозяйственных культур; структуру стада животных, производства и потребления кормов; межхозяйственное и внутрихозяйственное размещение отраслей в районе; специализацию и объем производства продукции в сельскохозяйственных организаций и их объединениях; балансы средств в целом по району и в разрезе сельхозорганизаций; распределение единовременных средств между сельхозорганизациями.

2. ПРИМЕР ИСПОЛЬЗОВАНИЯ ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ ПРОГНОЗИРОВАНИЯ

Рассмотрим в качестве примеров пространственных прогнозно-аналитических моделей регионального потребления материальных ресурсов две разработанные нами экономико-статистические модели: модель регионального потребления котельно-печного топлива в экономике России и модель регионального потребления котельно-печного топлива на коммунально-бытовые нужды.

Моделирование регионального потребления котельно-печного топлива в экономике России основывалось на анализе взаимосвязей данного показателя с показателями развитая отраслей материального производства в регионах. В качестве независимых переменных модели использовались показатели производства товарной продукции основных топливопотребляющих отраслей промышленности, а также показатели объема строительно-монтажных работ и производства валовой продукции сельского хозяйства. Построение модели осуществлялось с помощью процедуры многошагового регрессионного анализа. В качестве исходного использовалось девятифакторное регрессионное уравнение вида:

где y - общий объем потребления котельно-печного топлива в регионе;

a_0- свободный член уравнения регрессии;

a_0-a_9 - коэффициенты эластичности, каждый из которых показывает средний процент изменения общей величины потребности при изменении значения i-го фактора на 1%;

x_1- объем производства товарной продукции электроэнергетики;

x_2- объем производства товарной продукции черной металлургии;

x_3- объем производства товарной продукции топливной промышленности;

x_4- объем производства товарной продукции промышленности строительных материалов;

x_5- объем производства товарной продукции химической и нефтехимической промышленности;

x_6- объем производства товарной продукции машиностроения и металлообработки;

x_7 - объем производства товарной продукции остальных отраслей промышленности;

x_8- объем строительно-монтажных работ;

x_9- объем производства валовой продукции сельского хозяйства.

Проведенный анализ позволил выделить четыре основных показателя, достаточно полно описывающих общую вариацию зависимой переменной, а именно показателя производства товарной продукции электроэнергетики, черной металлургии, топливной промышленности и промышленности строительных материалов.

Существенность данных факторов подтверждается экономическим анализом, так как перечисленные показатели характеризуют развитие четырех наиболее крупных отраслей - потребителей котельно-печного топлива в экономике России.

Таким образом, в результате многошагового регрессионного анализа было получено следующее уравнение:

; ; ?=2.79;

где R - множественный коэффициент корреляции;

R^2- коэффициент множественной детерминации;

S - средняя ошибка аппроксимации.

Полученное сравнение имеет достаточно-высокие статистические характеристики, соответствует данным качественного (теоретико-экономического) анализа и является достаточно общим с точки зрения степени детализации используемых независимых переменных. Перечисленные свойства позволяют использовать приведенную форму модели в прогнозно-аналитических расчетах по определению общих объемов потребности в котельно-печной топливе экономики областей, краев и автономных республик России.

Описанная модель позволяет на основе достаточно общих данных определять потребность в котельно-печном топливе по экономике в целом того или иного региона. Для определения ее потребности в материальных ресурсах по различным направлениям их расхода необходимы разработка и использование более детализированных моделей, учитывающих параметры технического л экономического развития отдельных отраслей (сфер) народного хозяйства регионов республики. Примером такой регионально-отраслевой модели может служить разработанная нами модель потребления котельно-печного топлива на коммунально-бытовые нужды областей, краев и автономных республик России.

На первом этапе построения данной модели было осуществлено выделение основных влияющих факторов, отражавших важнейшие закономерности формирования моделируемого показателя. В результате теоретического, корреляционного и регрессионного анализа из большого набора различных факторов, влияющих на уровень регионального потребления котельно-печного топлива на коммунально-бытовые нужды (y), были выделены шесть наиболее существенных показателей:

x_1e- общая площадь децентрализовано отапливаемого жилого и обобществленного нежилого фонда в регионе;

x_1- общая площадь децентрализовано отапливаемого жилого фонда в регионе;

x_2- средний часовой расход тепловой энергии на отопление 1 кв.м. указанного жилого фонда;

x_3- продолжительность отопительного периода со средней суточной температурой воздуха 8°С и ниже в данной местности, сутки ,

x_4- разность между расчетной температурой внутреннего воздуха отапливаемых помещений и средней температурой наружного воздуха за отопительный период;

x_5- удельный расход условного топлива на выработку тепла при децентрализованной системе теплоснабжения.

Процесс построения модели заключался в разработке альтернативных вариантов регрессионных уравнений на основе использования различных комбинаций исходного набора факторов и форм связи. Количественный и качественный анализ альтернативных вариантов модели регионального потребления котельно-печного топлива на коммунально-бытовые нужды позволял выделить как наиболее адекватные и отвечающие Целям исследования пять регрессионных уравнений.

Полученные уравнения обладают высокими аппроксимирующими свойствами и не противоречат данным качественного (теоретико-экономического) анализа. В то же время приведенные уравнения существенно различаются по своим прогнозно-аналитическим возможностям, Так, уравнения 1-3, хотя и обладают наибольшей точностью описания моделируемого показателя, более приемлемы для краткосрочного прогнозирования, поскольку включают в себя показатель общей площади обобществленного нежилого фонда, значение которого на перспективу не планируется.

Для долгосрочного же прогнозирования наиболее приемлемо уравнение:

; ; ?=1.18;

Данное уравнение обладает более высокой точностью по сравнению с уравнением 4, а главное - позволяет учесть влияние на моделируемый показатель факторов научно-технического прогресса (в качестве независимых переменных, отражающих влияние научно-технического прогресса, в уравнении выступают показатель х2, характеризующий уровень теплотехнической эффективности жилого фонда, и показатель х5, характеризующий степень технического совершенства применяемых теплогенерирующих установок).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Экономико-статистические методы в прогнозировании. М.: Наука, 1994

2. Статистическое моделирование и прогнозирование. Учебное пособие для ВУЗов. / Г.М. Гамбаров и др. Под. ред. А.Г. Гранберга. М.: Финансы и статистика. 1990

3. Гранберга, А.Г. Статистическое моделирование и прогнозирование / А.Г. Гранберга; под ред. А.Г. Гранберга. М: Финансы и статистика, 1990.-256 с.

4. Гусаров, В.М. Статистика: учебное пособие / В.М. Гусаров. -- М.: Юнити, 2001.-463 с.

Размещено на Allbest.ru

...

Подобные документы

  • Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.

    контрольная работа [2,2 M], добавлен 27.03.2008

  • Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.

    курсовая работа [1,3 M], добавлен 09.07.2015

  • Построение экономико-математической модели равновесия, ее экономический анализ. ЭММ распределения кредитных средств между филиалами торговой фирмы, конфликтной ситуации игры с природой, межотраслевого баланса трехотраслевой экономической системы.

    контрольная работа [6,1 M], добавлен 16.02.2011

  • Методы линейного программирования; теория транспортной задачи, ее сущность и решение на примере ООО "Дубровчанка+": характеристика предприятия, организационная структура и статистические данные. Построение и решение экономико-математической модели.

    курсовая работа [652,5 K], добавлен 04.02.2011

  • Решение экономико-математических задач методами линейного программирования. Геометрическая интерпретация и решение данных задач в случае двух переменных. Порядок разработки экономико-математической модели оптимизации отраслевой структуры производства.

    курсовая работа [116,4 K], добавлен 23.10.2011

  • Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.

    контрольная работа [73,9 K], добавлен 23.01.2009

  • Построение математической модели, максимизирующей прибыль фирмы от реализации всех сделок в виде задачи линейного программирования. Сущность применения алгоритма венгерского метода. Составление матрицы эффективности, коэффициентов затрат и ресурсов.

    контрольная работа [168,7 K], добавлен 08.10.2009

  • Графический метод решения и построение экономико-математической модели производства. Определение выручки от реализации готовой продукции и расчет оптимального плана выпуска продукции. Баланс производства проверка продуктивность технологической матрицы.

    задача [203,4 K], добавлен 03.05.2009

  • Содержание и построение экономико-математических методов. Роль оптимальных методов в планировании и управлении производством. Экономико-математические модели оптимальной загрузки производственных мощностей. Отраслевое прогнозирование и регулирование.

    контрольная работа [62,1 K], добавлен 30.08.2010

  • Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа [440,3 K], добавлен 27.07.2015

  • Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.

    контрольная работа [141,5 K], добавлен 02.02.2013

  • Задача и методы решения экстремальных задач, которые характеризуются линейными зависимостями между переменными и линейным критерием. Построение экономико-математической задачи и ее решение с помощью пакета WinQSB, графический анализ чувствительности.

    курсовая работа [259,4 K], добавлен 16.09.2010

  • Потенциальная возможность математического моделирования любых экономических объектов и процессов. Методы минимизации, связанные с вычислением градиента. Суть метода градиентного спуска. Анализ симплекс-таблицы. Построение экономико-математической модели.

    курсовая работа [998,7 K], добавлен 01.10.2011

  • Предмет экономико-математического моделирования, цель разработки экономико-математических методов. Для условной экономики, состоящей из трех отраслей, за отчетный период известны межотраслевые потоки и вектор конечного использования продукции.

    контрольная работа [71,0 K], добавлен 14.09.2006

  • Характеристика моделируемого процесса - организация угодий. Оценка деятельности АО "Россия". Построение экономико-математической задачи. Обозначение неизвестных и формулирование систем ограничений. Построение числовой модели и решение задачи на ЭВМ.

    курсовая работа [24,8 K], добавлен 25.04.2012

  • Технико-экономическая характеристика тракторов, сельскохозяйственных машин. Построение экономико-математической модели. Согласование объемов предпосевной культивации, посева зерновых культур. Составление плана материально-технического снабжения хозяйства.

    лабораторная работа [156,0 K], добавлен 15.06.2015

  • Построение экономико-математической модели оптимизации производства с учетом условия целочисленности. Расчет с помощью надстроек "Поиск решения" в Microsoft Excel оптимального распределения поставок угля. Экономическая интерпретация полученного решения.

    контрольная работа [2,5 M], добавлен 23.04.2015

  • Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.

    курсовая работа [1,3 M], добавлен 02.10.2009

  • Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

    реферат [91,1 K], добавлен 16.05.2012

  • Составление экономико-математической модели плана производства продукции. Теория массового обслуживания. Модели управления запасами. Бездефицитная простейшая модель. Статические детерминированные модели с дефицитом. Корреляционно-регрессионный анализ.

    контрольная работа [185,7 K], добавлен 07.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.