Анализ модели временного ряда, в которой на тренд накладывается случайная составляющая, образующая случайный стационарный процесс
Временной ряд как совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Основные свойства коэффициента автокорреляции. Сущность метода наименьших квадратов. Расчет линейного уравнения регрессии.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 10.01.2015 |
Размер файла | 35,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Введение
Почти в каждой области встречаются явления, которые интересно и важно изучать в их развитии и изменении во времени. В повседневной жизни могут представлять интерес, например, метеорологические условия, цены на тот или иной товар, те или иные характеристики состояния здоровья индивидуума и т. д. Все они изменяются во времени. С течением времени изменяются деловая активность, режим протекания того или иного производственного процесса, глубина сна человека, восприятие телевизионной программы. Совокупность измерений какой-либо одной характеристики подобного рода в течение некоторого периода времени представляют собой временной ряд.
Совокупность существующих методов анализа таких рядов наблюдений называется анализом временных рядов.
Основной чертой, выделяющей анализ временных рядов среди других видов статистического анализа, является существенность порядка, в котором производятся наблюдения. Если во многих задачах наблюдения статистически независимы, то во временных рядах они, как правило, зависимы, и характер этой зависимости может определяться положением наблюдений в последовательности. Природа ряда и структура порождающего ряд процесса могут предопределять порядок образования последовательности.
Цель работы состоит в получении модели для дискретного временного ряда во временной области, обладающей максимальной простотой и минимальным числом параметров и при этом адекватно описывающей наблюдения.
Получение такой модели важно по следующим причинам:
1) она может помочь понять природу системы, генерирующей временные ряды;
2) управлять процессом, порождающим ряд;
3) ее можно использовать для оптимального прогнозирования будущих значений временных рядов.
Временные ряды лучше всего описываются нестационарными моделями, в которых тренды и другие псевдо устойчивые характеристики , возможно меняющиеся во времени , рассматриваются скорее как статистические, а не детерминированные явления. Кроме того, временные ряды, связанные с экономикой , часто обладают заметными сезонными, или периодическими , компонентами; эти компоненты могут меняться во времени и должны описываться циклическими статистическими (возможно, нестационарными) моделями.
Пусть наблюдаемым временным рядом является y1, y2, . . ., yn. Мы будем понимать эту запись следующим образом. Имеется Т чисел, представляющих собой наблюдение некоторой переменной в Т равноотстоящих моментов времени. Эти моменты для удобства пронумерованы целыми числами 1, 2, . . .,Т. Достаточно общей математической (статистической или вероятностной) моделью служит модель вида:
yt = f(t) + ut , t = 1, 2, . . ., T.
В этой модели наблюдаемый ряд рассматривается как сумма некоторой полностью детерминированной последовательности {f(t)}, которую можно назвать математической составляющей, и случайной последовательности {ut}, подчиняющейся некоторому вероятностному закону. ( И иногда для этих двух составляющих используются соответственно термины сигнал и шум). Эти компоненты наблюдаемого ряда ненаблюдаемы; они являются теоретическими величинами. Точный смысл указанного разложения зависит не только от самих данных, но частично и оттого, что понимается под повторением эксперимента, результатом которого являются эти данные. Здесь используется так называемая «частотная» интерпретация. Полагается, что, по крайней мере, принципиально можно повторять всю ситуацию целиком, получая новые совокупности наблюдений. Случайные составляющие, кроме всего прочего, могут включать в себя ошибки наблюдений.
В данной работе рассмотрена модель временного ряда, в которой на тренд накладывается случайная составляющая, образующая случайный стационарный процесс. В такой модели предполагается, что течение времени никак не отражается на случайной составляющей. Точнее говоря, предполагается, что математическое ожидание (то есть среднее значение) случайной составляющей тождественно равно нулю, дисперсия равна некоторой постоянной и что значения ut в различные моменты времени некоррелированные. Таким образом, всякая зависимость от времени включается в систематическую составляющую f(t). Последовательность f(t) может зависеть от некоторых неизвестных коэффициентов и от известных величин, меняющихся со временем. В этом случае её называют «функцией регрессии». Методы статистических выводов для коэффициентов функции регрессии оказываются полезными во многих областях статистики. Своеобразие же методов, относящихся именно к временным рядам, состоит в том, что здесь исследуются те модели, в которых упомянутые выше величины, меняющиеся со временем, являются известными функциями t.
1. Основные модели, используемые при анализе временных рядов
1.1 Временной ряд и его основные элементы
Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:
· факторы, формирующие тенденцию ряда;
· факторы, формирующие циклические колебания ряда;
· случайные факторы.
При различных сочетаниях в изучаемом процессе или явлении этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую долговременное совокупное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное влияние на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию.
Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку деятельность ряда отраслей экономики и сельского хозяйства зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой временного ряда.
Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень образуется как сумма среднего уровня ряда и некоторой (положительной или отрицательной) случайной компоненты.
В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача статистического исследования отдельного временного ряда - выявление и придание количественного выражения каждой из перечисленных выше компонент с тем чтобы использовать полученную информацию для прогнозирования будущих значений ряда.
1.2 Автокорреляция уровней временного ряда и выявление его структуры
При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.
Количественно её можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.
Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Некоторые авторы считают целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило - максимальный лаг должен быть не больше.
Отметим два важных свойства коэффициента автокорреляции.
Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. В связи с этим по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.
Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержит положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.
Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. Порядков называют автокорреляционной функцией временного ряда. График зависимости её значений от величины лага (порядка коэффициента корреляции) называется коррелограммой.
Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная. То есть при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.
Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка ф, ряд содержит циклические колебания с периодичностью в ф моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. В связи с этим коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической, сезонной компоненты.
1.3 Моделирование тенденции временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Пусть имеются следующие фактические уровни ряда:
у1, у2, . . ., уn.
Характер изменения этих уровней, то есть движения динамического ряда, может быть различным. Нашей задачей является нахождение такой простой математической формулы, которая давала бы возможность вычислить теоретические уровни. Основное требование, предъявляемое к этой формуле, состоит в том, что уровни, исчисленные по ней, должны воспроизводить общую тенденцию фактических уровней.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
· линейный тренд:
yt = a0 + a1t;
· ги?ербола:
yt =a0 + a1/t;
· экспоненциальный тренд:
yt = e a + bt;
· тренд в форме степенной функции:
yt = atb;
· парабола второго и более порядков:
yt = a0 + a1t + a2 t 2 + . . . +ak t k .
Аналитическое выравнивание есть не что иное, как удобный способ описания эмпирических данных.
Общие соображения при выборе типа линии, по которой производится аналитическое выравнивание , могут быть сведены к следующим:
1) Если абсолютные приросты уровней ряда по своей величине колеблются около постоянной величины, то математической функцией, уравнение которой можно принять за основу аналитического выравнивания, следует считать прямую линию:
yt = a0 + a1 t,
где yt считается как у, выровненный по t.
2) Если приросты приростов уровней, то есть ускорения, колеблются около постоянной величины, то за основу аналитического выравнивания, следует принять параболу второго порядка:
yt = a0 + a1 t + a2 t 2 .
Показатели а0, а1 и а2 представляют собой в каждом отдельном случае выравнивания постоянные величины, называемые параметрами: а0 -начальный уровень; а1 - начальная скорость ряда и а2 - ускорение или вторая скорость.
3) Если уровни изменяются с приблизительно постоянным относительным приростом, то выравнивание производится по показательной (экспонентной функции):
yt = a0 a1t.
В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путём сравнения коэффициентов автокорреляции первого порядка, рассчитанным по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни yt и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.
При обработке информации на компьютере выбор вида уравнения тенденции обычно осуществляется экспериментальным методом, то есть путём сравнения величины остаточной дисперсии Dост, рассчитанной при разных моделях. Имеют место отклонения фактических данных от теоретических (у - уt).
Чем меньше величина остаточной дисперсии, тем лучше данное уравнение подходит к исходным данным.
1.4 Метод наименьших квадратов
Для нахождения аналитического уравнения, по которому производится выравнивание уровней временного ряда, применяют различные способы. Один из таких способов - метод наименьших квадратов - основан на требовании о том, чтобы сумма квадратов отклонений фактических данных от выровненных была наименьшей:
(у1 - у1)2 + (у2 - у2)2 + . . . + (уn - yn)2 = S.
S должно быть наименьшим (минимальным)
Принцип, положенный в основу метода наименьших квадратов, может быть записан в сжатом математическом виде следующим образом:
(y - yt)2 = min.
Из курса математического анализа известно, что при нахождении минимума функции нужно найти частные производные и приравнять их к нулю. Найдём минимум функции, используя уравнение параболы.
Имеем:
(y - yt )2 = S;
заменяем:
yt = a0 + a1 t + a2 t 2
и получаем:
(y - a0 - a1 t - a2 t 2 )2 = S.
Находим частные производные функции S сначала по параметру а0, а затем по а1 и а2, и приравниваем их к нулю.
Полученная система называется системой нормальных уравнений для нахождения параметров а0 , а1 и а2 при выравнивании по параболе второго порядка.
При выравнивании по показательной функции yt = a0 a1t параметры а0 и а1 определяются по методу наименьших квадратов отклонений логарифмов путём решения системы нормальных уравнений.
1.5 Приведение уравнения тренда к линейному виду
Если тренд представляет собой нелинейную функцию, то методы линейного регрессионного анализа для оценки его параметров неприменимы. Но к некоторым нелинейным функциям мы можем применить такие преобразования, которые приведут нас к линейному уравнению.
Если наш тренд представлен степенной линией регрессии, то есть он имеет вид:
yt = a0ta1,
то логарифмируя обе части равенства, получим:
lnyt = ln a0 + a1 ln t.
Отсюда видно, что, введя новые переменные:
z = lnyt , x = ln t,
мы получим уравнение вида:
z = b0 +a1x,
где b0 = ln a0. Это обычное линейное уравнение.
Если линия тренда - парабола второго порядка
yt = a0 + a1 t + a2 t 2 ,
то заменой вида:
х1 = t, x2 = t 2,
мы получим линейную функцию двух переменных:
yt = a0 + a1 х1 + a2 х2.
Оценку параметров такой функции можно провести методами линейного регрессионного анализа для множественной регрессии.
Далее приведём основные понятия регрессионного анализа, которые используются для оценки параметров.
1.6 Оценка параметров уравнения регрессии
Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции ryt. Существуют разные модификации формулы линейного коэффициента корреляции.
Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в её линейной форме. В связи с этим близость абсолютной величины линейного коэффициента корреляции к нулю ещё не означает отсутствия связи между признаками.
Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции ryt2, называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака уt, объясняемую регрессией, в общей дисперсии результативного признака.
Парабола второго порядка, как и полином более высокого порядка, при лианеризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадёт с индексом корреляции.
Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с зависимой переменной. В этом случае линейный коэффициент корреляции по преобразованным значениям признаков даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции. Так, для степенной функции ух = ахb после перехода к логарифмически линейному уравнению:
lny = lna + blnx,
может быть найден линейный коэффициент корреляции не для фактических значений переменных х и у, а для их логарифмов, то есть rlnylnx.
Между тем при расчёте индекса корреляции используются суммы квадратов отклонений признака у, а не их логарифмов. С этой целью определяются теоретические значения результативного признака, то есть , как антилогарифм рассчитанной по уравнению величины и остаточная сумма квадратов как . Индекс корреляции определяется по формуле
В знаменателе расчёта R2yx участвует общая сумма квадратов отклонений фактических значений у от их средней величины, а в расчёте r2lnx lny участвует. Соответственно различаются числители и знаменатели рассматриваемых показателей:
- в индексе корреляции;
- в коэффициенте корреляции.
Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции.
Несмотря на близость значений R и r или R и r в нелинейных функциях с преобразованием значения признака у, следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, как следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, то при криволинейной зависимости для функции y=j(x) не равен для регрессии x=f(y).
Поскольку в расчёте индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину для нелинейных связей называют индексом детерминации.
Оценка существенности индекса корреляции проводится, так же как и оценка надёжности коэффициента корреляции.
Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации меньше индекса детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.
Практически, если величина разности между индексом детерминации и коэффициентом детерминации не превышает 0,1, то предположение о линейной форме связи считается оправданным.
1.7 Аддитивная и мультипликативная модели временного ряда
Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.
Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:
Y= T + S + E.
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:
Y = T?S?E.
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.
Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.
Процесс построения модели включает в себя следующие шаги.
1. Выравнивание исходного ряда методом скользящей средней.
2. Расчет значений сезонной компоненты.
3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.
4. Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.
5. Расчет полученных по модели значений или
6. Расчет абсолютных и относительных ошибок.
Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.
1.8 Стационарные временные ряды
После удаления тенденции (тренда) из временного ряда мы получим стационарный временной ряд. Его можно рассматривать как выборку Т последовательных наблюдений через равные промежутки времени из существенно более продолжительной (генеральной последовательности случайных величин. При этом статистические выводы делаются относительно вероятностной структуры генеральной последовательности. Такую последовательность удобно считать простирающейся неограниченно в будущее и, возможно, в прошлое. Последовательность случайных величин у1, у2... или у-1, у0, у1... называется случайным процессом с дискретным параметром времени.
Несмотря на полную произвольность вероятностных моделей последовательностей случайных величин, полезно отличать случайные процессы от множества случайных величин этого процесса, учитывая понятие времени. Грубо говоря, в случайном процессе наблюдения, разделённые небольшими промежутками времени, близки по значениям в отличие от наблюдений, далеко отстоящих друг от друга во времени. Более того, модель значительно упрощается после расширения конечной последовательности наблюдений до бесконечной.
Одним из таких упрощений является свойство стационарности. Будем считать, что поведение множества случайных величин с вероятностной точки зрения не зависит от времени.
Случайный процесс y(t) с непрерывным параметром времени можно определить для 0 ? t < ? или -? < t < ? и рассматривать с привлечением вероятностной меры на пространстве функций y(t). Выборка из такого процесса состоит из наблюдений в конечном числе точек времени , или из непрерывных наблюдений в интервале времени.
Наблюдение процесса, часто называемое реализацией, есть точка в соответствующем бесконечномерном пространстве, где определена вероятностная мера. Вероятность определяется на некоторых множествах, называемых измеримыми. Этот класс множеств включает вместе с любым множеством его дополнение, а также объединение и пересечение счётного числа множеств этого класса; вероятностная мера на этом классе множеств определяется таким образом, что вероятность объединения непересекающихся множеств равна сумме вероятностей отдельных множеств.
Практически мы интересуемся вероятностями, которые связаны с конечным числом случайных величин. Эти вероятности включают в себя функцию совместного распределения.
1.9 Применение быстрого преобразования Фурье к стационарному временному ряду
Одно из назначений преобразования Фурье- выделять частоты циклических составляющих временного ряда, содержащего случайную компоненту.
Пусть число данных N представимо в виде N = N1 N2. Тогда можно записать:
t = t1 + (t 2-1)N1 , t1 = 1, . . ., N1 , t2 = 1, . . ., N2;
j = j1 + j 2N2 , j1 = 0, . . ., N2 - 1 , j2 = 0, . . ., N1 - 1;
Отметим, что aN - j = aj и bN - j = - bj . Искомые коэффициенты являются соответственно действительной и мнимой частями суммы.
2. Практическое задание
Корреляционный анализ.
Уравнение парной регрессии.
Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид:
y = bx + a + е
Здесь е - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления - это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения еi для каждого конкретного наблюдения i - случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров б и в;
2) Оценками параметров б и в регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид:
y = bx + a + е,
где ei - наблюдаемые значения (оценки) ошибок еi, а и b соответственно оценки параметров б и в регрессионной модели, которые следует найти.
Для оценки параметров б и в - используют МНК (метод наименьших квадратов). Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии.
Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (е) и независимой переменной (x).
Формально критерий МНК можно записать так:
S = ?(yi - y*i)2 > min.
Система нормальных уравнений.
a*n + b?x = ?y.
a?x + b?x2 = ?y*x.
Для наших данных система уравнений имеет вид.
30a + 3237 b = 254.
3237 a + 442461 b = -4804.
Из первого уравнения выражаем а и подставим во второе уравнение:
Получаем эмпирические коэффициенты регрессии: b = -0.3456, a = 45.7622.
Уравнение регрессии (эмпирическое уравнение регрессии):
y = -0.3456 x + 45.7622
Эмпирические коэффициенты регрессии a и b являются лишь оценками теоретических коэффициентов вi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
Для расчета параметров регрессии построим расчетную таблицу (табл. 1).
Табл. 1
x |
y |
x2 |
y2 |
x * y |
|
139 |
1 |
19321 |
1 |
139 |
|
117 |
23 |
13689 |
529 |
2691 |
|
151 |
-6 |
22801 |
36 |
-906 |
|
181 |
-21 |
32761 |
441 |
-3801 |
|
70 |
28 |
4900 |
784 |
1960 |
|
99 |
15 |
9801 |
225 |
1485 |
|
22 |
23 |
484 |
529 |
506 |
|
81 |
18 |
6561 |
324 |
1458 |
|
120 |
7 |
14400 |
49 |
840 |
|
115 |
7 |
13225 |
49 |
805 |
|
161 |
11 |
25921 |
121 |
1771 |
|
171 |
-26 |
29241 |
676 |
-4446 |
|
209 |
-106 |
43681 |
11236 |
-22154 |
|
168 |
-4 |
28224 |
16 |
-672 |
|
140 |
0 |
19600 |
0 |
0 |
|
10 |
31 |
100 |
961 |
310 |
|
140 |
0 |
19600 |
0 |
0 |
|
69 |
29 |
4761 |
841 |
2001 |
|
-16 |
35 |
256 |
1225 |
-560 |
|
87 |
26 |
7569 |
676 |
2262 |
|
162 |
-2 |
26244 |
4 |
-324 |
|
161 |
11 |
25921 |
121 |
1771 |
|
120 |
22 |
14400 |
484 |
2640 |
|
70 |
29 |
4900 |
841 |
2030 |
|
120 |
6 |
14400 |
36 |
720 |
|
90 |
17 |
8100 |
289 |
1530 |
|
10 |
32 |
100 |
1024 |
320 |
|
30 |
24 |
900 |
576 |
720 |
|
90 |
25 |
8100 |
625 |
2250 |
|
150 |
-1 |
22500 |
1 |
-150 |
|
3237 |
254 |
442461 |
22720 |
-4804 |
1. Параметры уравнения регрессии.
Выборочные средние.
.
Выборочные дисперсии:
Среднеквадратическое отклонение.
Коэффициент корреляции
Ковариация.
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:
Линейный коэффициент корреляции принимает значения от -1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 <rxy< 0.3: слабая;
0.3 <rxy< 0.5: умеренная;
0.5 <rxy< 0.7: заметная;
0.7 <rxy< 0.9: высокая;
0.9 <rxy< 1: весьма высокая.
В нашем примере связь между признаком Y фактором X высокая и обратная.
Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент регрессии b:
Уравнение регрессии (оценка уравнения регрессии).
Линейное уравнение регрессии имеет вид y = -0.35 x + 45.76.
Коэффициентам уравнения линейной регрессии можно придать экономический смысл.
Коэффициент регрессии b = -0.35 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y понижается в среднем на -0.35.
Коэффициент a = 45.76 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и х определяет знак коэффициента регрессии b (если > 0 - прямая связь, иначе - обратная). В нашем примере связь обратная.
Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты.
Средний коэффициент эластичности E показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения.
Коэффициент эластичности находится по формуле:
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами - Х существенно влияет на Y.
Бета - коэффициент.
Бета - коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:
.
Т.е. увеличение x на величину среднеквадратического отклонения Sx приведет к уменьшению среднего значения Y на 0.74 среднеквадратичного отклонения Sy.
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения регрессии к исходным данным.
Поскольку ошибка больше 7%, то данное уравнение не желательно использовать в качестве регрессии.
Эмпирическое корреляционное отношение.
Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерения тесноты зависимости. Изменяется в пределах [0;1].
где:
Индекс корреляции.
Для линейной регрессии индекс корреляции равен коэффициенту корреляции rxy = -0.74.
Полученная величина свидетельствует о том, что фактор x существенно влияет на y.
Для любой формы зависимости теснота связи определяется с помощью множественного коэффициента корреляции:
Данный коэффициент является универсальным, так как отражает тесноту связи и точность модели, а также может использоваться при любой форме связи переменных. При построении однофакторной корреляционной модели коэффициент множественной корреляции равен коэффициенту парной корреляции rxy. В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1]. Теоретическое корреляционное отношение для линейной связи равно коэффициенту корреляции rxy.
Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R2= -0.742 = 0.5413.
т.е. в 54.13 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - средняя. Остальные 45.87 % изменения Y объясняются факторами, не учтенными в модели.
Для оценки качества параметров регрессии построим расчетную таблицу (табл. 2).
Табл. 2
x |
y |
y(x) |
(yi-ycp)2 |
(y-y(x))2 |
(xi-xcp)2 |
|y - yx|:y |
|
139 |
1 |
-2.28 |
55.75 |
10.78 |
967.21 |
3.28 |
|
117 |
23 |
5.32 |
211.22 |
312.54 |
82.81 |
0.77 |
|
151 |
-6 |
-6.43 |
209.28 |
0.19 |
1857.61 |
0 |
|
181 |
-21 |
-16.8 |
868.28 |
17.64 |
5343.61 |
0 |
|
70 |
28 |
21.57 |
381.55 |
41.39 |
1436.41 |
0.23 |
|
99 |
15 |
11.54 |
42.68 |
11.95 |
79.21 |
0.23 |
|
22 |
23 |
38.16 |
211.22 |
229.76 |
7378.81 |
0.66 |
|
81 |
18 |
17.76 |
90.88 |
0.0554 |
723.61 |
0.0131 |
|
120 |
7 |
4.28 |
2.15 |
7.37 |
146.41 |
0.39 |
|
115 |
7 |
6.01 |
2.15 |
0.98 |
50.41 |
0.14 |
|
161 |
11 |
-9.89 |
6.42 |
436.28 |
2819.61 |
1.9 |
|
171 |
-26 |
-13.34 |
1187.95 |
160.18 |
3981.61 |
0 |
|
209 |
-106 |
-26.48 |
13102.62 |
6323.67 |
10221.21 |
0 |
|
168 |
-4 |
-12.31 |
155.42 |
69 |
3612.01 |
0 |
|
140 |
0 |
-2.63 |
71.68 |
6.91 |
1030.41 |
0 |
|
10 |
31 |
42.31 |
507.75 |
127.82 |
9584.41 |
0.36 |
|
140 |
0 |
-2.63 |
71.68 |
6.91 |
1030.41 |
0 |
|
69 |
29 |
21.91 |
421.62 |
50.23 |
1513.21 |
0.24 |
|
-16 |
35 |
51.29 |
704.02 |
265.45 |
15351.21 |
0.47 |
|
87 |
26 |
15.69 |
307.42 |
106.28 |
436.81 |
0.4 |
|
162 |
-2 |
-10.23 |
109.55 |
67.78 |
2926.81 |
0 |
|
161 |
11 |
-9.89 |
6.42 |
436.28 |
2819.61 |
1.9 |
|
120 |
22 |
4.28 |
183.15 |
313.85 |
146.41 |
0.81 |
|
70 |
29 |
21.57 |
421.62 |
55.25 |
1436.41 |
0.26 |
|
120 |
6 |
4.28 |
6.08 |
2.94 |
146.41 |
0.29 |
|
90 |
17 |
14.65 |
72.82 |
5.5 |
320.41 |
0.14 |
|
10 |
32 |
42.31 |
553.82 |
106.21 |
9584.41 |
0.32 |
|
30 |
24 |
35.39 |
241.28 |
129.79 |
6068.41 |
0.47 |
|
90 |
25 |
14.65 |
273.35 |
107.04 |
320.41 |
0.41 |
|
150 |
-1 |
-6.09 |
89.62 |
25.86 |
1772.41 |
0 |
|
3237 |
254 |
254 |
20569.47 |
9435.9 |
93188.7 |
13.68 |
Оценка параметров уравнения регрессии.
Значимость коэффициента корреляции.
Для того чтобы при уровне значимости б проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции нормальной двумерной случайной величины при конкурирующей гипотезе H1 ? 0, надо вычислить наблюдаемое значение критерия:
и по таблице критических точек распределения Стьюдента, по заданному уровню значимости б и числу степеней свободы k = n - 2 найти критическую точку tкрит двусторонней критической области. Если tнабл<tкрит оснований отвергнуть нулевую гипотезу. Если |tнабл| >tкрит -- нулевую гипотезу отвергают.
По таблице Стьюдента с уровнем значимости б=0.05 и степенями свободы k=28 находим tкрит:
tкрит (n-m-1;б/2) = (28;0.025) = 2.048,
где m = 1 - количество объясняющих переменных.
Если tнабл>tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл>tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.
Интервальная оценка для коэффициента корреляции (доверительный интервал).
Доверительный интервал для коэффициента корреляции%
r(-0.91;-0.56)
Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:
S2y = 337 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 18.36 - стандартная ошибка оценки (стандартная ошибка регрессии).
Sa - стандартное отклонение случайной величины a.
Sb - стандартное отклонение случайной величины b.
Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения. Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя.
(a + bxp ± е),
где:
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и Xp = 110
(45.76 -0.35*110 ± 6.87)
(0.87;14.61)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bxi ± е)
где:
tкрит (n-m-1;б/2) = (28;0.025) = 2.048
Табл. 3
xi |
y = 45.76 -0.35xi |
еi |
ymin = y - еi |
ymax = y + еi |
|
139 |
-2.28 |
38.41 |
-40.69 |
36.13 |
|
117 |
5.32 |
38.23 |
-32.91 |
43.56 |
|
151 |
-6.43 |
38.58 |
-45.02 |
32.15 |
|
181 |
-16.8 |
39.26 |
-56.06 |
22.46 |
|
70 |
21.57 |
38.5 |
-16.93 |
60.07 |
|
99 |
11.54 |
38.23 |
-26.69 |
49.78 |
|
22 |
38.16 |
39.65 |
-1.5 |
77.81 |
|
81 |
17.76 |
38.36 |
-20.6 |
56.13 |
|
120 |
4.28 |
38.25 |
-33.96 |
42.53 |
|
115 |
6.01 |
38.23 |
-32.21 |
44.24 |
|
161 |
-9.89 |
38.77 |
-48.66 |
28.89 |
|
171 |
-13.34 |
39 |
-52.34 |
25.66 |
|
209 |
-26.48 |
40.19 |
-66.67 |
13.72 |
|
168 |
-12.31 |
38.93 |
-51.23 |
26.62 |
|
140 |
-2.63 |
38.42 |
-41.05 |
35.79 |
|
10 |
42.31 |
40.07 |
2.23 |
82.38 |
|
140 |
-2.63 |
38.42 |
-41.05 |
35.79 |
|
69 |
21.91 |
38.52 |
-16.6 |
60.43 |
|
-16 |
51.29 |
41.15 |
10.14 |
92.44 |
|
87 |
15.69 |
38.3 |
-22.61 |
53.99 |
|
162 |
-10.23 |
38.79 |
-49.03 |
28.56 |
|
161 |
-9.89 |
38.77 |
-48.66 |
28.89 |
|
120 |
4.28 |
38.25 |
-33.96 |
42.53 |
|
70 |
21.57 |
38.5 |
-16.93 |
60.07 |
|
120 |
4.28 |
38.25 |
-33.96 |
42.53 |
|
90 |
14.65 |
38.28 |
-23.63 |
52.93 |
|
10 |
42.31 |
40.07 |
2.23 |
82.38 |
|
30 |
35.39 |
39.4 |
-4.01 |
74.8 |
|
90 |
14.65 |
38.28 |
-23.63 |
52.93 |
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.
Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
С помощью МНК мы получили лишь оценки параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y).
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н0 о случайной природе показателей, т.е. о незначимом их отличии от нуля.
Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.
В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости б=0.05.
В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.
Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике).
Табличное значение определяется в зависимости от уровня значимости (б) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.
Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью (1-б) параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.
Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости б.
tкрит (n-m-1;б/2) = (28;0.025) = 2.048
Поскольку 5.75 > 2.048, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Поскольку 6.27 > 2.048, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).
Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - tкритSb; b + tкритSb)
(-0.35 - 2.048 * 0.0601; -0.35 + 2.048 * 0.0601)
(-0.47;-0.22)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - tкритSa; a + tкрит Sa).
(45.76 - 2.048 * 7.3; 45.76 + 2.048 * 7.3).
(30.81;60.72).
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
2) F-статистика. Критерий Фишера.
Коэффициент детерминации R2 используется для проверки существенности уравнения линейной регрессии в целом.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m - число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости б.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
Fтабл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости б. Уровень значимости б - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно б принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-б) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=28, Fтабл = 4.2. Поскольку фактическое значение F >Fтабл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна).
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством:
Дисперсионный анализ.
При анализе качества модели регрессии используется теорема о разложении дисперсии, согласно которой общая дисперсия результативного признака может быть разложена на две составляющие - объясненную и необъясненную уравнением регрессии дисперсии.
Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
автокорреляция регрессия линейный
?(yi - ycp)2 = ?(y(x) - ycp)2 + ?(y - y(x))2,
где: ?(yi - ycp)2 - общая сумма квадратов отклонений; ?(y(x) - ycp)2 - сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»); ?(y - y(x))2 - остаточная сумма квадратов отклонений.
Размещено на Allbest.ru
...Подобные документы
Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.
контрольная работа [163,7 K], добавлен 19.06.2015Параметры уравнения и экономическое толкование коэффициента линейной регрессии. Расчет коэффициентов детерминации и средних относительных ошибок аппроксимации. Построение структурной формы модели с использованием косвенного метода наименьших квадратов.
контрольная работа [99,2 K], добавлен 27.04.2011Построение графика временного ряда. Тренд - устойчивое систематическое изменение процесса в течение продолжительного времени. Динамика продаж бензина на АЗС. Выявление сезонной составляющей и тренда. Коррелограмма, построенная в программе Statistica.
курсовая работа [1,2 M], добавлен 15.11.2013Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Выборка и генеральная совокупность. Модель множественной регрессии. Нестационарные временные ряды. Параметры линейного уравнения парной регрессии. Нахождение медианы, ранжирование временного ряда. Гипотеза о неизменности среднего значения временного ряда.
задача [62,0 K], добавлен 08.08.2010Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.
курсовая работа [449,1 K], добавлен 22.01.2015Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.
контрольная работа [37,6 K], добавлен 03.06.2009Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.
контрольная работа [298,2 K], добавлен 19.01.2011Поле корреляции и гипотеза о виде уравнения регрессии. Оценка величины влияния фактора на исследуемый показатель с помощью коэффициента корреляции и детерминации. Определение основных параметров линейной модели с помощью метода наименьших квадратов.
контрольная работа [701,1 K], добавлен 29.03.2011Расчет выборочной средней, дисперсии, среднего квадратического отклонения и коэффициента вариации. Точечная оценка параметра распределения методом моментов. Решение системы уравнений по формулам Крамера. Определение уравнения тренда для временного ряда.
контрольная работа [130,4 K], добавлен 16.01.2015Автокорреляционная функция временного ряда темпов роста производства древесноволокнистых плит в Российской Федерации. Расчет значений сезонной компоненты в аддитивной модели и коэффициента автокорреляции третьего порядка по логарифмам уровней ряда.
контрольная работа [300,6 K], добавлен 15.11.2014Вычисление парных коэффициентов корреляции и построение их матрицы. Нахождение линейного уравнения связи, коэффициентов детерминации и эластичности. Аналитическое выравнивание ряда динамики методом наименьших квадратов. Фактические уровни вокруг тренда.
контрольная работа [121,1 K], добавлен 01.05.2011Анализ упорядоченных данных, полученных последовательно (во времени). Модели компонентов детерминированной составляющей временного ряда. Свободные от закона распределения критерии проверки ряда на случайность. Теоретический анализ системы линейного вида.
учебное пособие [459,3 K], добавлен 19.03.2011Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.
курсовая работа [722,6 K], добавлен 09.07.2019Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.
контрольная работа [18,6 K], добавлен 06.11.2009Изучение понятия имитационного моделирования. Имитационная модель временного ряда. Анализ показателей динамики развития экономических процессов. Аномальные уровни ряда. Автокорреляция и временной лаг. Оценка адекватности и точности трендовых моделей.
курсовая работа [148,3 K], добавлен 26.12.2014Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.
контрольная работа [248,4 K], добавлен 26.12.2010Эффективность линейной несмещенной оценки вектора для обобщенной регрессионной модели, теорема Айткена. Обобщенный метод наименьших квадратов. Преобразования Фурье, их применение; разложение временного ряда. Ряды Фурье, многомерные преобразования.
реферат [345,4 K], добавлен 09.05.2012Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.
контрольная работа [261,1 K], добавлен 23.03.2010Применение метода наименьших квадратов при оценке параметров уравнения регрессии. Зависимость случайных остатков. Предпосылка о нормальном распределении остатков. Особенности определения наличия гомо- и гетероскедастичности. Расчет основных коэффициентов.
курсовая работа [252,1 K], добавлен 26.04.2012