Приведение матричной игры к задаче линейного программирования

Определение оптимальной стратегии игры при помощи задачи линейного программирования. Составление расширенных матриц. Приведение примеров экономических задач, которые описываются игровыми моделями. Изложение схемы решения произвольной конечной игры.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 12.07.2015
Размер файла 35,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Тема: "Приведение матричной игры к задаче линейного программирования"

Игра т х п в общем случае не имеет наглядной геометрической интерпретации. Ее решение достаточно трудоемко при больших т и п, однако принципиальных трудностей не имеет, поскольку может быть сведено к решению задачи линейного программирования. Покажем это.

Пусть игра т х п задана платежной матрицей . Игрок А обладает стратегиями, игрок В -- стратегиями . Необходимо определить оптимальные стратегии и , где - вероятности применения соответствующих чистых стратегий ;

игра линейный программирование матрица

Оптимальная стратегия удовлетворяет следующему требованию. Она обеспечивает игроку А средний выигрыш, не меньший, чем цена игры v, при любой стратегии игрока В и выигрыш, равный цене игры v, при оптимальной стратегии игрока В. Без ограничения общности полагаем v > 0, этого можно добиться, сделав все элементы . Если игрок А применяет смешанную стратегию против любой чистой стратегии игрока В, то он получает средний выигрыш, или математическое ожидание выигрыша (т.е. элементы j-того столбца платежной матрицы почленно умножаются на соответствующие вероятности стратегий и результаты складываются).

Для оптимальной стратегии все средние выигрыши не меньше цены игры v, поэтому получаем систему неравенств:

(1)

Каждое из неравенств можно разделить на число v > 0. Введем новые переменные:

(2)

Тогда система (1) примет вид:

(3)

Цель игрока А -- максимизировать свой гарантированный выигрыш, т.е. цену игры v. Разделив на равенство , получаем, что переменные удовлетворяют условию: . Максимизация цены игры v эквивалентна минимизации величины 1/v, поэтому задача может быть сформулирована следующим образом: определить значения переменных , , так, чтобы они удовлетворяли линейным ограничениям (3) и при этом линейная функция

(4)

обращалась в минимум. Это задача линейного программирования. Решая задачу (3)--(4), получаем оптимальное решение оптимальную стратегию .

Для определения оптимальной стратегии следует учесть, что игрок В стремится минимизировать гарантированный выигрыш, т.е. найти . Переменные удовлетворяют неравенствам

(5)

которые следуют из того, что средний проигрыш игрока В не превосходит цены игры, какую бы чистую стратегию не применял игрок А.

Если обозначить

(6)

то получим систему неравенств:

(7)

Переменные удовлетворяют условию

Игра свелась к следующей задаче. Определить значения переменных , которые удовлетворяют системе неравенств (7) и максимизируют линейную функцию

(8)

Решение задачи линейного программирования (6), (7) определяет оптимальную стратегию . При этом цена игры

Составив расширенные матрицы для задач (3), (4) и (7), (8), убеждаемся, что одна матрица получилась из другой транспонированием:

Таким образом, задачи линейного программирования (3), ( 4) и (7), (8) являются взаимно-двойственными. Очевидно, при определении оптимальных стратегий в конкретных задачах следует выбрать ту из взаимно-двойственных задач, решение которой менее трудоемко, а решение другой задачи найти с помощью теорем двойственности.

Приведем примеры экономических задач, которые описываются игровыми моделями и могут быть решены методами линейного программирования.

Предприятие может выпускать три вида продукции , получая при этом прибыль, зависящую от спроса, который может быть в одном из четырех состояний (). Дана матрица ее элементы характеризуют прибыль, которую получит предприятие при выпуске i-той продукции с j-м состоянием спроса.

Определить оптимальные пропорции в выпускаемой продукции, гарантирующие среднюю величину прибыли при любом состоянии спроса, считая его неопределенным.

Таблица 1.

3

3

6

8

9

10

4

2

7

7

5

4

Решение. Задача сводится к игровой модели, в которой игра предприятия А против спроса В задана платежной матрицей (в таблице). Прежде чем решать задачу, можно попытаться упростить игру, проведя анализ платежной матрицы и отбросив стратегии, заведомо невыгодные или дублирующие.

Так, вторая стратегия (второй столбец матрицы) является явно невыгодной для игрока В по сравнению с первой (элементы второго столбца больше элементов первого столбца), так как цель игрока В -- уменьшить выигрыш игрока А. Поэтому второй столбец можно отбросить. Получим матрицу Р размера 3х3:

Таблица.

3

6

8

3

9

4

2

2

7

5

4

4

9

6

8

4

6

Определим нижнюю и верхнюю цены игры в таблице. Так как , то седловая точка отсутствует и оптимальное решение следует искать в смешанных стратегиях игроков:

и .

Обозначив и составим две взаимно-двойственные задачи линейного программирования

Задача 1 Задача 2

Решаем симплексным методом одну из задач, например, задачу 2, поскольку для нее первое базисное решение будет допустимым. Введем добавочные переменные и перейдем к уравнениям:

Оптимальное решение задачи 1: (2/27; 0;1/9; 1/2; 0; 17/27) причем Из соотношений (9) находим цену игры Оптимальную стратегию находим, используя:

т.е.

Следовательно, предприятие должно выпустить 40% продукции и 60% продукции , а продукцию не выпускать.

Оптимальная стратегия спроса определяется аналогично:

, т.е. = (0,2; 0; 0,8; 0)

(здесь учтено, что второй столбец исходной матрицы был отброшен как невыгодный). Таким образом, оптимальный спрос в 20% находится в состоянии и в 80% - в состоянии

При решении произвольной конечной игры размера т х п рекомендуется придерживаться следующей схемы:

1. Исключить из платежной матрицы заведомо невыгодные стратегии по сравнению с другими стратегиями. Такими стратегиями для игрока А (игрока В) являются те, которым соответствуют строки (столбцы) с элементами, заведомо меньшими (большими) по сравнению с элементами других строк (столбцов).

2. Определить верхнюю и нижнюю цены игры и проверить, имеет ли игра седловую точку. Если седловая точка есть, то соответствующие ей стратегии игроков будут оптимальными, а цена совпадает с верхней (нижней) ценой.

3. Если седловая точка отсутствует, то решение следует искать в смешанных стратегиях. Для игр размера т х п рекомендуется симплексный метод, для игр размера 2 х2, 2 х n, n х 2 возможно геометрическое решение.

На практике реализация оптимального решенияв смешанных стратегиях может происходить несколькими путями. Первый состоит в физическом смешении чистых стратегий в пропорциях, заданных вероятностями .

Другой путь - при многократном повторении игры - в каждой партии чистые стратегии применяются в виде случайной последовательности, причем каждая из них -- с частотой, равной ее вероятности в оптимальном решении.

Размещено на Allbest.ru

...

Подобные документы

  • Предмет и задачи теории игр. Сведение матричной игры к задачам линейного программирования. Основные принципы разработки деловых игр для исследования экономических механизмов. Деловая игра "Снабжение". Решение матричной игры в смешанных стратегиях.

    курсовая работа [1,8 M], добавлен 15.10.2012

  • Понятие задач оптимизации, которые сводятся к нахождению экстремума целевой функции. Функции линейного программирования – наиболее широко применяющегося математического средства решения экономических задач. Пример решения задачи о раскрое материала.

    контрольная работа [60,3 K], добавлен 17.02.2012

  • Математическая формулировка задачи линейного программирования. Применение симплекс-метода решения задач. Геометрическая интерпретация задачи линейного программирования. Применение методов линейного программирования к экстремальным задачам экономики.

    курсовая работа [106,0 K], добавлен 05.10.2014

  • Симплекс-метод решения задач линейного программирования. Элементы теории игр. Системы массового обслуживания. Транспортная задача. Графоаналитический метод решения задач линейного программирования. Определение оптимальной стратегии по критерию Вальде.

    контрольная работа [400,2 K], добавлен 24.08.2010

  • Решение задачи линейного программирования графическим способом. Определение экстремальной точки. Проверка плана на оптимальность. Правило прямоугольников. Анализ и корректировка результатов решения задач линейного программирования симплексным методом.

    контрольная работа [40,0 K], добавлен 04.05.2014

  • Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования. Математическая постановка задачи линейного программирования. Общий вид задачи линейного программирования.

    реферат [193,4 K], добавлен 28.12.2008

  • Основные положения теории игр. Терминология и классификация игр. Решение матричных игр в чистых и в смешанных стратегиях. Сведение матричной игры к задаче линейного программирования. Применение теории игр в задачах экономико-математического моделирования.

    курсовая работа [184,5 K], добавлен 12.12.2013

  • Рассмотрение содержания и методов решения матричной игры в смешанных стратегиях, способы ее сведения к задачам линейного программирования. Анализ геометрической интерпретации биматричных и бескоалиционных игр. Природа и структура кооперативных игр.

    курс лекций [1,2 M], добавлен 11.07.2010

  • Виды задач линейного программирования и формулировка задачи. Сущность оптимизации как раздела математики и характеристика основных методов решения задач. Понятие симплекс-метода, реальные прикладные задачи. Алгоритм и этапы решения транспортной задачи.

    курсовая работа [268,0 K], добавлен 17.02.2010

  • Основные понятия линейной алгебры и выпуклого анализа, применяемые в теории математического программирования. Характеристика графических методов решения задачи линейного программирования, сущность их геометрической интерпретации и основные этапы.

    курсовая работа [609,5 K], добавлен 17.02.2010

  • Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Примеры экономических задач, приводящихся к задачам ЛП. Геометрический и симплексный методы решения. Теоремы двойственности и их использование в задачах ЛП.

    курсовая работа [1,1 M], добавлен 21.11.2010

  • Графическое решение задач линейного программирования. Решение задач линейного программирования симплекс-методом. Возможности практического использования математического программирования и экономико-математических методов при решении экономических задач.

    курсовая работа [105,5 K], добавлен 02.10.2014

  • Математическая формализация оптимизационной проблемы. Геометрическая интерпретация стандартной задачи линейного программирования, планирование товарооборота. Сущность и алгоритм симплекс-метода. Постановка транспортной задачи, последовательность решения.

    учебное пособие [126,0 K], добавлен 07.10.2014

  • Решение задачи линейного программирования симплекс-методом. План перевозок при минимальных затратах на них. Определение оптимального значения изменения численности работников. Решение матричной игры двух лиц с применением чистой и смешанной стратегий.

    контрольная работа [152,3 K], добавлен 16.05.2013

  • Характеристика и описание метода линейного программирования, основные области его применения и ограничения использования. Решение экономических задач, особенности формирования оптимизационной модели, расчет и анализ результатов оптимизации прибыли.

    курсовая работа [99,0 K], добавлен 23.03.2010

  • Элементы теории матричных игр. Способы решения матричных игр. Различия в подходах критериев оптимальности при определении оптимальной стратегии в условиях статистической неопределенности. Нахождение седловой точки игры. Графическое решение матричной игры.

    контрольная работа [366,9 K], добавлен 12.05.2014

  • Экономико-математическая модель получения максимальной прибыли, её решение графическим методом. Алгоритм решения задачи линейного программирования симплекс-методом. Составление двойственной задачи и её графическое решение. Решение платёжной матрицы.

    контрольная работа [367,5 K], добавлен 11.05.2014

  • Решение задачи линейного программирования графическим и симплекс-методом. Решение задачи двойственной к исходной. Определение оптимального плана закрепления потребителей за поставщиками однородного груза при условии минимизации общего пробега автомобилей.

    контрольная работа [398,2 K], добавлен 15.08.2012

  • Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.

    реферат [4,1 M], добавлен 09.03.2011

  • Способы решения задач линейного программирования с вещественными числами симплекс-методом. Общие задачи, формы записи, максимизация и минимизация функции методом искусственного базиса. Пути поиска и исключения из базиса искусственных переменных.

    контрольная работа [130,6 K], добавлен 09.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.