Эконометрическое моделирование

Проблемы эконометрического моделирования. Физический смысл коэффициента детерминации в эконометрической линейной модели связи двух переменных. Гетероскедастичность и автокоррелированность ошибок. Функция эластичности в линейной эконометрической модели.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 23.12.2014
Размер файла 19,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вопрос 1. Назовите некоторые основные проблемы эконометрического моделирования
Ответ: Рассмотрим некоторые основные проблемы эконометрического моделирования: Постоянство механизмов: Одно из условий, на которое опирается эконометрическое моделирование, состоит в том, что функциональное соотношение не меняется в течение рассматриваемого периода. Однако это условие часто нереалистично, особенно в случае, когда приходится иметь дело с переходной экономикой. Это обычная проблема, с которой экономист сталкивается при исследовании экономических процессов с изменчивой структурой. Как бы то ни было, приходится делать предположение о неизменности формы модели, иначе моделирование не было бы возможно. Один из возможных способов учета структурных сдвигов состоит в использовании различного рода сконструированных переменных, таких как, фиктивные переменные и тренды. Включение в эконометрическую модель трендов позволяет учитывать изменения во всех коэффициентах регрессионного уравнения: свободном члене и коэффициентах при «экономических» переменных. Фиктивные переменные (принимающие только два значения -- 0 и 1) позволяют учесть резкие структурные скачки. Кроме того, использование фиктивных переменных и гармонических трендов (синусов и косинусов) позволяет учесть в модели сезонные колебания. Если предположить, что сезонность имеет детерминированный характер, то ее можно смоделировать, добавив в уравнение регрессии компоненту следующего вида: 1 M1 + … + 12 M12. Здесь M1, …, M12 -- сезонные месячные переменные. Все же эти методы не позволяют адекватно учесть изменения, если неизвестен их характер или момент изменения (в случае скачка). Особенно большие проблемы создают структурные сдвиги для прогнозирования. Если резкое изменение в параметрах экономического процесса произошло в течение исследуемого периода, то это изменение можно заметить и учесть в модели. Если же неожиданное изменение произойдет после исследуемого периода, то сделанные прогнозы окажутся неверными. Недостаточный набор данных: Имеющихся данных может быть недостаточно для того, чтобы определить функциональную связь между переменными, либо они недостаточно варьируются, чтобы можно было отличить влияние одного фактора от влияния другого. Последняя проблема получила в эконометрическом моделировании название «мультиколлинеарности». В отличие от экспериментальных наук, у отдельного исследователя, изучающего экономические процессы, как правило, нет возможности сколько-нибудь заметно на них повлиять. Обычно за него это делает правительство. Чтобы восполнить недостаток данных, исследователю приходится делать некоторые априорные допущения, зачастую недостаточно обоснованные. Как правило, функциональная форма модели заранее неизвестна. В этом случае хорошим выходом из положения было бы использование непараметрических методов оценивания. Однако для применения таких методов необходим довольно значительный набор данных. Поэтому на практике, как правило, предполагают, что зависимость между двумя переменными линейна. Часто линейная зависимость дает хорошую аппроксимацию гладкой зависимости в некоторой небольшой окрестности, но вообще говоря, нет никакой гарантии, что «истинная» зависимость не окажется сильно нелинейной как раз в том интервале, к которому относятся данные. При применении статистических методов следует помнить, что постулируемые свойства как правило носят асимптотический характер, то есть проявляются в пределе, при стремлении количества наблюдений к бесконечности. В частности, если в линейной регрессии в качестве регрессоров используются лаги зависимой переменной, то, даже если выполнены стандартные предположения регрессионного анализа, полученные оценки будут состоятельными, но смещенными. Проблема ложной регрессии: Для того, чтобы получить высокий коэффициент детерминации, достаточно, чтобы в зависимой переменной и в регрессоре имелся тренд и динамика трендов до некоторой степени совпала. Коэффициент детерминации, как правило, бывает, высок в регрессии одного растущего показателя по другому растущему показателю. С другой стороны, коэффициент детерминации, как правило, бывает низким в регрессии одного процесса типа «белый шум» по другому такому же процессу. Двумя основными причинами наличия «тренда» во временных рядах являются · детерминированная составляющая (тогда говорят о детерминированном тренде), · нестационарность (тогда говорят о стохастическом тренде). Наличие детерминированного тренда может приводить к появлению ложной регрессии. Пусть, например Y t и X t порождаются процессами Y t = a + b t + ? t , X t = c + d t + ? t , где ? t , ? t -- независимые, одинаково распределенные ошибки. Регрессия Y t по константе и X t может иметь высокий коэффициент детерминации и этот эффект только усиливается с ростом размера выборки. К счастью, с «детерминированным» вариантом ложной регрессии достаточно легко бороться. В рассматриваемом случае достаточно добавить в уравнение тренд в качестве регрессора, и эффект ложной регрессии исчезает. Если существует стационарная линейная комбинация нестационарных случайных процессов, то эти процессы называют коинтегрированными. Коинтегрированность гарантирует (по крайней мере, асимптотически, то есть для больших выборок), что не возникнет ложная регрессия. Теория коинтеграции -- быстро развивающийся раздел современной эконометрики. Для оценивания моделей с нестационарными, но коинтегрированными переменными, вообще говоря, следует использовать специальные методы. К сожалению, методы оценивания коинтеграционных регрессий сложны с точки зрения реализации, и способы проверки их спецификации плохо разработаны. Поэтому, несмотря на указанные недостатки, обычный метод наименьших квадратов остается наиболее мощным инструментом эконометрики.
Вопрос 2. Как называется метод, который наиболее часто используется при оценке параметров линейной модели в эконометрике
эконометрический моделирование эконометрика
Ответ: Метод, который наиболее часто используется при оценке параметров линейной модели в эконометрике называется методом наименьших квадратов.
Вопрос 3. Как называются показатели, которые характеризует степень разброса случайной величины вокруг ее среднего значения
Ответ: Показатели, которые характеризуют степень разброса случайной величины вокруг ее среднего значения называются выборочной дисперсией и выборочной ковариацией.
Вопрос 4. Какой физический смысл несет коэффициент детерминации в эконометрической линейной модели связи двух переменных, таких как расходы и доходы, цена и спрос, число занятых и уровень безработицы
Ответ: Коэффициент детерминации изменяется в пределах от 0 до 1. Чем выше коэффициент детерминации в эконометрической линейной модели связи двух переменных, тем больше линейная связь (зависимость) между переменными. Т.е. если рассматривать эконометрические линейные модели связи двух переменных, таких как расходы и доходы, цена и спрос, число занятых и уровень безработицы и т.д., то приближение коэффициента детерминации к 1 говорит о наибольшей зависимости доходов от расходов, спроса от цены, уровень безработицы от числа занятых и т.д. И наоборот, чем ниже коэффициент детерминации, тем меньше связь между указанными переменными.
Вопрос 5. Что обозначает и как рассчитывается функция эластичности в линейной эконометрической модели
Ответ: Функция эластичности рассчитывается следующим образом: - найти процентное изменение У; - найти процентное изменение Х; - найти отношение процентного изменения У к процентному изменению Х; - найти предел отношения процентного изменения У к процентному изменению Х, когда последнее стремится к нулю. Значение функции эластичности равно угловому коэффициенту касательной к графику зависимости lnY от lnX.
Вопрос 6. Что мы подразумеваем под свойствами линейной модели, если считаем, что ошибки - случайные величины
Ответ: Существует (теоретическая, объективная или в виде тенденции) линейная зависимость значений переменной у от значений переменной х с вполне определенными, хотя обычно и не известными исследователю, значениями параметров л и в; Эта линейная связь для реальных статистических данных не является строгой: наблюдаемые значения Yi переменной У отклоняются от значений I, указываемых моделью линейной связи I = л+вi+еi, i=1,…,n; При заданных (известных) значениях хi конкретные значения отклонений еi=уi-I, i=1,…,n, не могут быть точно предсказаны до наблюдения значений уi даже если значения параметров л и в известны точно; Для каждого z, -z, определена вероятность F(z) того, что наблюдаемое значение отклонения еi не превзойдет z, причем эта вероятность не зависит от номера наблюдения; Вероятность того, что наблюдаемое значение отклонения еi в i-ом наблюдении не превзойдет z, не зависит от того, какие именно значения принимают отклонения в остальных n-1 наблюдениях.
Вопрос 7. В каких пределах будет заключена случайная ошибка с вероятностью 0.95, если она имеет Гауссовское распределение с параметром
Ответ: Классические методы статистического анализа линейных моделей наблюдений предполагают, что таковым является распределение Гаусса (Gaussian distribution), функция плотности которого имеет вид График указанной функции плотности имеет колоколообразную форму Параметр характеризует степень рассредоточения распределения вдоль оси абсцисс. На диаграмме представлены графики функций плотности гауссовского распределения при трех различных значениях параметра. Из трех представленных функций наибольшее значение в нуле имеет функция плотности с , наименьшее -- функция плотности с , а промежуточное между ними -- функция плотности с . Эти значения равны, соответственно, Гауссовское распределение симметрично относительно нуля, и это предполагает, что положительные ошибки столь же вероятны, как и отрицательные; при этом, малые ошибки встречаются чаще, чем большие. Если случайная ошибка имеет гауссовское распределение с параметром , то с вероятностью ее значение будет заключено в пределах от до . Соответственно, для трех рассмотренных случаев получаем: с вероятностью значение случайной ошибки заключено в интервале -- при , - при , - при . Хотя гауссовское распределение довольно часто вполне приемлемо для описания случайных ошибок в моделях наблюдений, оно вовсе не является универсальным. Такое распределение характерно для ситуаций, когда результирующая ошибка является следствием сложения большого количества независимых случайных ошибок, каждая из которых достаточно мала. Мы будем далее в этом параграфе предполагать, что процесс порождения данных (ППД, или DGP- data generating process) устроен следующим образом. Значения известны точно и рассматриваются как заданные, а значения получаются наложением на значения случайных ошибок. В этом контексте, рассматриваются как некоторые постоянные (хотя и не известные наблюдателю). Напротив, значения носят случайный характер, определяемый случайным характером значений . Собственно, отличается от случайной величины лишь сдвигом на постоянную , и потому также является случайной величиной. Мы будем обозначать ее в этом качестве как случайную величину . Функция распределения этой случайной величины имеет вид где -- функция распределения случайной величины (одинаковая для всех ). Соответственно, функция плотности распределения случайной величины имеет вид где -- функция плотности распределения случайной величины. Таким образом, случайные величины хотя и являются взаимно независимыми (в силу предполагаемой взаимной независимости случайных величин), но имеют разные распределения, отличающиеся сдвигом. На следующем рисунке представлены графики функции плотности распределения (гауссовское распределение с параметром ) и функции плотности распределения случайной величины при значении . Заметим, что если случайная ошибка имеет гауссовское распределение с плотностью то отличающаяся от нее сдвигом случайная величина имеет функцию плотности Эта функция плотности принадлежит двухпараметрическому семейству функций плотности вида Функции плотности такого вида называются нормальными плотностями, а определяемые ими распределения вероятностей называются нормальными распределениями вероятностей. Если некоторая случайная величина имеет плотность распределения, заданную последним соотношением, то говорят, что случайная величина Y имеет нормальное распределение с параметрами m и s2. Распределение такой случайной величины симметрично относительно своего среднего значения m. Максимальное значение функции плотности этой случайной величины достигается при . Таким образом, строго говоря, гауссовское распределение -- это нормальное распределение с нулевым средним значением. Однако, в современной научной литературе термины нормальное распределение и гауссовское распределение используются как синонимы: нормальное распределение с параметрами m и s2 называют также гауссовским распределением с параметрами m и s2. Важнейшая роль предположения о нормальном (гауссовском) распределении ошибок в линейной модели наблюдений определяется тем обстоятельством, что при добавлении такого предположения к стандартному предположению о том, что ошибки -- независимые случайные величины, имеющие одинаковое распределение, можно легко найти точный вид распределения оценок наименьших квадратов для неизвестных значений параметров модели. Вспомним, в этой связи, полученное ранее выражение Обозначая мы можем записать выражение для в виде где Таким образом, где -- фиксированные величины, а -- наблюдаемые значения случайных величин . Поэтому вычисленное по последней формуле значение является наблюдаемым значением случайной величины, которая является линейной комбинацией случайных величин и имеет некоторое распределение вероятностей, зависящее от распределения последних. В общем случае, аналитическое описание распределения как случайной величины довольно затруднительно. Более просто эта задача решается в ситуации, когда имеет гауссовское распределение. Если ошибки - независимые случайные величины, имеющие одинаковое нормальное распределение с нулевым средним, то тогда оценка наименьших квадратов параметра также имеет нормальное распределение. Чтобы указать параметры этого нормального распределения и иметь возможность проводить статистический анализ подобранной модели линейной связи между переменными факторами, нам придется уделить внимание некоторым важным числовым характеристикам случайных величин и их свойствам. Если случайная ошибка имеет гауссовское распределение с параметром у, то с вероятностью 0,95 ее значение будет заключено в пределах от -1,96у до +1,96у.
Вопрос 8. При каких значениях статистики Фишера нулевая гипотеза отвергается, и какова вероятность того, что мы отвергнем верную гипотезу
Ответ: Нулевая гипотеза отвергается, если выполняется неравенство При этом вероятность ошибочного отвержения гипотезы Ho равна.
Вопрос 9. Какая из трех нулевых гипотезе, является простой, а какая - сложной
Ответ: Ho является сложной гипотезой, если гипотеза допускает более одного значения параметра, т.е. Ho: и2=-1 является простой, а HA: и2>-1 и Ho: и2?-1 - сложные гипотезы.
Вопрос 10. Что такое гетероскедастичность и автокоррелированность ошибок
Ответ: Гетероскедастичность ошибок - это неоднородность дисперсий ошибок. Этот вид нарушений стандартных предположений характерен для статистических данных, относящихся к одному моменту времени, но собранных по различным регионам, различным предприятиям, различным социальным группам. Автокоррелированность ошибок - это вид нарушений стандартных предположений, характерный для статистических данных, развернутых во времени.

Размещено на Allbest.ru

...

Подобные документы

  • Основные проблемы эконометрического моделирования. Показатели, характеризующие степень разброса случайной величины вокруг ее среднего значения. Физический смысл коэффициента детерминации. Расчет функции эластичности в линейной эконометрической модели.

    контрольная работа [18,1 K], добавлен 23.11.2009

  • Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.

    контрольная работа [18,6 K], добавлен 06.11.2009

  • Публикация данных: источники информации и влияние факторов на деятельность. Статистическая автокоррелированность ряда и проверка ее порядков, статистика Дарбина–Уотсона. Регрессионные зависимости и леммы эконометрической модели, доверительный интервал.

    практическая работа [327,4 K], добавлен 15.03.2009

  • Моделирование экономических процессов с помощью однофакторной регрессии. Оценка параметров проекта методом наименьших квадратов. Расчет коэффициента линейной корреляции. Исследование множественной эконометрической линейной схемы на мультиколлинеарность.

    курсовая работа [326,5 K], добавлен 19.01.2011

  • Построение и анализ классической многофакторной линейной эконометрической модели. Вид линейной двухфакторной модели, её оценка в матричной форме и проверка адекватности по критерию Фишера. Расчет коэффициентов множественной детерминации и корреляции.

    контрольная работа [131,9 K], добавлен 01.06.2010

  • Анализ и выявление значимых факторов, влияющих на объект. Построение эконометрической модели затрат предприятия для обоснований принимаемых решений. Исследование трендов временных рядов. Оценка главных параметров качества эконометрической модели.

    курсовая работа [821,1 K], добавлен 21.11.2013

  • Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа [176,4 K], добавлен 17.10.2014

  • Ознакомление с основами модели простой регрессии. Рассмотрение основных элементов эконометрической модели. Характеристика оценок коэффициентов уравнения регрессии. Построение доверительных интервалов. Автокорреляция и гетероскедастичность остатков.

    лекция [347,3 K], добавлен 23.12.2014

  • Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.

    контрольная работа [99,2 K], добавлен 27.04.2011

  • Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.

    контрольная работа [71,7 K], добавлен 17.09.2016

  • Методы исследования и моделирования социально-экономических систем. Этапы эконометрического моделирования и классификация эконометрических моделей. Задачи экономики и социологии труда как объект эконометрического моделирования и прогнозирования.

    курсовая работа [701,5 K], добавлен 14.05.2015

  • Процесс построения и анализа эконометрической модели в пакете Econometric Views. Составление, расчет и анализ существующей проблемы. Проверка адекватности модели реальной ситуации на числовых данных в среде Eviews. Построение регрессионного уравнения.

    курсовая работа [1,3 M], добавлен 17.02.2014

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Построение и анализ однофакторной и многофакторной эконометрической модели. Вычисление парных и частичных коэффициентов корреляции. Проверка адекватности модели по критерию Фишера. Исследование наличия мультиколлениарности по алгоритму Феррара-Глобера.

    контрольная работа [172,4 K], добавлен 28.05.2010

  • Группировка предприятий по среднегодовой стоимости производственных фондов. Сглаживание скользящей средней и ее центрирование. Определение коэффициента линейной регрессионной модели и показателей детерминации. Коэффициенты эластичности и их интерпретация.

    контрольная работа [493,4 K], добавлен 06.05.2015

  • Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.

    курсовая работа [1,1 M], добавлен 07.08.2011

  • Исследование изменения во времени курса акций British Petroleum средствами эконометрического моделирования с целью дальнейшего прогноза с использованием компьютерных программ MS Excel и Econometric Views. Выбор оптимальной модели дисперсии ошибки.

    курсовая работа [1,2 M], добавлен 14.06.2011

  • Построение качественной модели линейной регрессии и доказательство справедливости соответствующего ей теоретического уравнения экономической теории. Демонстрация работы тестов Бреуша-Годфри и Q-теста, позволяющих определить наличие автокорреляции.

    курсовая работа [108,6 K], добавлен 02.11.2009

  • Построение эконометрической модели, описывающей линейную зависимость результативного признака факторов, входящих в нее, методом матрицы. Проверка ее на адекватность по критерию Фишера. Определение дисперсии, ковариации, корреляции и детерминации.

    контрольная работа [180,5 K], добавлен 03.12.2014

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.