Элементы теории игр в задачах моделирования экономических процессов

История зарождения и значение теории игр для экономики, область ее применения в задачах моделирования экономических процессов. Основные понятия и положения теории игр, форма предоставления игры. Классификация игр, подходы к поиску оптимальных стратегий.

Рубрика Экономико-математическое моделирование
Вид лекция
Язык русский
Дата добавления 14.11.2014
Размер файла 49,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Элементы теории игр в задачах моделирования экономических процессов

В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.

В 1944 г. Нейман в соавторстве с экономистом Принстонского университета Оскаром Моргенштерном опубликовал ныне широко известную работу "Теория игр и экономическое поведение". Данную публикацию считают моментом зарождения теории игр. Новый подход был чисто математическим. Многие предсказали революцию в экономических науках благодаря его использованию. Эти прогнозы нельзя было считать излишне смелыми, так как с самого начала данная теория претендовала на описание рационального поведения при принятии решений во взаимосвязанных ситуациях, что характерно для большинства актуальных проблем в экономических и социальных науках. Такие тематические области, как стратегическое поведение, конкуренция, кооперация, риск и неопределенность, являются ключевыми в теории игр и непосредственно связаны с управленческими задачами.

теория игра экономика моделирование стратегия

1. Основные положения теории игр

Чтобы описать игру, необходимо сначала выявить ее участников. Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат, канасты и т.п. Иначе обстоит дело с “рыночными играми”. Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных.

Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Эти действия обозначаются термином “ход”. Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют “платежи” (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах (преимущественно дисконтированная прибыль).

Еще одним основным понятием данной теории является стратегия игрока. Под ней понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему “лучшим ответом” на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры.

Важна и форма предоставления игры. Обычно выделяют нормальную, или матричную, форму и развернутую, заданную в виде дерева. Эти формы для простой игры представлены на рис. 1а и 1б.

Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль ПK. При вступлении в жесткую конкурентную борьбу оба получают прибыль ПW. Если один из конкурентов устанавливает высокую цену, а второй - низкую, то последний реализует монопольную прибыль ПM, другой же несет убытки ПG. Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.

При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия “низкой цены” является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль ПK(которая для обоих игроков выше, чем прибыль ПW) не достигается.

Стратегическая комбинация “низкие цены/низкие цены” с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.

Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой “компенсации”. Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть “война цен”.

Как отмечалось, оба рисунка характеризуют одну и ту же игру. Предоставление игры в нормальной форме в обычном случае отражает “синхронность”. Однако это не означает “одновременность” событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле). При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.

2. Классификация игр

Классификацию игр можно проводить: по количеству игроков, количеству стратегий, характеру взаимодействия игроков, характеру выигрыша, количеству ходов, состоянию информации и т.д.

В зависимости от количества игроков различают игры двух и игроков. Первые из них наиболее изучены. Игры трёх и более игроков менее исследованы из-за возникающих принципиальных трудностей и технических возможностей получения решения. Чем больше игроков - тем больше проблем.

По количеству стратегий игры делятся на конечные и бесконечные. Если в игре все игроки имеют конечное число возможных стратегий, то она называется конечной. Если же хотя бы один из игроков имеет бесконечное количество возможных стратегий, игра называется бесконечной.

По характеру взаимодействия игры делятся на:

бескоалиционные: игроки не имеют права вступать в соглашения, образовывать коалиции;

коалиционные (кооперативные) игроки могут вступать в коалиции.

В кооперативных играх коалиции определены заранее.

По характеру выигрышей игры делятся на: игры с нулевой суммой («антагонистические», общий капитал всех игроков не меняется, а перераспределяется между игроками; сумма выигрышей всех игроков равна нулю) и игры с ненулевой суммой.

По виду функций выигрыша игры делятся на: матричные, биматричные, непрерывные, выпуклые, сепарабельные, типа дуэлей и др.

Матричная игра это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 1, столбец номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Для матричных игр доказано, что любая из них имеет решение и оно может быть легко найдено путём сведения игры к задаче линейного программирования.

Биматричная игра это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице выигрыш игрока 2.)

Для биматричных игр также разработана теория оптимального поведения игроков, однако решать такие игры сложнее, чем обычные матричные.

Непрерывной считается игра, в которой функция выигрышей каждого игрока является непрерывной в зависимости от стратегий. Доказано, что игры этого класса имеют решения, однако не разработано практически приемлемых методов их нахождения.

Если функция выигрышей является выпуклой, то такая игра называется выпуклой. Для них разработаны приемлемые методы решения, состоящие в отыскании чистой оптимальной стратегии (определённого числа) для одного игрока и вероятностей применения чистых оптимальных стратегий другого игрока. Такая задача решается сравнительно легко.

3. Свойства решения матричных игр

Оптимальные стратегии легко находятся для небольших игр, но вычисления становятся достаточно сложными с ростом числа стратегий. Для поиска оптимальных стратегий используется несколько приемов.

Первый прием состоит в уменьшении размерности игры за счет определения доминирующих строк и столбцов в платежной матрице. Доминирующим столбцом (строкой) называется столбец, в котором все выигрыши не меньше выигрышей в некотором другом столбце.

Обозначим через (Х,) игру двух лиц с нулевой суммой, в которой игрок 1 выбирает стратегию х Х, игрок 2 Y , после чего игрок 1 получает выигрыш А = А (х, ) за счёт игрока 2.

Определение. Стратегия х1 игрока 1 доминирует (строго доминирует) над стратегией х2, если

А (х1, ) А (х2, ) (А (х1, ) А (х2, )), .

Стратегия 1 игрока 2 доминирует (строго доминирует) над стратегией 2, если

А (х, 1) А (х, 2) (А (х, 1) А (х, 2)), х Х.

При этом стратегии х2 и 2 называются доминируемыми (строго доминируемыми).

Доминируемый столбец может быть заведомо удален из дальнейшего рассмотрения.

Второй подход состоит также в упрощении матрицы выигрышей за счет того, что аффинное преобразование матрицы платежей (т.е. преобразование всех элементов платежной матрицы по правилу W*=aW+b, a?0) не изменяет решения игры. Это свойство используется для упрощения и придания наглядности матрице выигрышей (платежей).

Спектром смешанной стратегии игрока в конечной антагонистической игре называется множество всех его чистых стратегий, вероятность которых согласно этой стратегии положительна.

Свойство 1. Если чистая стратегия одного из игроков содержится в спектре некоторой его оптимальной стратегии, то выигрыш этого игрока в ситуации, образованной данной чистой стратегией и любой оптимальной стратегией другого игрока, равен значению конечной антагонистической игры.

Свойство 2. Ни одна строго доминируемая чистая стратегия игрока не содержится в спектре его оптимальной стратегии (данное свойство вытекает из определения доминируемых стратегий).

Приведем определение подматрицы: Игра = (Х,) называется подыгрой игры (Х,), если Х Х, , а матрица А является подматрицей матрицы А. Матрица А при этом строится следующим образом. В матрице А остаются доминирующие строки и столбцы, соответствующие стратегиям Х и , а остальные “вычеркиваются”. Всё то что “останется” после этого в матрице А и будет матрицей А. Подматрицы используются для упрощения игры.

Свойство 3. Пусть = (Х,) конечная антагонистическая игра, = (Х х,) подыгра игры , а х чистая стратегия игрока 1 в игре , доминируемая некоторой стратегией , спектр которой не содержит х. Тогда всякое решение (хо, о, ) игры является решением игры .

Свойство 4. Пусть = (Х,) конечная антагонистическая игра, = (Х, ) подыгра игры , а чистая стратегия игрока 2 в игре , доминируемая некоторой стратегией , спектр которой не содержит .Тогда всякое решение игры является решением .

Свойство 5. Если для чистой стратегии х игрока 1 выполнены условия свойства 3, а для чистой стратегии игрока 2 выполнены условия свойства 4, то всякое решение игры = (Х х, ) является решением игры = (Х,). (Иными словами, решение подматрицы игры является решением матрицы данной игры).

Свойство 6. Тройка (хо, о, ) является решением игры = (Х,) тогда и только тогда, когда (хо, о, к) является решением игры (Х,,кА+а), где а любое вещественное число, к 0. (Аффинное преобразование не влияет на результат истинного решения матричной игры)

Свойство 7. Для того, чтобы хо = () была оптимальной смешанной стратегией матричной игры с матрицей А и ценой игры , необходимо и достаточно выполнение следующих неравенств

(j = )

Аналогично для игрока 2 : чтобы о = (, ...,, ...,) была оптимальной смешанной стратегией игрока 2 необходимо и достаточно выполнение следующих неравенств:

(i = )

Из последнего свойства вытекает: чтобы установить, является ли предполагаемые (х, ) и решением матричной игры, достаточно проверить, удовлетворяют ли они неравенствам (*) и (**). С другой стороны, найдя неотрицательные решения неравенств (*) и (**) совместно со следующими уравнениями

,

получим решение матричной игры.

Таким образом, решение матричной игры сводится к нахождению неотрицательных параметров решений линейных неравенств (*) (**) и линейных уравнений (***). Однако это требует большого объёма вычислений, которое растёт с увеличением числа чистых стратегий игроков. (Например для матрицы 33 имеем систему из 6 неравенств и 2 уравнений). Поэтому в первую очередь следует, по возможности используя свойства 2 и 3, уменьшить число чистых стратегий игроков. Затем следует во всех случаях проверить выполнение неравенства

= .

Если оно выполняется, то игроки имеют чистые оптимальные стратегии (игрок 1 чистую максиминная, а игрок 2 чистую минимаксная). В противном случае хотя бы у одного игрока оптимальные стратегии будут смешанные. Для матричных игр небольшого размера эти решения можно найти, применяя свойства 1 5.

Замечание. Отметим, что исключение доминируемых (не строго) стратегий может привести к потере некоторых решений. Если же исключаются только строго доминируемые стратегии, то множество решений игры не изменится.

Размещено на Allbest.ru

...

Подобные документы

  • Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.

    практическая работа [102,3 K], добавлен 08.01.2011

  • Основные положения теории игр. Терминология и классификация игр. Решение матричных игр в чистых и в смешанных стратегиях. Сведение матричной игры к задаче линейного программирования. Применение теории игр в задачах экономико-математического моделирования.

    курсовая работа [184,5 K], добавлен 12.12.2013

  • Основные понятия теории моделирования экономических систем и процессов. Методы статистического моделирования и прогнозирования. Построение баланса производства и распределение продукции предприятий с помощью балансового метода и модели Леонтьева.

    курсовая работа [1,5 M], добавлен 21.04.2013

  • Гносеологическая роль теории моделирования и сущность перехода от натурального объекта к модели. Переменные, параметры, связи (математические) и информация - элементы модели. Обобщенное представление вычислительного эксперимента и признаки морфологии.

    реферат [31,0 K], добавлен 11.03.2009

  • Метод имитационного моделирования, его виды, основные этапы и особенности: статическое и динамическое представление моделируемой системы. Исследование практики использования методов имитационного моделирования в анализе экономических процессов и задач.

    курсовая работа [54,3 K], добавлен 26.10.2014

  • Потенциальная возможность математического моделирования любых экономических объектов и процессов. Методы минимизации, связанные с вычислением градиента. Суть метода градиентного спуска. Анализ симплекс-таблицы. Построение экономико-математической модели.

    курсовая работа [998,7 K], добавлен 01.10.2011

  • Методы исследования и моделирования социально-экономических систем. Этапы эконометрического моделирования и классификация эконометрических моделей. Задачи экономики и социологии труда как объект эконометрического моделирования и прогнозирования.

    курсовая работа [701,5 K], добавлен 14.05.2015

  • Предмет и задачи теории игр. Сведение матричной игры к задачам линейного программирования. Основные принципы разработки деловых игр для исследования экономических механизмов. Деловая игра "Снабжение". Решение матричной игры в смешанных стратегиях.

    курсовая работа [1,8 M], добавлен 15.10.2012

  • Разделение моделирования на два основных класса - материальный и идеальный. Два основных уровня экономических процессов во всех экономических системах. Идеальные математические модели в экономике, применение оптимизационных и имитационных методов.

    реферат [27,5 K], добавлен 11.06.2010

  • Теория игр как раздел математики для изучения конфликтных ситуаций. Основные понятия и критерии теории игр, количество стратегий. Увеличение среднего выигрыша путем применения смешанных стратегий. Мажорирование (доминирование) стратегий, алгоритм решения.

    курсовая работа [207,8 K], добавлен 27.05.2009

  • Классификация бизнес-процессов, различные подходы к их моделированию и параметры качества. Методология и функциональные возможности систем моделирования бизнес-процессов. Сравнительная оценка систем ARIS и AllFusion Process Modeler 7, их преимущества.

    дипломная работа [1,6 M], добавлен 11.02.2011

  • Метод Ньютона в задачах на безусловный экстремум. Свойство квадратичной сходимости. Сущность модели межотраслевого баланса. Составление системы балансовых соотношений в матричной форме. Определение оптимальных стратегий отраслей с помощью теории игр.

    курсовая работа [207,6 K], добавлен 05.02.2014

  • Нечеткие множества. Основные понятия нечеткой логики, необходимые для моделирования процессов мыслительной деятельности человека. База правил. Формы многоугольных функций принадлежности. Гауссова функция. Системы нечеткого вывода в задачах управления.

    реферат [844,8 K], добавлен 16.07.2016

  • Характеристика трансформационных процессов в современной экономике. Особенности нового направления математического моделирования - экспериментальной экономики. Основные этапы проведения эксперимента для исследования динамики сложных экономических систем.

    реферат [38,6 K], добавлен 14.12.2010

  • Основные понятия и критерии теории игр. Решение практических экономических задач с использованием механизма теории игр, а также создание необходимых рекомендаций к данным задачам. Научное обоснование снижения розничных цен и уровня товарных запасов.

    научная работа [184,7 K], добавлен 12.10.2011

  • Постановка цели моделирования. Идентификация реальных объектов. Выбор вида моделей, математической схемы. Построение непрерывно-стахостической модели. Основные понятия теории массового обслуживания. Определение потока событий. Постановка алгоритмов.

    курсовая работа [50,0 K], добавлен 20.11.2008

  • Эффективность макроэкономического прогнозирования. История возникновения моделирования экономики в Украине. Особенности моделирования сложных систем, направления и трудности моделирования экономики. Развитие и проблемы современной экономики Украины.

    реферат [28,1 K], добавлен 10.01.2011

  • Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.

    курсовая работа [701,2 K], добавлен 19.01.2016

  • Понятие экономико-математического моделирования. Совершенствование и развитие экономических систем. Сущность, особенности и компоненты имитационной модели. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    курсовая работа [451,4 K], добавлен 23.04.2013

  • Анализ разработки визуальной среды, позволяющей легко создавать модели в виде графического представления сети Петри. Описания моделирования конечных автоматов, параллельных вычислений и синхронизации. Исследование влияния сна на процесс усвоения знаний.

    курсовая работа [4,3 M], добавлен 15.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.