Анализ матрицы коэффициентов парной корреляции

Расчет матрицы парных коэффициентов корреляции, параметров линейной парной регрессии и их статистическая значимость. Определение фактических и модельных значений, точек прогноза. Построение модели формирования цены квартиры за счёт значимых факторов.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 10.06.2015
Размер файла 269,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Задача 1

По территориям Южного федерального округа РФ приводятся данные за 2011 год

Территории федерального округа

Валовой региональный продукт, млрд. руб., Y

Инвестиции в основной капитал, млрд. руб., X1

1. Респ. Адыгея

5,1

1,264

2. Респ. Дагестан

13,0

3,344

3. Респ. Ингушетия

2,0

0,930

4. Кабардино-БалкарскаяРесп.

10,5

2,382

5. Респ. Калмыкия

2,1

6,689

6. Карачаево-ЧеркесскаяРесп.

4,3

0,610

7. Респ. Северная Осетия - Алания

7,6

1,600

8. Краснодарский кра)

109,1

52,773

9. Ставропольский край

43,4

15,104

10. Астраханская обл.

18,9

12,633

11. Волгоградская обл.

50,0

10,936

12. Ростовская обл.

69,0

20,014

Задание:

1. Рассчитайте матрицу парных коэффициентов корреляции; оцените статистическую значимость коэффициентов корреляции.

2. Постройте поле корреляции результативного признака и наиболее тесно связанного с ним фактора.

3. Рассчитайте параметры линейной парной регрессии для каждого фактора Х..

4. Оцените качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Выберите лучшую модель.

5. Для выбранной модели осуществите прогнозирование среднего значения показателя Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

при уровне значимости , если прогнозное значения фактора Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

составит 80% от его максимального значения. Представьте графически: фактические и модельные значения, точки прогноза.

6. Используя пошаговую множественную регрессию (метод исключения или метод включения), постройте модель формирования цены квартиры за счёт значимых факторов. Дайте экономическую интерпретацию коэффициентов модели регрессии.

7. Оцените качество построенной модели. Улучшилось ли качество модели по сравнению с однофакторной моделью? Дайте оценку влияния значимых факторов на результат с помощью коэффициентов эластичности,в - и -? коэффициентов.

Решение:

При решении данной задачи расчеты и построение графиков и диаграмм будем вести с использованием настройки Excel Анализ данных.

1. Рассчитаем матрицу парных коэффициентов корреляции и оценим статистическую значимость коэффициентов корреляции

Чтобы рассчитать матрицу парных коэффициентов корреляции скопируем таблицу с исходными данными в Excel. Далее воспользуемся инструментом Корреляция, входящим в настойку Анализ данных.

В диалоговом окне Корреляция в поле Входной интервал вводим диапазон ячеек, содержащих исходные данные. Так как мы выделили и заголовки столбцов, то устанавливаем флажок Метки в первой строке.

Получили следующие результаты:

Таблица 1.1 Матрица парных коэффициентов корреляции

Y (валовой региональный продукт, млрд. руб.,)

X1 (инвестиции в основной капитал, млрд. руб.,)

Y(валовой региональный продукт, млрд. руб.)

1

X1 (инвестиции в основной капитал, млрд. руб.,)

0,936

1

Анализ матрицы коэффициентов парной корреляции показывает, что зависимая переменная Y, т.е валового регионального продукта имеет более тесную связь с Х1 (инвестиции в основной капитал). Коэффициент корреляции равен 0,936. Это означает, что на 93,6% зависимая переменная Y (валовой региональный продукт) зависит от показателя Х1 (инвестиции в основной капитал).

Статистическая значимость коэффициентов корреляции определим с помощью t-критерия Стьюдента. Табличное значение сравниваем с расчетными значениями.

Вычислим табличное значение с помощью функции СТЬЮДРАСПОБР.

tтабл.=0,129 при доверительной вероятности равной 0,9 и степенью свободы (n-2).

Статистическим значимым является фактор Х1.

2. Построим поле корреляции результативного признака (валового регионального продукта) и наиболее тесно связанного с ним фактора (инвестиции в основной капитал)

Для этого воспользуемся инструментом построения точечной диаграммы программы Excel.

В результате получаем поле корреляции цены валового регионального продукта, млрд. руб. и инвестиции в основной капитал, млрд. руб. (рисунок 1.1.).

Рисунок 1.1

3. Рассчитаем параметры линейной парной регрессии для каждого фактора Х

Для расчета параметров линейной парной регрессии воспользуемся инструментом Регрессия, входящим в настойку Анализ данных.

В диалоговом окне Регрессия в поле Входной интервал Y вводим адрес диапазона ячеек, которые представляет зависимую переменную. В поле

Входной интервал Х вводим адрес диапазона, который содержит значения независимых переменных. Выполним вычисления параметры парной регрессии для фактора Х.

Для Х1 получили следующие данные, представленные в таблице 1.2:

Таблица 1.2

Коэффициенты

Y-пересечение

5,073665

X1 - инвестиции в основной капитал млрд. руб.,)

2,136874

Уравнение регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал имеет вид:

4. Оценим качество каждой модели через коэффициент детерминации, среднюю ошибку аппроксимации и F-критерий Фишера. Установим, какая модель является лучшей.

Коэффициент детерминации, среднюю ошибку аппроксимации мы получили в результате расчетов, проведенных в пункте 3. Полученные данные представлены в следующих таблицах:

Данные по Х1:

Таблица 1.3а

Регрессионная статистика

Множественный R

0,93626

R-квадрат

0,87658

Нормированный R-квадрат

0,86424

Стандартная ошибка

12,39215

Наблюдения

40

Таблица 1.4б

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

1

10906,763

10906,763

71,024

0,000

Остаток

10

1535,645

153,565

Итого

11

12442,417

А) Коэффициент детерминации определяет, какая доля вариации признака У учтена в модели и обусловлена влиянием на него фактора Х. Чем больше значение коэффициента детерминации, тем теснее связь между признаками в построенной математической модели.

В программе Excel обозначается R-квадрат.

= 0,876

Исходя из данного критерия наиболее адекватной является модель уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

Б) Среднюю ошибку аппроксимации рассчитаем по формуле:

где числитель - сумма квадратов отклонения расчетных значений от фактических. В таблицах она находится в столбце SS, строке Остатки.

Среднее значение цены квартиры рассчитаем в Excel с помощью функции СРЗНАЧ. = 24,18182 млрд. руб.

При проведении экономических расчетов модель считается достаточно точной, если средняя ошибка аппроксимации меньше 5%, модель считается приемлемой, если средняя ошибка аппроксимации меньше 15%.

По данному критерию, наиболее адекватной является математическая модель для уравнения регрессии зависимости цены валового регионального продукта от инвестиции в основной капитал (Х1).

В) Для проверки значимости модели регрессии используется F-тест. Для этого выполняется сравнение и критического (табличного)значений F-критерия Фишера.

Расчетные значения приведены в таблицах 1.4б (обозначены буквой F).

Табличное значение F-критерий Фишера рассчитаем в Excel с помощью функции FРАСПОБР. Вероятность возьмем равной 0,05. Получили: = 4,75

Расчетные значения F-критерий Фишера для каждого фактора сравним с табличным значением:

= 71,02 > = 4,75 модель по данному критерию адекватна.

Проанализировав данные по всем трем критериям, можно сделать вывод, что наиболее лучшей является математическая модель, построена для фактора валового регионального продукта, которая описана линейным уравнением

.

5. Для выбранной модели зависимости цены валового регионального продукта

осуществим прогнозирование среднего значения показателя при уровне значимости , если прогнозное значения фактора составит 80% от его максимального значения. Представим графически: фактические и модельные значения, точки прогноза.

Рассчитаем прогнозное значение Х, по условию оно составит 80% от максимального значения.

Рассчитаем Хmax в Excel с помощью функции МАКС.

= 52,8

=0,8 *52,8 = 42,24

Для получения прогнозных оценок зависимой переменной подставим полученное значение независимой переменной в линейное уравнение:

= 5,07+2,14*42,24 = 304,55 млрд. руб.

Определим доверительный интервал прогноза, который будет иметь следующие границы:

Для вычисления доверительного интервала для прогнозного значения рассчитываем величину отклонения от линии регрессии.

Для модели парной регрессии величина отклонения рассчитывается:

,

т.е. значение стандартной ошибки из таблицы 1.5а.

(Так как число степеней свободы равно единицы, то знаменатель будет равен n-2). корреляция парная регрессия прогноз

= 12,392

Для расчета коэффициента воспользуемся функцией Excel СТЬЮДРАСПОБР, вероятность возьмем равную 0,1, число степеней свободы 38.

= 1,812

Значение рассчитаем с помощью Excel, получим 12294.

Определим верхнюю и нижнюю границы интервала.

304,55+27,472= 332,022

304,55-27,472= 277,078

Таким образом, прогнозное значение = 304,55 тыс.долл., будет находиться между нижней границей, равной 277,078 тыс.долл. и верхней границей, равной 332,022 млдр. Руб.

Фактические и модельные значения, точки прогноза представлены графически на рисунке 1.2.

Рисунок 1.2

6. Используя пошаговую множественную регрессию (метод исключения), построим модель формирования цены валового регионального продукта за счёт значимых факторов

Для построения множественной регрессии воспользуемся функцией Регрессия программы Excel, включив в нее все факторы. В результате получаем результативные таблицы, из которых нам необходим t-критерий Стьюдента.

Таблица 1.8а

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

5,073665

4,488208

1,130444

0,284673

X1Инвестиции в основной капитал, млрд. руб.

2,13687

0,253558

8,427549

0,000007

Таблица 1.8б

Регрессионная статистика

Множественный R

0,93626

R-квадрат

0,87658

Нормированный R-квадрат

0,86424

Стандартная ошибка

12,39215

Наблюдения

12

Таблица 1.8в.

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

1

10906,763

10906,763

71,024

0,000

Остаток

10

1535,654

153,565

Итого

11

12442,417

Получаем модель вида:

.

Поскольку < (4,75 < 71,024), уравнение регрессии следует признать адекватным.

Выберем наименьшее по модулю значение t-критерия Стьюдента, оно равно 8,427, сравниваем его с табличным значением, которые рассчитываем в Excel, уровень значимости берем равным 0,10, число степеней свободы n-m-1=12-4=8: =1,8595

Поскольку 8,427>1,8595 модель следует признать адекватной.

7. Для оценки значимого фактора полученной математической модели, рассчитаем коэффициенты эластичности, и - коэффициенты

Коэффициент эластичности показывает, насколько процентов изменится результативный признак при изменении факторного признака на 1%:

.

Э X4 = 2,137 *(10,69/24,182) = 0,94%

То есть с ростом инвестиции в основной капитал 1% стоимость в среднем возрастает на 0,94%.

-коэффициент показывает на какую часть величины среднего квадратического отклонения меняется среднее значение зависимой переменной с изменением независимой переменной на одно среднеквадратическое отклонение.

= 2,137* (14.736/33,632) = 0,936.

Данные средних квадратических отклонений взяты из таблиц, полученных с помощью инструменты Описательная статистика.

Таблица 1.11 Описательная статистика (Y)

Валовой региональный продукт, млрд. руб., Y

Среднее

27,916

Стандартная ошибка

9,7087

Медиана

11,75

Мода

#Н/Д

Стандартное отклонение

33,632

Дисперсия выборки

1131,1287

Эксцесс

1,9248

Асимметричность

1,55279

Интервал

107,1

Минимум

2

Максимум

109,1

Сумма

335

Счет

12

Таблица 1.12 Описательная статистика (Х4)

Инвестиции в основной капитал, млрд. руб., X1

Среднее

10,68991

Стандартная ошибка

4,25384

Медиана

5,0165

Мода

#Н/Д

Стандартное отклонение

14,73576

Дисперсия выборки

217,14283

Эксцесс

6,61539

Асимметричность

2,41573

Интервал

52,163

Минимум

0,61

Максимум

52,773

Сумма

128,279

Счет

12

- коэффициент определяет долю влияния фактора в суммарном влиянии всех факторов:

Для расчета коэффициентов парной корреляции вычисляем матрицу парных коэффициентов корреляции в программе Excel с помощью инструмента Корреляция настройки Анализа данных.

Таблица 1.14

Валовой региональный продукт, млрд. руб., Y

Инвестиции в основной капитал, млрд. руб., X1

Валовой региональный продукт, млрд. руб., Y

1

Инвестиции в основной капитал, млрд. руб., X1

0,93626

1

(0,93633*0,93626) / 0,87 = 1,00.

Вывод: Из полученных расчетов можно сделать вывод, что результативный признак Y (валовой региональный продукт) имеет большую зависимость от фактора X1 (инвестиции в основной капитал) (на 100%).

Список литературы

1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Учебное пособие. 2-е изд. - М.: Дело, 1998. - с. 69 - 74.

2. Практикум по эконометрике: Учебное пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др. 2002. - с. 49 - 105.

3. Доугерти К. Введение в эконометрику: Пер. с англ. - М.: ИНФРА-М, 1999. - XIV, с. 262 - 285.

4. Айвызян С.А., Михтирян В.С. Прикладная математика и основы эконометрики. -1998., с 115-147.

5. Кремер Н.Ш., Путко Б.А. Эконометрика. -2007. с 175-251.

Размещено на Allbest.ru

...

Подобные документы

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Построение линейной модели и уравнения регрессии зависимости цены на квартиры на вторичном рынке жилья в Москве в 2006 г. от влияющих факторов. Методика составления матрицы парных коэффициентов корреляции. Экономическая интерпретация модели регрессии.

    лабораторная работа [1,8 M], добавлен 25.05.2009

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.

    лабораторная работа [214,2 K], добавлен 17.10.2009

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа [155,8 K], добавлен 11.12.2010

  • Построение вариационного (статистического) ряда, гистограммы и эмпирической функции распределения. Определение выборочных оценок числовых характеристик случайной величины. Расчет матрицы парных коэффициентов корреляции и создание модели парной регрессии.

    контрольная работа [2,0 M], добавлен 05.04.2014

  • Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа [141,3 K], добавлен 05.05.2010

  • Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    контрольная работа [298,2 K], добавлен 19.01.2011

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

    лабораторная работа [30,9 K], добавлен 05.12.2010

  • Определение парных коэффициентов корреляции и на их основе факторов, оказывающих наибольшее влияние на результативный показатель. Анализ множественных коэффициентов корреляции и детерминации. Оценка качества модели на основе t-статистики Стьюдента.

    лабораторная работа [890,1 K], добавлен 06.12.2014

  • Расчет стоимости оборудования с использованием методов корреляционного моделирования. Метод парной и множественной корреляции. Построение матрицы парных коэффициентов корреляции. Проверка оставшихся факторных признаков на свойство мультиколлинеарности.

    задача [83,2 K], добавлен 20.01.2010

  • Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа [994,1 K], добавлен 29.06.2013

  • Корреляционный и регрессионный анализ экономических показателей. Построение матрицы парных коэффициентов корреляции. Расчет и сравнение частных и парных коэффициентов корреляции. Построение регрессионной модели и её интерпретация, мультиколлинеарность.

    курсовая работа [314,1 K], добавлен 21.01.2011

  • Выбор факторных признаков для построения регрессионной модели неоднородных экономических процессов. Построение диаграммы рассеяния. Анализ матрицы коэффициентов парной корреляции. Определение коэффициентов детерминации и средних ошибок аппроксимации.

    контрольная работа [547,6 K], добавлен 21.03.2015

  • Понятие регрессии. Оценка параметров модели. Показатели качества регрессии. Проверка статистической значимости в парной линейной регрессии. Реализация регрессионного анализа в программе MS Excel. Условия Гаусса-Маркова. Свойства коэффициента детерминации.

    курсовая работа [233,1 K], добавлен 21.03.2015

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.

    контрольная работа [192,2 K], добавлен 23.06.2012

  • Построение модели парной регрессии и расчет индекса парной корреляции. Построение производственной функции Кобба-Дугласа, коэффициент детерминации . Зависимость среднедушевого потребления от размера дохода и цен. Расчет параметров структурной модели.

    контрольная работа [1,6 M], добавлен 05.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.