Математические методы в оценке. Построение регрессионных моделей

Описание регрессионных моделей. Вычисление параметров линейного уравнения регрессии. Выражение соотношения между социально-экономическими процессами с помощью нелинейной регрессии. Статистические проверки параметров регрессии и показателей корреляции.

Рубрика Экономико-математическое моделирование
Предмет Оценка стоимости предприятия
Вид курсовая работа
Язык русский
Прислал(а) Мария
Дата добавления 14.12.2015
Размер файла 856,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Параметры уравнения линейной регрессии. Вычисление остаточной суммы квадратов, оценка дисперсии остатков. Осуществление проверки значимости параметров уравнения регрессии с помощью критерия Стьюдента. Расчет коэффициентов детерминации и эластичности.

    контрольная работа [248,4 K], добавлен 26.12.2010

  • Основные параметры уравнения регрессии, оценка их параметров и значимость. Интервальная оценка для коэффициента корреляции. Анализ точности определения оценок коэффициентов регрессии. Показатели качества уравнения регрессии, прогнозирование данных.

    контрольная работа [222,5 K], добавлен 08.05.2014

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [3,6 M], добавлен 29.05.2010

  • Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат [57,4 K], добавлен 25.01.2009

  • Оценка адекватности эконометрических моделей статистическим данным. Построение доверительных зон регрессий спроса и предложения. Вычисление коэффициента регрессии. Построение производственной мультипликативной регрессии, оценка ее главных параметров.

    контрольная работа [1,2 M], добавлен 25.04.2010

  • Уравнение нелинейной регрессии и вид уравнения множественной регрессии. Преобразованная величина признака-фактора. Преобразование уравнения в линейную форму. Определение индекса корреляции и числа степеней свободы для факторной суммы квадратов.

    контрольная работа [501,2 K], добавлен 27.06.2011

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.

    контрольная работа [1,4 M], добавлен 25.06.2010

  • Определение количественной зависимости массы пушного зверька от его возраста. Построение уравнения парной регрессии, расчет его параметров и проверка адекватности. Оценка статистической значимости параметров регрессии, расчет их доверительного интервала.

    лабораторная работа [100,5 K], добавлен 02.06.2014

  • Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.

    задача [142,0 K], добавлен 20.03.2010

  • Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

    контрольная работа [261,1 K], добавлен 23.03.2010

  • Нахождение уравнения линейной регрессии, парного коэффициента корреляции. Вычисление точечных оценок для математического ожидания, дисперсии, среднеквадратического отклонения показателей x и y. Построение точечного прогноза для случая расходов на рекламу.

    контрольная работа [216,6 K], добавлен 12.05.2010

  • Расчет параметров A и B уравнения линейной регрессии. Оценка полученной точности аппроксимации. Построение однофакторной регрессии. Дисперсия математического ожидания прогнозируемой величины. Тестирование ошибок уравнения множественной регрессии.

    контрольная работа [63,3 K], добавлен 19.04.2013

  • Типы, виды, классы математических моделей применяемых в землеустройстве. Определение параметров производственных функций. Множественная линейная модель. Исследование параметров уравнения регрессии на статистическую значимость. Построение изоквант.

    курсовая работа [161,7 K], добавлен 08.04.2013

  • Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа [155,8 K], добавлен 11.12.2010

  • Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа [3,4 M], добавлен 10.02.2014

  • Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа [250,5 K], добавлен 11.04.2015

  • Исследование зависимости часового заработка одного рабочего от общего стажа работы после окончания учебы с помощью построения уравнения парной линейной регрессии. Вычисление описательных статистик. Построение поля корреляции и гипотезы о форме связи.

    контрольная работа [226,6 K], добавлен 11.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.