Моделирование по методу Монте-Карло
Рассмотрение всех возможных последствий решений и оценка воздействия риска при помощи моделирования по методу Монте-Карло. Обеспечение высокой эффективности принятия решений в условиях неопределенности. Преимущества моделирования по методу Монте-Карло.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 08.01.2015 |
Размер файла | 17,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Моделирование по методу Монте-Карло
Анализ риска -- необъемлемая часть любого решения, которое мы принимаем. Мы постоянно сталкиваемся с неопределенностью, неоднозначностью и изменчивостью. И даже несмотря на беспрецедентно широкий доступ к информации, мы не можем точно предсказать будущее. Моделирование по методу Монте-Карло (также известное как метод Монте-Карло) позволяет рассмотреть все возможные последствия ваших решений и оценить воздействие риска, что обеспечивает более высокую эффективность принятия решений в условиях неопределенности.
Что такое моделирование по методу Монте-Карло
Моделирование по методу Монте-Карло представляет собой автоматизированную математическую методику, предназначенную для учета риска в процессе количественного анализа и принятия решений. Эта методика применяется профессионалами в разных областях, таких как финансы, управление проектами, энергетика, производство, проектирование, НИОКР, страхование, нефтегазовая отрасль, транспорт и охрана окружающей среды.
Каждый раз в процессе выбора направления дальнейших действий моделирование по методу Монте-Карло позволяет специалисту, принимающему решения, рассматривать целый спектр возможных последствий и оценивать вероятность их наступления. Этот метод демонстрирует возможности, лежащие на противоположных концах спектра (результаты игры ва-банк и принятия наиболее консервативных мер), а также вероятные последствия умеренных решений.
Впервые этим методом воспользовалась ученые, занимавшиеся разработкой атомной бомбы; его назвали в честь Монте-Карло -- курорта в Монако, известного своими казино. Получив распространение в годы Второй мировой войны, метод Монте-Карло стал применяться для моделирования всевозможных физических и теоретических систем.
Как выполняется моделирование по методу Монте-Карло
В рамках метода Монте-Карло анализ риска выполняется с помощью моделей возможных результатов. При создании таких моделей любой фактор, которому свойственна неопределенность, заменяется диапазоном значений -- распределением вероятностей. Затем выполняются многократные расчеты результатов, причем каждый раз используется другой набор случайных значений функций вероятности. Порой для завершения моделирования бывает необходимо произвести тысячи и даже десятки тысяч перерасчетов -- в зависимости от количества неопределенностей и установленных для них диапазонов. Моделирование по методу Монте-Карло позволяет получить распределения значений возможных последствий.
При использовании распределений вероятностей переменные могут иметь разные вероятности наступления разных последствий. Распределения вероятностей представляют собой гораздо более реалистичный способ описания неопределенности переменных в процессе анализа риска. Ниже перечислены наиболее распространенные распределения вероятностей.
Нормальное распределение (или « гауссова кривая »). Чтобы описать отклонение от среднего, пользователь определяет среднее или ожидаемое значение и стандартное отклонение. Значения, расположенные посредине, рядом со средним, характеризуются наиболее высокой вероятностью. Нормальное распределение симметрично и описывает множество обычных явлений -- например, рост людей. К примерам переменных, которые описываются нормальными распределениями, относятся темпы инфляции и цены на энергоносители.
Логнормальное распределение. Значения имеют положительную асимметрию и в отличие от нормального распределения несимметричны. Такое распределение используется для отражения величин, которые не опускаются ниже нуля, но могут принимать неограниченные положительные значения. Примеры переменных, описываемых логнормальными распределениями, включают стоимость недвижимого имущества, цены на акции и нефтяные запасы.
Равномерное распределение. Все величины могут с равной вероятностью принимать то или иное значение, пользователь просто определяет минимум и максимум. К примерам переменных, которые могут иметь равномерное распределение, относятся производственные издержки или доходы от будущих продаж нового продукта.
Треугольное распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. В число переменных, которые могут быть описаны треугольным распределением, входят продажи за минувший период в единицу времени и уровни запасов материальных оборотных средств.
PERT-распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения -- так же, как при треугольном распределении. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. Однако величины в диапазоне между наиболее вероятным и предельными значениями проявляются с большей вероятностью, чем при треугольном распределении, то есть отсутствует акцент на предельных значениях. Пример использования PERT-распределения -- описание продолжительности выполнения задачи в рамках модели управления проектом.
Дискретное распределение. Пользователь определяет конкретные значения из числа возможных, а также вероятность получения каждого из них. Примером может служить результат судебного процесса: 20% вероятность положительного решения, 30% вероятность отрицательного решения, 40% вероятность соглашения сторон и 10% вероятность аннулирования судебного процесса.
При моделировании по методу Монте-Карло значения выбираются случайным образом из исходных распределений вероятности. Каждая выборка значений называется итерацией; полученный из выборки результат фиксируется. В процессе моделирования такая процедура выполняется сотни или тысячи раз, а итогом становится распределение вероятностей возможных последствий. Таким образом, моделирование по методу Монте-Карло дает гораздо более полное представление о возможных событиях. Оно позволяет судить не только о том, что может произойти, но и о том, какова вероятность такого исхода. монте карло риск моделирование
Моделирование по методу Монте-Карло имеет ряд преимуществ по сравнению с детерминистским анализом, или анализом « по точечным оценкам»:
· Вероятностные результаты. Результаты демонстрируют не только возможные события, но и вероятность их наступления.
· Графическое представление результатов. Характер данных, получаемых при использовании метода Монте-Карло, позволяет создавать графики различных последствий, а также вероятностей их наступления. Это важно при передаче результатов другим заинтересованным лицам.
· Анализ чувствительности. За редким исключением детерминистский анализ затрудняет определение того, какая из переменных в наибольшей степени влияет на результаты. При проведении моделирования по методу Монте-Карло несложно увидеть, какие исходные данные оказывают наибольшее воздействие на конечные результаты.
· Анализ сценариев. В детерминистских моделях очень сложно моделировать различные сочетания величин для различных исходных значений, и, следовательно, оценить воздействие по-настоящему отличающихся сценариев. Применяя метод Монте-Карло, аналитики могут точно определить, какие исходные данные приводят к тем или иным значениям, и проследить наступление определенных последствий. Это очень важно для проведения дальнейшего анализа.
· Корреляция исходных данных. Метод Монте-Карло позволяет моделировать взаимозависимые отношения между исходными переменными. Для получения достоверных сведений необходимо представлять себе, в каких случаях при увеличении некоторых факторов соответствующим образом возрастают или снижаются другие.
Вы также можете улучшить результаты моделирования по методу Монте-Карло путем проведения выборки с применением метода « латинский гиперкуб», в рамках которого отбор производится с большей точностью из всего интервала функций распределения.
Размещено на Allbest.ru
...Подобные документы
Связь стохастических процессов и дифференциальных уравнений. Алгоритм Бюффона для определения числа Пи. Геометрический алгоритм Монте-Карло интегрирования. Применение метода Монте-Карло в логистике. Алгоритм Метрополиса, квантовый метод Монте-Карло.
курсовая работа [258,0 K], добавлен 26.12.2013Методи генерування послідовності рівномірно розподілених випадкових чисел. Перевірка якості псевдовипадкових чисел. Використання методу Монте-Карло в імітаційному моделюванні. Обчислення інтегралу методом Монте-Карло. Переваги програмного методу.
методичка [2,8 M], добавлен 29.01.2010Понятие имитационного моделирования, применение его в экономике. Этапы процесса построения математической модели сложной системы, критерии ее адекватности. Дискретно-событийное моделирование. Метод Монте-Карло - разновидность имитационного моделирования.
контрольная работа [26,7 K], добавлен 23.12.2013Изучение особенностей метода статистического моделирования, известного в литературе под названием метода Монте-Карло, который дает возможность конструировать алгоритмы для ряда важных задач. Решение задачи линейного программирования графическим методом.
контрольная работа [1,2 M], добавлен 17.12.2014Финансовый анализ инвестиционного проекта с использованием модулей "Анализ чувствительности", "Анализ по методу Монте-Карло" и "Анализ безубыточности" компьютерной имитирующей системы Project Expert 6 Holding. Стратегия формирования капитала проекта.
лабораторная работа [1,4 M], добавлен 15.03.2009Случайная выборка из генеральной совокупности. Сущность метода Монте-Карло. Определение адекватности принятой эконометрической модели. Линейная регрессионная модель вида. Система нормальных уравнений в матричной форме. Параметры регрессионной модели.
контрольная работа [323,5 K], добавлен 08.12.2010Определение площади фигуры аналитическим методом (с помощью вычисления определенного интеграла) и методом статистических испытаний Монте-Карло. Построение графиков для наглядной демонстрации результатов эксперимента. Вычисление доверительного интервала.
лабораторная работа [211,9 K], добавлен 15.10.2013Статистическая модель случайного процесса. Численный метод Монте-Карло. Типы имитации, ее достоинства и возможности. Простая имитационная модель системы обработки документов. Использование для моделирования языка Siman. Его основные моделирующие блоки.
презентация [1,6 M], добавлен 22.10.2014Характеристика метода Монте-Карло. Его преимущество и недостатки, области применения. Решение задач по оптимизации использования ресурсов, управлению запасами и системе массового обслуживания с помощью средств аналитического и имитационного моделирования.
контрольная работа [1,4 M], добавлен 22.11.2013Разработка имитационной модели торгового предприятия, предоставляющей возможность анализа и оптимизации основных показателей его деятельности для улучшения финансовых результатов. Схема расчёта накопленной чистой прибыли торговой компании "Магнит".
дипломная работа [1,6 M], добавлен 25.06.2017Ознакомление с математическими методами моделирования экономических систем. Анализ рынка вендоров при помощи диффузионной и стохастической моделей (Баса, Роджерса, Fourt и Woodlock, Mansfield, Монте-Карло, Блэка-Шоулза). Скачкообразный Марковский процесс.
курсовая работа [1,1 M], добавлен 13.06.2014Процедура проведения имитационных экспериментов с моделью исследуемой системы. Этапы имитационного моделирования. Построение концептуальной модели объекта. Верификация и адаптация имитационной модели. Метод Монте-Карло. Моделирование работы отдела банка.
курсовая работа [549,5 K], добавлен 25.09.2011Моделирование приращений цены, процентной ставки, кредитного риска. Хеджирование и динамическое управление капиталом. Определение величины скачков цен. Модели с использованием байесовского подхода (формула пересчета вероятностей). Алгоритм Монте-Карло.
презентация [263,4 K], добавлен 23.06.2015Эффективность капитальных вложений. Статистические методы оценки целесообразности инвестиций с риском. Анализ чувствительности, сценариев. Установление номинальных и предельных значений неопределенных факторов. Имитационное моделирование Монте-Карло.
контрольная работа [34,4 K], добавлен 27.10.2008Построение имитационной модели технологического процесса методом Монте-Карло, ее исследование на адекватность. Оценка и прогнозирование выходных характеристик технологического процесса с помощью регрессионных моделей. Разработка карт контроля качества.
курсовая работа [1,2 M], добавлен 28.12.2012Понятие, правила построения и направления применения сетевого планирования. Особенности методов критического пути, статистических испытаний (способ Монте-Карло), оценки и пересмотр планов и графического анализа. Принципы построения диаграммы Ганта.
курсовая работа [1,1 M], добавлен 24.10.2010Определение этапа разработки экономико-математического моделирования и обоснование способа получения результата моделирования. Теория игр и принятие решений в условиях неопределенности. Анализ коммерческой стратегии при неопределенной конъюнктуре.
контрольная работа [940,6 K], добавлен 09.07.2014Взаимодействие заряженных частиц с веществом: упругое рассеивание, ионизация, тормозное излучение. Случайные числа и их применение при решении физических задач. Особенности реализации метода Монте-Карло для кулоновского рассеяния заряженных частиц.
курсовая работа [966,6 K], добавлен 21.06.2012Марковские цепи с конечным числом состояний и дискретным временем, с конечным числом состояний и непрерывным временем и работа с ними. Основные понятия и классификация систем массового обслуживания, их типы и отличия. Сущность метода Монте-Карло.
дипломная работа [581,9 K], добавлен 25.08.2009Теория статистических решений как поиск оптимального недетерминированного поведения в условиях неопределенности. Критерии принятия решений Лапласа, минимаксный, Сэвиджа, Гурвица и различия между ними. Математические средства описания неопределенностей.
контрольная работа [66,0 K], добавлен 25.03.2009