Основы регрессионного анализа

Математическая постановка задачи регрессии. Определение зависимости величины (числового значения) определенного свойства случайного процесса или физического явления от другого переменного свойства или параметра. Анализ классов нелинейных регрессий.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 22.06.2015
Размер файла 88,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Эконометрика- это раздел экономики, занимающийся разработкой и применением статистических методов для измерений взаимосвязей между экономическими переменными.

Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.

Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(хk) со случайной погрешностью, распределенной, как правило, по нормальному закону.

Для определения параметров функция остаточных ошибок дифференцируется по всем параметрам, полученные уравнения частных производных приравниваются нулю и решаются в совокупности относительно всех значений параметров. Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая и т.п.

регрессия числовой переменное задача

1. Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций. Различают два класса нелинейных регрессий:

- регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

- регрессии, нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

- полиномы разных степеней

, , …

(анализ издержек от объема выпуска);

- равносторонняя гипербола -

(зависимость между объемом выпуска и средними фиксированными издержками, между доходом и спросом на блага, между уровнем безработицы и процентным изменением заработной платы).

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

- степенная -

(зависимость между расходами и прибылью);

- показательная -

(производственная функция Кобба-Дугласа);

- экспоненциальная -

(при анализе изменений переменной с постоянным темпом прироста)

Нелинейные регрессии по включаемым переменным позволяют использовать МНК для оценки параметров, так как эти функции линейны по параметрам.

Рассмотрим параболу

.

Введем замену:

. Получим:

- уравнение множественной линейной регрессии. Парабола 2-й степени целесообразна к применению. Если для определенного интервала значений фактора меняется характер связи признаков: прямая связь меняется на обратную или наоборот. Кривая, для которой b > 0, c < 0 используется при изучении зависимости з/п работников физического труда от возраста. При b < 0, c > 0 - зависимость затрат на производство от объема выпуска. Часто можно использовать лишь сегмент параболы.

Аналогично линеаризуются полиномы любой степени. Ограничения в использовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и, соответственно, менее однородна совокупность по результативному признаку.

Равносторонняя гипербола

может быть использована для характеристики связи удельных расходов сырья, материалов, топлива с объемами выпускаемой продукции, временем обращения товаров от величины товарооборота. Классическим примером является кривая Филлипса, характеризующая соотношение между нормой безработицы х и процентом прироста з/п у. После замены

z = 1/x получим

- уравнение парной линейной регрессии. При b > 0 - кривая Филипса, при b < 0, кривая Энгеля, характеризующая связь доли расходов на товары длительного пользования и общих сумм расходов (или доходов).

Аналогично линеаризуются и другие нелинейные по переменным функции.

Замечание. Если зависимость между х и у нелинейна, а её представили линейной зависимостью, то:

- по графику уравнения регрессии (для парной) и точкам корреляционного поля можно определить необходимость нелинейного описания зависимости;

- в случае множественной регрессии можно проанализировать остатки регрессии. Обычно они должны чередоваться «+» и «-», большие и малые. При нелинейной зависимости нет случайного чередования остатков.

Класс функций, нелинейных по параметрам, в свою очередь, делится на два типа:

- нелинейные модели внутренне линейные;

- нелинейные модели внутренне нелинейные.

Внутренне линейные модели могут быть приведены к линейному виду.

Например.

1) - внутренне линейна, так как

- линейна по параметрам;

2) - внутренне нелинейна;

3) - внутренне нелинейна;

4) - внутренне линейна, так как

;

5) - внутренне линейна, так как ;

5) - логистическая функция - внутренне линейна

; ; .

Замечание: чтобы получить аддитивный случайный член в уравнении регрессии, необходимо в исходной модели иметь мультипликативную случайную составляющую. Чтобы t- и F- критерии были применимы, необходимо, чтобы преобразованный случайный член имел нормальное распределение, т.е. исходный - логарифмически нормальное распределение

().

Внутренне нелинейные модели не могут быть приведены к линейному виду, и для оценки их параметров используют итеративные процедуры.

Итеративные процедуры используют принцип минимизации суммы квадратов остатков и включают следующие шаги:

1. Принимаются некоторые правдоподобные значения параметров.

2. Вычисляются по фактическим х.

3. Определяются и .

4. Вносятся небольшие изменения в оценки параметров.

5. Вычисляются новые , , .

6. Если < S, то новые оценки лучше, их следует использовать в качестве новой отправной точки.

7. Шаги 4, 5, 6 повторяются до тех пор, пока окажется невозможным внести изменения, уменьшающие S.

8. Делается вывод о минимизации S, и последние оценки принимаются за оценки параметров. Недостаток - медленное оценивание, однако в последнее время разработаны различные математические процедуры, позволяющие быстро находить приемлемое требуемое решение.

2. Парная линейная регрессия

Парная регрессия представляет собой уравнение, описывающее связь между двумя переменными: зависимой переменной и независимой переменной . Иногда переменную называют результатом, а переменную - фактором: , при этом функция может быть как линейной, так и нелинейной. В данной главе более детально рассмотрим линейную парную регрессию. Предположим, что у нас есть набор значений двух переменных

Параметр соответствует отрезку прямой, отсекаемому линией регрессии при пересечении с осью ординат, параметр b определяет наклон линии регрессии к оси абсцисс. При этом параметр a традиционно принято называть свободным членом регрессии, а параметр - коэффициентом регрессии, который показывает, на сколько единиц в среднем изменится значение при изменении на одну единицу.

Допустим, что нашей задачей является подбор функции из параметрического семейства функций наилучшим образом описывающая зависимость от В качестве меры отклонения функции от исходных наблюдений можно использовать:

- сумму квадратов отклонений;

- сумму модулей отклонений;

- другие меры отклонений.

Согласно методу наименьших квадратов (МНК) неизвестные параметры модели выбираются таким образом, чтобы сумма квадратов отклонений эмпирических значений от модельных была минимальной:

Среди преимуществ метода наименьших квадратов следует особенно отметить лёгкость вычислительной процедуры и хорошие по статистическим свойствам оценки.

Данные факты объясняют широкое применение данного метода в статистическом анализе. Из недостатков наиболее существенным является - чувствительность к выбросам. Согласно необходимому условию экстремума функции нескольких переменных, необходимо найти частные производные по этим переменным и приравнять их к нулю. После ряда преобразований получим:

Разделим обе части полученной выше системы на , получим систему нормальных уравнений:

Решив полученную систему относительно неизвестных параметров , получим:

Таким образом, остатки, оцененные таким образом, можно представить следующим образом:

Свойства оценок МНК определяются предположениями относительно свойств случайного возмущения в модели наблюдений. Эти предположения обычно называются условиями Гаусса - Маркова.

Условия Гаусса-Маркова:

1. - условие, гарантирующее несмещённость оценок МНК.

2. - условие гомоскедастичности, его нарушение приводит к проблеме гетероскедастичности.

3. - условие отсутствия автокорреляции предполагает отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях. Если данное условие не выполняется, то в модели возникает проблема автокорреляции случайных возмущений.

4. для всех условие независимости случайного возмущения и объясняющей переменной. Значение любой независимой переменной в каждом наблюдении должно считаться экзогенным, полностью определяемым внешними причинами, не учитываемыми в уравнении регрессии.

Достаточно часто накладывают ещё одно условие на остатки модели, но данное условие не является условием Гаусса-Маркова: , оно очень полезно для проверки многих гипотез.

3. Полиномиальная регрессия

Полиномиальная (или 'фиксированная нелинейная') регрессия позволяет оценить зависимость между зависимой переменной и одной или несколькими независимыми (предикторными) переменными, а также с квадратами, кубами и другими степенями этой независимой переменной. Например, для одной независимой переменной можно подогнать коэффициенты в таком уравнении регрессии:

y2 = a + b1*x +b2*x2

Здесь зависимая переменная y является линейной функцией от x и x2. Полиномиальная регрессия необходима в случаях, когда исследователь хочет оценить нелинейную зависимость. Например, стресс (независимая переменная) может иметь нелинейную связь с выполнением сложной задачи (зависимой переменной). При снижении стресса выполнение может улучшиться, а при увеличении стресса выше некоторого среднего уровня выполнение может ухудшиться. При этом нелинейная (квадратичная) компонента - коэффициент регрессии в уравнении регрессии может оказаться значимым.

4. Множественная регрессия

Пример решения задач.

Нелинейная регрессия.

Построить уравнение регрессии y=f(x) для выборки xi, yi, (i=1,2,...,10).

В качестве f(x) рассмотреть четыре типа функций - линейная, степенная, показательная и гиперболу:

Необходимо найти их коэффициенты а и b, и, сравнив показатели качества, выбрать функцию, которая наилучшим образом описывает зависимость.

Решение:

xi

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

2,25

2,50

уi

46,8

12,1

5,1

3,2

1,8

1,3

1,0

0,7

0,6

0,5

Введем данные в таблицу вместе с подписями.

Рассмотрим гиперболическую регрессию. Для ее получения преобразуем данные. В третьей строке введем подпись «1/х». Получим характеристики регрессионной модели.

Таблица 1

xi

yi

xi=1/x

xi2

xi* yi

1

0,25

46,8

4

16

11,7

2

0,5

12,1

2

4

6,05

3

0,75

5,1

1,333333

1,7689

3,825

4

1

3,2

1

1

3,2

5

1,25

1,8

0,8

0,64

2,25

6

1,5

1,3

0,666667

0,445

1,95

7

1,75

1

0,571429

0,3265

1,75

8

2

0,7

0,5

0,25

1,4

9

2,25

0,6

0,444444

0,197

1,35

10

2,5

0,5

0,4

0,16

1,25

сумма

13,75

73,1

11,71587

24,7874

34,725

ср.знач

1,375

7,31

1,171587

Уравнение регрессии равно y^=-11,186+22,691/xi

P=1,013

Размещено на Allbest.ru

...

Подобные документы

  • Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.

    курсовая работа [1,1 M], добавлен 22.05.2015

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

  • Модель зависимости доходности индекса телекоммуникации от индекса рынка. Результаты регрессионного анализа. Уравнение регрессии зависимости доходности отраслевого индекса от индекса. Регрессионная статистика, дисперсный анализ. Минимальный риск портфеля.

    лабораторная работа [1,7 M], добавлен 15.11.2010

  • Определение методом регрессионного и корреляционного анализа линейных и нелинейных связей между показателями макроэкономического развития. Расчет среднего арифметического по столбцам таблицы. Определение коэффициента корреляции и уравнения регрессии.

    контрольная работа [4,2 M], добавлен 14.06.2014

  • Теоретические основы прикладного регрессионного анализа. Проверка предпосылок и предположений регрессионного анализа. Обнаружение выбросов в выборке. Рекомендации по устранению мультиколлинеарности. Пример практического применения регрессионного анализа.

    курсовая работа [1,2 M], добавлен 04.02.2011

  • Построение типологических регрессий по отдельным группам наблюдений. Пространственные данные и временная информация. Сферы применения кластерного анализа. Понятие однородности объектов, свойства матрицы расстояний. Проведение типологической регрессии.

    презентация [322,6 K], добавлен 26.10.2013

  • Аппроксимация данных с учетом их статистических параметров. Математическая постановка задачи регрессии, ее принципы. Виды регрессии: линейная и нелинейная, полиномиальная. Сглаживание данных и предсказание зависимостей. Реализация задач в Mathcad.

    реферат [167,8 K], добавлен 12.04.2009

  • Определение задачи регрессионного анализа как установления формы корреляционной связи (линейной, квадратичной, показательной). Графическая интерпретация коэффициента детерминации. Виды регрессий: линейная, нелинейная, гипербола, экспонента и парабола.

    доклад [131,5 K], добавлен 13.12.2011

  • Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа [440,3 K], добавлен 27.07.2015

  • Проверка графика на анормальности и наличие тренда. Определение параметров линейной регрессии. Сглаживание уровней ряда методом простой скользящей средней. Расчет среднеквадратического отклонения. Адекватность и точность параметров нелинейных регрессий.

    контрольная работа [912,4 K], добавлен 26.05.2016

  • Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.

    лабораторная работа [67,8 K], добавлен 26.12.2010

  • Модель авторегрессии 1-го порядка. Влияние мешающего параметра. Оценивание параметров регрессии с помощью фильтра Калмана. Последовательность гауссовских случайных величин с нулевым математическим ожиданием. Отклонение от истинного значения параметра.

    курсовая работа [216,0 K], добавлен 23.05.2012

  • Связь между случайными переменными и оценка её тесноты как основная задача корреляционного анализа. Регрессионный анализ, расчет параметров уравнения линейной парной регрессии. Оценка статистической надежности результатов регрессионного моделирования.

    контрольная работа [50,4 K], добавлен 07.06.2011

  • Доверительные интервалы для среднего значения цены автомобиля в зависимости от его возраста для уравнения регрессии в расчетах парной и множественной зависимостей. График ежемесячных объемов продаж магазина. Коэффициенты регрессионного уравнения тренда.

    контрольная работа [499,1 K], добавлен 16.09.2011

  • Прямая регрессии. Стандартная ошибка оценки. Использование функции "Линейная линия тренда" электронных таблиц Microsoft Excell для выведения на график уравнения регрессии. Оценка случайного отклонения. Построение прогнозного значения на основе данных.

    контрольная работа [44,0 K], добавлен 08.02.2015

  • Проведение регрессионного анализа опытных данных в среде Excel. Построение графиков полиномиальной зависимости и обобщенной функции желательности Харрингтона. Определение дисперсии коэффициентов регрессии. Оценка частных откликов по шкале желательности.

    контрольная работа [375,6 K], добавлен 21.01.2014

  • Модели древостоев, особенности их разработки для решения проблем лесного хозяйства. Статистическая совокупность и ее свойства. Исходная информация - сбор и репрезентативность. Выбор регрессионного уравнения для выявления зависимости диаметра от высоты.

    курсовая работа [388,1 K], добавлен 17.11.2012

  • Задачи на выявление зависимости между объемом продаж и расходами на рекламу методом парного корреляционно-регрессионного анализа. Построение поля корреляции. Использование для аппроксимации прямолинейной, параболической и логарифмической зависимости.

    контрольная работа [118,6 K], добавлен 11.12.2009

  • Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат [57,4 K], добавлен 25.01.2009

  • Метод статистического исследования. Генеральная совокупность и выборка. Приведение статистики темпа инфляции за 10 лет. Выборочное обследование торговых предприятий, оценка величины запаса (в днях оборота). Этапы корреляционно-регрессионного анализа.

    контрольная работа [170,0 K], добавлен 20.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.