Эконометрические исследования

Подготовка статистической базы эконометрического исследования. Детерминированные и стохастические процессы. Модели дискретного выбора. Бинарные модели, прогнозирование. Иерархический кластерный анализ, производственная функция. Метод наименьших квадратов.

Рубрика Экономико-математическое моделирование
Вид шпаргалка
Язык русский
Дата добавления 18.03.2016
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4. Вычисление сумм квадратов остатков "частных" регрессий: е1'е1, е2'е2. Если предположение относительно природы гегероскедастичности верно, то дисперсии ошибок регрессии в последних n' наблюдениях будут больше (меньше), чем в первых n' наблюдениях при прямой (обратной) пропорциональной зависимости между уt и Xt и это скажется на сумме квадратов остатков в рассматриваемых частных регрессиях. Поэтому в качестве теста на выявление гетероскедастичности остатков регрессии предлагается использовать статистику F, вид которой определяется предположением зависимости между дисперсией ошибок регрессии уt и регрессором Xt:

F = е1'е1 / е2'е2- в случае обратной пропорциональности

F = е2'е2 / е1'е1- в случае прямой пропорциональности.

Статистика F имеет распределение Фишера с (n'- k- 1) степенями свободы, где k- число объясняющих переменных в регрессионном уравнении. Если значение статистики превышает критически значение при определенном уровне значимости, то нулевая гипотеза Н0 об отсутствии гетероскедастичности отвергается.

Тест ранговой корреляции Голдфелда-Квандта позволяют обнаружить лишь само наличие гетероскедастичности, но они не дают возможности проследить количественный характер зависимости дисперсий ошибок регрессии от значений регрессоров и, следовательно, не представляют каких-либо способов устранения гетероскедастичности.

При использовании этого теста предполагается, что дисперсии ошибок регрессии представляют собой одну и ту же функцию от наблюдаемых значений регрессоров, т.е.

s2 = fi (xi), (1)

Чаще всего функция f выбирается квадратичной, что соответствует тому, что средняя квадратичная ошибка регрессии зависит от наблюдаемых значений регрессоров приближенно линейно. Гомоскедастичной выборке соответствует случай f = const.

Идея теста Уайта заключается в оценке функции (1) с помощью соответствующего уравнения регрессии для квадратов остатков:

,

где ui - случайный член. (2)

Гипотеза H0 об отсутствии гетероскедастичности (условие f = const) принимается в случае не значимости регрессии (2) в целом.

a) Итак, сначала к исходной модели применяется обычный МНК;

b) Находятся остатки ei, регрессии;

c) Осуществляется регрессия квадратов этих остатков ei на все регрессоры x вида (2);

d) Осуществляется регрессия квадратов этих остатков ei на квадраты регрессоров x2;

e) Осуществляется регрессия квадратов этих остатков ei на попарные произведения регрессоров;

Для пунктов c) - e) считается F - статистика, если где p - количество регрессоров, то гипотеза H0 об отсутствии гетероскедастичности отклоняется.

Заметим, что на практике применение теста Уайта с включением и не включением попарных произведений дают, как правило, один и тот же результат.

Привлекательной чертой теста является его универсальность. Однако, если гипотеза H0 об отсутствии гетероскедастичности отклоняется, этот тест не дает указания на функциональную форму гетероскедастичности.

18. Автокорреляция остатков

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят об автокорреляции остатков.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.

2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными.

Существуют два наиболее распространенных метода определения автокорреляции остатков:

1) построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции.

2) использование критерия Дарбина -- Уотсона и расчет величины:

Таким образом, d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина -- Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках.

Далее по специальным таблицам определяются критические значения критерия Дарбина -- Уотсона dLи dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости б. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

есть положительная автокорреляция. Принимается гипотеза H1 с вероятностью (1- б).

зона неопределенности.

автокорреляция остатков нет.

зона неопределенности.

есть отрицательная автокорреляция. Принимается гипотеза H1* с вероятностью (1-б).

Если фактическое значение критерия Дарбина -- Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Hо.

Есть несколько существенных ограничений на применение критерия Дарбина -- Уотсона:

1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии.

2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.

3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

19. Обобщённый метод наименьших квадратов

Обобщённый метод наименьших квадратов -- метод оценки параметров регрессионных моделей, являющийся обобщением классического метода наименьших квадратов. Обобщённый метод наименьших квадратов сводится к минимизации «обобщённой суммы квадратов» остатков регрессии -- , где -- вектор остатков, -- симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем обобщённого, когда весовая матрица пропорциональна единичной.

Необходимо отметить, что обычно обобщённым методом наименьших квадратов называют частный случай, когда в качестве весовой матрицы используется матрица, обратная ковариационной матрице случайных ошибок модели.

Известно, что симметрическую положительно определенную матрицу можно разложить как , где P- некоторая невырожденная квадратная матрица. Тогда обобщённая сумма квадратов может быть представлена как сумма квадратов преобразованных (с помощью P) остатков . Для линейной регрессии это означает, что минимизируется величина:

где , то есть фактически суть обобщённого МНК сводится к линейному преобразованию данных и применению к этим данным обычного МНК. Если в качестве весовой матрицы используется обратная ковариационная матрица случайных ошибок (то есть ), преобразование P приводит к тому, что преобразованная модель удовлетворяет классическим предположениям (Гаусса-Маркова), следовательно оценки параметров с помощью обычного МНК будут наиболее эффективными в классе линейных несмещенных оценок. А поскольку параметры исходной и преобразованной модели одинаковы, то отсюда следует утверждение -- оценки ОМНК являются наиболее эффективными в классе линейных несмещенных оценок (теорема Айткена). Формула обобщённого МНК имеет вид:

Ковариационная матрица этих оценок равна:

20. Взвешенный метод наименьших квадратов

Если случайные ошибки модели регрессии подвержены гетероскедастичности (но являются неавтокоррелированными), то для оценивания неизвестных коэффициентов модели регрессии применяется взвешенный метод наименьших квадратов.

Суть взвешенного метода наименьших квадратов состоит в том, что остаткам обобщённой модели регрессии придаются определённые веса, которые равны обратным величинам соответствующих дисперсий G2(?i). Однако на практике значения дисперсий являются величинами неизвестными, поэтому для вычисления наиболее подходящих весов используется предположение о том, что они пропорциональны значениям факторных переменных xt.

Таким образом, матрица ковариаций случайных ошибок модели регрессии определяется исходя из предположения о пропорциональности величины G2(?i) значениям факторной переменной xt: xt=? G(?i), где ? - ошибка высказанного предположения или некоторая поправка.

В этом случае матрица ковариаций случайных ошибок модели регрессии может быть представлена в виде:

От точности оценки матрицы ковариаций ? случайных ошибок модели регрессии зависит удовлетворение оценок неизвестных коэффициентов, полученных доступным обобщённым или взвешенным методом наименьших квадратов, основным статистическим свойствам - несмещённости, состоятельности и эффективности.

21. Характеристики статистической корректности эконометрических моделей

Не нашел

22. Модель парной линейной регрессии

Связь зависимой переменной с одной или несколькими независимыми переменными описывается с помощью уравнения регрессии:

= f(x1, x2, ..., xm).

Это уравнение показывает, каково будет в среднем значение y, если переменные x примут конкретные значения.

Если независимая переменная одна, то регрессия называется парной.

Построение уравнения регрессии включает два этапа:

1) определение вида зависимости (этап спецификации);

2) определение коэффициентов регрессии (этап идентификации).

Предположим, на этапе спецификации установлено, что между величинами x и y существует линейная зависимость. Реальные значения y будут отличаться от этой теоретической зависимости.

В общем случае линейное уравнение связи двух переменных, учитывающее случайные отклонения, можно представить в виде:

y = + x + ,

где - отклонение от теоретически предполагаемого значения;

и - неизвестные параметры (коэффициенты регрессии).

В уравнении (6.1) можно выделить две части:

· систематическую, = + x, где характеризует некоторое среднее значение y для данного значения x;

· случайную ().

Коэффициенты и описывают вид зависимости для генеральной совокупности. Так как при выполнении подобных исследований всегда имеют дело с выборочной совокупностью, то истинные значения параметров и являются неизвестными, и мы можем говорить лишь об их оценках.

23. Модель парной нелинейной регрессии

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например

- полиномы различных степеней - , ;

- равносторонняя гипербола - ;

- полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например

- степенная - ;

- показательная - ;

- экспоненциальная - .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов.

24. Линеаризация уравнения регрессии и оценка результатов моделирования

Приведение к линейному виду регрессий, нелинейных по объясняющим переменным

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени

у= а0 + а1 х + а2 х2 + е

заменяя переменные х1 =х, х2 = х2, получим двухфакторное уравнение линейной регрессии:

у= а0 + а1 х1 + а2 х2 + е

для оценки параметров которого, как будет показано далее, используется МНК.

Приведение к линейному виду регрессий, нелинейных по параметрам

Данный класс нелинейных моделей подразделяется на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные.

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду.

Если нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции.

В специальных исследованиях по регрессионному анализу часто к нелинейным относят модели, только внутренне нелинейные по оцениваемым параметрам, а все другие модели, которые внешне нелинейны, но путем преобразований параметров могут быть приведены к линейному виду, относятся к классу линейных моделей.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям.

Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия

,

то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т. е. lпу, 1.

Вследствие этого оценки параметров для линеаризуемых функций МНК оказываются несколько смещенными.

Оценка результатов эконометрического моделирования достигается посредством решения качественной и количественной проблемы. Качественная составляющая заключается в установлении соответствия между построенной моделью и основополагающей экономической концепцией, а количественная - в точности аппроксимации имеющейся информации данными расчётов.

25. Модель множественной линейной регрессии

Множественная регрессия - уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

- независимые переменные (факторы).

Линейная модель множественной регрессии имеет вид:

Yi = б0 + б1xi1 + б2xi2 + ... + б mxim + еi (4.1)

Коэффициент регрессии бj показывает, на какую величину в среднем изменится результативный признак Y, если переменную xj увеличить на единицу измерения, т.е. бj является нормативным коэффициентом. Обычно предполагается, что случайная величина еi имеет нормальный закон распределения с математическим ожиданием равным нулю и с дисперсией у2.

Анализ уравнения (4.1) и методика определения параметров становятся более наглядными, а расчетные процедуры существенно упрощаются, если воспользоваться матричной формой записи уравнения (4.2):

Y = X б + е (4.2)

где Y -- вектор зависимой переменной размерности nЧ1, представляющий собой n наблюдений значений yj,

X -- матрица n наблюдений независимых переменных Х1, Х2, Х3, ..., Хm, размерность матрицы X равнаnЧ(m+1);

б -- подлежащий оцениванию вектор неизвестных параметров размерности (m+1) Ч1;

е -- вектор случайных отклонений (возмущений) размерности nЧ1.

Таким образом,

Уравнение (4.1) содержит значения неизвестных параметров б0, б1, б2, ..., бm. Эти величины оцениваются на основе выборочных наблюдений, поэтому полученные расчетные показатели не являются истинными, а представляют собой лишь их статистические оценки. Модель линейной регрессии, в которой вместо истинных значений параметров подставлены их оценки (а именно такие регрессии и применяются на практике), имеет вид:

, (4.3)

где б -- вектор оценок параметров; е -- вектор «оцененных» отклонений регрессии, остатки регрессии е = Y - Xб; -- оценка значений Y, равная Ха.

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная -

степенная -

экспонента -

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

26. Частные уравнения регрессии

Уравнение линейной множественной регрессии (3.2) позволяет построить, так называемые, частные уравнения регрессии, показывающие зависимость результативного признака от отдельного фактора, при исключении влияния остальных факторов, входящих в уравнение множественной регрессии.

Частные уравнения регрессии получаются из уравнения множественной регрессии (3.2) с помощью замены всех факторов, кроме одного на их средние значения

В отличие от парной регрессии, частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии.

27. Мультиколлинеарность переменных

Мультиколлинеарность -- в эконометрике (регрессионный анализ) -- наличие линейной зависимости между независимыми переменными (факторами) регрессионной модели. При этом различают полную коллинеарность, которая означает наличие функциональной (тождественной) линейной зависимости и частичную или просто мультиколлинеарность -- наличие сильной корреляции между факторами.

Косвенными признаками мультиколлинеарности являются высокие стандартные ошибки оценок параметров модели, малые t-статистики (то есть незначимость коэффициентов), неправильные знаки оценок, при том, что модель в целом признается статистически значимой (большое значение F-статистики). О мультиколлинеарности также может свидетельствовать сильное изменение оценок параметров от добавления (или удаления) выборочных данных (если соблюдены требования достаточной однородности выборки).

Для обнаружения мультиколлинеарности факторов можно проанализировать непосредственно корреляционную матрицу факторов. Уже наличие больших по модулю (выше 0,7-0,8) значений коэффициентов парной корреляции свидетельствует о возможных проблемах с качеством получаемых оценок.

28. Методы определения и устранения мультиколлинеарности

Метод главных компонент

Применение метода главных компонент к факторам модели позволяет преобразовать исходные факторы и получить совокупность ортогональных (некоррелированных) факторов. При этом наличие мультиколлинеарности позволит ограничиться небольшим количеством главных компонент. Тем не менее, может возникнуть проблема содержательной интерпретации главных компонент.

Учет знаков коэффициентов корреляции

В линейных моделях коэффициенты корреляции между параметрами могут быть положительными и отрицательными. В первом случае увеличение одного параметра сопровождается увеличением и другого параметра. Во втором случае при повышении одного параметра происходит снижение другого. Исходя из этого, можно установить допустимую и недопустимую мультиколлинеарность. Недопустимая мультиколлинеарность будет тогда, когда между факторами 1 и 2 существует значительная положительная корреляция и при этом влияние каждого фактора на корреляционную связь с функцией у однонаправленное, то есть увеличение обоих факторов 1 и 2 ведёт к увеличению или снижению функции у: ry1/ ry2 > 0. Другими словами, оба фактора действуют на функцию у одинаково и значительная положительная корреляция между ними может позволить исключить один из них. Допустимая мультиколлинеарность такова, при которой факторы действуют на функцию у неодинаково. Здесь возможны два случая:

а) при значительной положительной корреляции между факторами влияние каждого фактора на корреляционную связь с функцией у разнонаправленное, т.е. увеличение одного фактора ведёт к росту функции у (ry1> 0), а увеличение другого фактора приводит к уменьшению функции у (ry2 < 0): ry1/ ry2<0;

б) при значительной отрицательной корреляции между факторами увеличение одного фактора сопровождается уменьшением другого фактора и это делает факторы разнозначными, поэтому возможен любой знак влияния факторов на функцию у: ry1/ ry2 > < 0.

При наличии недопустимой мультиколлинеарности исключение одного из факторов проводится в следующей последовательности [Кремер, Путко], этот же подход полезен для проверки наличии допустимой мультиколлинеарности:

1. из двух факторов, связанных значительной корреляцией, исключается, прежде всего, фактор на основании теоретических соображений. Если такой подход не даёт результата, то исключается тот фактор, которому соответствует меньший коэффициент корреляции с функцией;

2. после удаления фактора математической модели должен соответствовать больший коэффициент корреляции, чем до удаления фактора. Тогда это подтверждает наличие недопустимой мультиколлинеарности между рассмотренными факторами и правильность удаления одного из них.

Рекурсивный МНК

Ридж-регрессия

Ридж-регрессия или гребневая регрессия предполагает оценку параметров по следующей формуле:

Добавление параметра решает проблему плохой обусловленности матрицы . Эти оценки смещены, в отличие от МНК-оценок. Однако доказано, что существует такое , при котором эти оценки более эффективны, чем оценки МНК (МНК наиболее эффективны среди несмещенных оценок). Тем не менее, четких правил выбора этого параметра нет.

29. Частная корреляция

Частная корреляция - это корреляция между двумя переменными, когда одна или больше из оставшихся переменных удерживаются на постоянном уровне. Частные коэффициенты корреляции, как и парные, могут принимать значения от -1 до +1.

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.

В общем виде при наличии р факторов для уравнения y=a+b1x1+b2x2+ … +bpxp+е

коэффициент частной корреляции, измеряющий влияние на у фактора хi при неизменном уровне других факторов, можно определить по формуле

,

- множественный коэффициент детерминации всего комплекса р факторов с результатом;

- тот же показатель детерминации, но без введения в модель фактора хр.

При i=1 формула коэффициента частной корреляции примет вид:

.

Данный коэффициент частной корреляции позволяет измерить тесноту связи между у и хi при неизменном уровне всех других факторов, включенных в уравнение регрессии.

Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по формуле

30. Оценка адекватности модели

В общем случае под адекватностью понимают степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Вместе с тем, создаваемая модель ориентирована, как правило, на исследование определенного подмножества свойств этого объекта. Поэтому можно считать, что адекватность модели определяется степенью ее соответствия не столько реальному объекту, сколько целям исследования. В наибольшей степени это утверждение справедливо относительно моделей проектируемых систем (т. е. в ситуациях, когда реальная система вообще не существует). Тем не менее, во многих случаях полезно иметь формальное подтверждение (или обоснование) адекватности разработанной модели. Один из наиболее распространенных способов такого обоснования - использование методов математической статистики. Суть этих методов заключается в проверке выдвинутой гипотезы (в данном случае - об адекватности модели) на основе некоторых статистических критериев.

Процедура оценки основана на сравнении измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способами. Наиболее распространенные из них:

- по средним значениям откликов модели и системы;

- по дисперсиям отклонений откликов модели от среднего значения откликов системы;

- по максимальному значению относительных отклонений откликов модели от откликов системы.

При первом способе проверяется гипотеза о близости среднего значения наблюдаемой переменной среднему значению отклика реальной системы .

В результате опытов на реальной системе получают множество значений (выборку) . Выполнив экспериментов на модели, также получают множество значений наблюдаемой переменной .

Затем вычисляются оценки математического ожидания и дисперсии откликов модели и системы, после чего выдвигается гипотеза о близости средних значений величин и (в статистическом смысле). Основой для проверки гипотезы является -статистика (распределение Стьюдента). Ее значение, вычисленное по результатам испытаний, сравнивается с критическим значением , взятым из справочной таблицы. Если выполняется неравенство , то гипотеза принимается. Необходимо еще раз подчеркнуть, что статистические методы применимы только в том случае, если оценивается адекватность модели существующей системе. На проектируемой системе провести измерения, естественно, не представляется возможным. Единственный способ преодолеть это препятствие заключается в том, чтобы принять в качестве эталонного объекта концептуальную модель проектируемой системы. Тогда оценка адекватности программно реализованной модели заключается в проверке того, насколько корректно она отражает концептуальную модель.

31. Прогнозирование по линейному уравнению регрессии

Для прогнозирования с помощью уравнения регрессии необходимо вычислить коэффициенты и уравнения регрессии. И здесь существует еще одна проблема сказывающаяся на точности прогнозирования. Она заключается в том, что обычно нет всех возможных значений переменных Х и У, т.е. генеральная совокупность совместного распределения в задачах прогнозирования не известна, известна только выборка из этой генеральной совокупности. В результате этого при прогнозировании помимо случайной составляющей возникает еще один источник ошибок - ошибки, вызванные не полным соответствием выборки генеральной совокупности и порождаемыми этим погрешностями в определении коэффициентов уравнения регрессии.

Иными словами вследствие того, что генеральная совокупность не известна, точные значения коэффициентов и уравнения регрессии определить не возможно. Используя выборку из этой неизвестной генеральной совокупности можно лишь получить оценки и истинных коэффициентов.

Для того чтобы ошибки прогнозирования в результате такой замены были минимальными, оценку необходимо осуществлять методом который гарантирует несмещенность и эффективность полученных значений. Метод обеспечивает несмещенные оценки, если при неоднократном его повторении с новыми выборками из одной и той же генеральной совокупности обеспечивается выполнение условия.

В теории вероятности доказана теорема согласно которой эффективность и несмещенность оценок коэффициентов уравнения линейной регрессии по данным выборки обеспечивается при применении метода наименьших квадратов.

Суть метода наименьших квадратов заключается в следующем.

Для каждой из точек выборки записываются уравнение вида . Затем находятся ошибка между расчетным и фактическим значениями . Решение оптимизационной задачи по нахождению таких значений и которые обеспечивают минимальную сумму квадратов ошибок для всех n точек, т.е. решение задачи поиска , дает несмещенные и эффективные оценки коэффициентов и .

Полученные коэффициенты уравнения регрессии определяют положение регрессионной прямой, она является главной осью облака образованного точками исходной выборки. Оба коэффициента имеют вполне определенный смысл.

32. Временные ряды: понятие, классификация

Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов.

Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E).

Виды временных рядов.

Временные ряды делятся на моментные и интервальные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. Например, моментными являются временные ряды цен на определенные виды товаров, временные ряды курсов акций, уровни которых фиксируются для конкретных чисел.

В интервальных рядах уровни характеризуют значение показателя за определенные интервалы (периоды) времени. Примерами рядов этого типа могут служить временные ряды производства продукции в натуральном или стоимостном выражении за месяц, квартал, год и т.д.

Иногда уровни ряда представляют собой не непосредственно наблюдаемые значения, а производные величины: средние или относительные. Такие ряды называются производными. Уровни таких временных рядов получаются с помощью некоторых вычислений на основе непосредственно наблюдаемых показателей. Примерами таких рядов могут служить ряды среднесуточного производства основных видов промышленной продукции или ряды индексов цен.

Уровни ряда могут принимать детерминированные или случайные значения. Примером ряда с детерминированными значениями уровней _ служит ряд последовательных данных о количестве дней в месяцах. Естественно, анализу, а в дальнейшем и прогнозированию, подвергаются ряды со случайными значениями уровней. В таких рядах каждый уровень может рассматриваться как реализация случайной величины - дискретной или непрерывной.

33. Компонентный анализ рядов динамики

Ряды динамики -- это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Для более глубокого изучения закономерностей развития показателя используется компонентный анализ, который представляет из себя разложение данного временного ряда на конечное число соответствующих. Любой экономический процесс может быть представлен хотя бы одним из нижеуказанных компонент.

Наиболее часто встречающимися, на которые можно разложить временной ряд, являются следующие:

U (t) - характеризует устойчивые систематические изменения уровней ряда, т.е. тренд

K (t) - нестрого периодические циклические колебания

V (t) - строго периодические колебания (сезонные).

E (t) - случайная компонента (несистематические колебания, которые возникают от случая.

Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают) и общая тенденция развития неясна.

На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.

Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.

34. Способы установления наличия тенденции в ряду динамики

Приемы для установления тенденций или закономерностей.

o Преобразование ряда -- применяется для большей наглядности изменений изучаемых явлений. Одно число ряда принимается за 1, чаще всего за 100 или 1000, и, по отношению к данному числу ряда, рассчитываются остальные.

o Выравнивание ряда -- применяется при скачкообразных изменениях (колебаниях) уровней ряда. Цель выравнивания -- устранить влияние случайных факторов и выявить тенденцию изменений значений явлений (или признаков), а в дальнейшем установить закономерности этих изменений

Способы и методы выявления тренда:

1)Увеличение интервалов.

Первоначальный ряд динамики заменяется другим рядом, уровни которого относятся к большим по продолжительности периодам времени. Новые уровни образуются суммированием старых.

2)Вычисление средних уровней для укрупненных интервалов. Является частным случаем первого метода.

3)Определение скользящей средней - для первоначального ряда динамики формируются увеличенные интервалы, состоящие из одинакового количества уровней. Каждый новый интервал получается из предыдущего смещением на один уровень.

4)Аналитическое выравнивание - в основе метода лежит функциональная зависимость уровня ряда от времени. Метод предполагает установление вида функции с использованием корелляционного анализа. На практике чаще всего применяют математические функции следующего вида: 1.линейная 2.параболическая 3.гиперболическая 4.степенная:

35. Методы определения параметров уравнения тренда

36. Методы измерения устойчивости тенденций динамики (коэффициент рангов Спирмена)

Понятие «устойчивость» используется в весьма различных смыслах. По отношению кстатистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивость как категория, противоположная колеблемости; 2) устойчивость направленности изменений, т.е. устойчивость тенденции.

Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс их направленного изменения. С этой точки зрения полной устойчивостью направленного изменения уровней динамического ряда следует считать такое изменение, впроцессе которого каждый следующий уровень либо выше всех предшествующих (устойчивыйрост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строгоранжированной последовательности уровней свидетельствует о неполной устойчивостиизменений.

Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя. В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч.Спирмэна (Spearman) - rx.

где п -- число уровней;

Дi - разность рангов уровней и номеров периодов времени.

При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов)времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Этозначение соответствует случаю полной устойчивости возрастания уровней. При полнойпротивоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означаетполную устойчивость процесса сокращения уровней. При хаотическом чередовании ранговуровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции.

Отрицательное значение rx указывает на наличие тенденции снижения уровней, причемустойчивость этой тенденции ниже средней.

При этом следует иметь в виду, что даже при 100%-ной устойчивости тенденции в рядудинамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже100%. Вцелом же оба показателя связаны, конечно, прямой зависимостью: чаще всего большаяустойчивость уровней наблюдается одновременно с большей устойчивостью тренда.

37. Моделирование тенденции ряда динамики при наличии структурных изменений

От сезонных и циклических колебаний следует отличать единовременные изменения характера тенденции временного ряда, вызванные структурными изменениями в экономике или иными факторами. В этом случае, начиная с некоторого момента времени t, происходит изменение характера динамики изучаемого показателя, что приводит к изменению параметров тренда, описывающего эту динамику.

Момент t сопровождается значительными изменениями ряда факторов, оказывающих сильное воздействие на изучаемый показатель Моделирование тенденции временного ряда при наличии структурных изменений.. Чаще всего эти изменения вызваны изменениями в общеэкономической ситуации или событиями глобального характера, приведшими к изменению структуры экономики. Если исследуемый временной ряд включает в себя соответствующий момент времени, то одной из задач его изучения становится выяснение вопроса о том, значительно ли повлияли общие структурные изменения на характер этой тенденции.

Если это влияние значимо, то для моделирования тенденции данного временного ряда следует использовать кусочно-линейные модели регрессии, т.е. разделить исходную совокупность на 2 подсовокупности (до момента времени t и после) и строить отдельно по каждой подсовокупности уравнения линейной регрессии.

Если структурные изменения незначительно повлияли на характер тенденции ряда Моделирование тенденции временного ряда при наличии структурных изменений., то ее можно писать с помощью единого для всей совокупности данных уравнения тренда.

Каждый из описанных выше подходов имеет свои положительные и отрицательные стороны. При построении кусочно-линейной модели снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. Но разделение совокупности на части ведет к потере числа наблюдений, и к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Построение единого уравнения тренда позволяет сохранить число наблюдений исходной совокупности, но остаточная сумма квадратов по этому уравнению будет выше по сравнению с кусочно-линейной моделью. Очевидно, что выбор модели зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.

38. Регрессионный анализ связных динамических рядов

Многомерные временные ряды, показывающие зависимость результативного признака от одного или нескольких факторных, называют связными рядами динамики. Применение методов наименьших квадратов для обработки рядов динамики не требует выдвижения никаких предположений о законах распределения исходных данных. Однако при использовании метода наименьших квадратов для обработки связных рядов следует учитывать наличие автокорреляции (авторегрессии), которая не учитывалась при обработке одномерных рядов динамики, поскольку ее наличие способствовало более плотному и четкому выявлению тенденции развития рассматриваемого социально - экономического явления во времени.

Выявление автокорреляции в уровнях ряда динамики.

В рядах динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Ее удобно представить в виде корреляционной зависимости между рядами y1,y2,y3,…..yn h y1+h, y2+h,,…, yn+h. Временное смещение L называется сдвигом, а само явление взаимосвязи - автокорреляцией.

Автокорреляционная зависимость особенно существенна между последующими и предшествующими уровнями ряда динамики.

Различают два вида автокорреляции:

- автокорреляция в наблюдениях за одной или более переменными;

- автокорреляция ошибок или автокорреляция в отклонениях от тренда.

Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а так же проверку их значимости.

Автокорреляцию измеряют при помощи циклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемый временным лагом, определяет и порядок коэффициентов автокорреляции: первого порядка (при L=1), второго порядка (при L=2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента (первого порядка), так как наиболее сильные искажения результатов анализа возникают при корреляции между исходными уровнями ряда и теми же уровнями, сдвинутыми на одну единицу времени.

Для суждения о наличии или отсутствия автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5% - го или 1% - го уровня значимости.

Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.

39. Автокорреляция временного ряда

Временной ряд -- это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы: факторы, формирующие тенденцию ряда; факторы, формирующие циклические колебания ряда; случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы. Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям.

Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда. Основная задача эконометрического исследования от дельного временного ряда -- выявление и придание количественного выражения каждой из перечисленных выше компонент с тем, чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени. Коэффициент корреляции имеет вид:

В качестве переменой x рассмотрим ряд в качестве переменной y - ряд Тогда коэффициент автокорреляции первого порядка:

где

Коэффициент автокорреляции первого порядка измеряет зависимость между соседними уровнями рядаt и t-1, т.е. при лаге 1.

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями уt и yt-2 и определяется по формуле:

где

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

Отметим два важных свойства коэффициента автокорреляции.

Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной (или близкой к линейной) связи текущего и предыдущего уровней ряда. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда.

Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой.

Анализ автокорреляционной функции и графика можно выявить структуру ряда. Если наиболее высоким оказался коэффициент автокорреляции 1го порядка, то ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент порядка - то содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов не является значимым, то 2 предположения: 1. ряд не содержит тенденции и циклических колебаний, 2. ряд содержит сильную нелинейную тенденцию.

40. Критерий Дарбина-Уотсона

Критерий Дарбина-Уотсона (или DW-критерий) -- статистический критерий, используемый для нахождения автокорреляции остатков первого порядка регрессионной модели. Критерий назван в честь Джеймса Дарбина и Джеффри Уотсона. Критерий Дарбина-Уотсона рассчитывается по следующей формуле:

где с1 -- коэффициент автокорреляции первого порядка.

В случае отсутствия автокорреляции ошибок d = 2, при положительной автокорреляции d стремится к нулю, а при отрицательной стремится к 4:

На практике применение критерия Дарбина--Уотсона основано на сравнении величины d с теоретическими значениями dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости б.

Если d < dL, то гипотеза о независимости случайных отклонений отвергается (следовательно присутствует положительная автокорреляция);

Если d > dU, то гипотеза не отвергается;

Если dL < d < dU, то нет достаточных оснований для принятия решений.

Когда расчетное значение d превышает 2, то с dL и dU сравнивается не сам коэффициент d, а выражение (4 ? d).

Также с помощью данного критерия выявляют наличие коинтеграции между двумя временными рядами. В этом случае проверяют гипотезу о том, что фактическое значение критерия равно нулю.

Недостатки:

Неприменим к моделям авторегрессии.

Не способен выявлять автокорреляцию второго и более высоких порядков.

Даёт достоверные результаты только для больших выборок].

Критерий h Дарбина применяется для выявления автокорреляции остатков в модели с распределёнными лагами:

где n -- число наблюдений в модели;

V -- стандартная ошибка лаговой результативной переменной.

При увеличении объёма выборки распределение h-статистики стремится к нормальному с нулевым математическим ожиданием и дисперсией, равной 1. Поэтому гипотеза об отсутствии автокорреляции остатков отвергается, если фактическое значение h-статистики оказывается больше, чем критическое значение нормального распределения.

Критерий Дарбина--Уотсона для панельных данных

Для панельных данных используется немного видоизменённый критерий Дарбина--Уотсона:

В отличие от критерия Дарбина--Уотсона для временных рядов в этом случае область неопределенности является очень узкой, в особенности, для панелей с большим количеством индивидуумов.

41. Методы исключения автокорреляции (отклонений от тренда, последовательных разностей, включения фактора времени)

Сущность всех методов исключения тенденции заключается в том, чтобы устранить воздействие фактора времени на формирование уравнений временного ряда. Основные методы делят на 2 группы:

- основанные на преобразовании уровней ряда в новые переменные, не содержащие тенденции. Полученные переменные используем далее для анализа взаимосвязи изучаемых временных рядов. Эти методы предполагают устранение трендовой компоненты Т из каждого уровня временного ряда. 1.Метод последовательных разностей. 2.Метод отклонения от трендов.

- основанные на изучении взаимосвязей исходных уровней временных рядов при исключении воздействия фактора времени на зависимую и независимые переменные модели: включение в модель регрессии фактора времени.

Метод отклонений от тренда

Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную компоненту .

Проведение аналитического выравнивания по каждому из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственно. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и при условии, что последние не содержат тенденции.

Метод последовательных разностей

В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод -- метод последовательных разностей.

Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами - первыми последовательными разностями.

Пусть где - случайная ошибка.

Тогда

Коэффициент b -- константа, которая не зависит от времени. При наличии сильной линейной тенденции остатки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности.

Пусть имеет место соотношение

Тогда:

Как показывает это соотношение, первые разности непосредственно зависят от фактора времени t и, следовательно, содержат тенденцию.

Определим вторые разности:

Очевидно, что вторые разности не содержат тенденции, поэтому при наличии в исходных уровнях тренда в форме параболы второго порядка их можно использовать для дальнейшего анализа. Если тенденции временного ряда соответствует экспоненциальный или степенной тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

...

Подобные документы

  • Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа [176,4 K], добавлен 17.10.2014

  • Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.

    контрольная работа [18,6 K], добавлен 06.11.2009

  • Эконометрические регрессионные модели и прогнозирование на их основе. Построение множественной линейной регрессии с использованием метода наименьших квадратов. Расчет минеральных удобрений сельскохозяйственной организации по полям и кормовым угодьям.

    курсовая работа [2,6 M], добавлен 29.11.2014

  • Эффективность линейной несмещенной оценки вектора для обобщенной регрессионной модели, теорема Айткена. Обобщенный метод наименьших квадратов. Преобразования Фурье, их применение; разложение временного ряда. Ряды Фурье, многомерные преобразования.

    реферат [345,4 K], добавлен 09.05.2012

  • Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.

    контрольная работа [37,6 K], добавлен 03.06.2009

  • Общее понятие о прогнозировании, методы. Абсолютные, сравнительные и качественные показатели оценки качества прогноза. Метод наименьших квадратов. Модели линейного роста. Новшества программы Excel 5.0. Пример решения задачи по прогнозу объема кредита.

    курсовая работа [1,1 M], добавлен 07.08.2013

  • Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.

    практическая работа [79,4 K], добавлен 20.10.2015

  • Эконометрика как наука, позволяющая анализировать связи между различными экономическими показателями на основании реальных статистических данных. Структурная форма эконометрической модели. Метод наименьших квадратов: общее понятие, главные функции.

    курсовая работа [135,1 K], добавлен 05.12.2014

  • Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.

    курсовая работа [477,2 K], добавлен 05.12.2009

  • Метод наименьших квадратов; регрессионный анализ для оценки неизвестных величин по результатам измерений. Приближённое представление заданной функции другими; обработка количественных результатов естественнонаучных опытов, технических данных, наблюдений.

    контрольная работа [382,4 K], добавлен 16.03.2011

  • Суть эконометрики как научной дисциплины, ее предмет и метод. Парная и множественная регрессия в экономических исследованиях. Регрессионные модели с переменной структурой. Обобщенный метод наименьших квадратов. Анализ систем экономических уравнений.

    реферат [279,2 K], добавлен 11.09.2013

  • Построение качественной и адекватной эконометрической модели по методу наименьших квадратов и ее анализ на наличие автокорреляции, мультиколлинеарности, гетероскедастичности с применением статистики Дарвина-Уотсона, тестов Парка и Голдфелда-Квандта.

    курсовая работа [434,0 K], добавлен 04.12.2013

  • Характеристика методов прогнозирования, эконометрические методы. Сравнение показателей производства ВРП Бурятии, динамика среднедушевого производства, счет производства. Прогнозирование на основе эконометрической модели, выявление наличия тенденций.

    курсовая работа [524,3 K], добавлен 15.10.2009

  • Статические детерминированные модели управления запасами. Задача о замене оборудования. Модель Солоу, золотое правило накопления. Оптимальное распределение ресурсов между предприятиями (отраслями) на n лет. Мультипликативная производственная функция.

    контрольная работа [2,1 M], добавлен 22.09.2015

  • Построение математической модели выбранного экономического явления методами регрессионного анализа. Линейная регрессионная модель. Выборочный коэффициент корреляции. Метод наименьших квадратов для модели множественной регрессии, статистические гипотезы.

    курсовая работа [1,1 M], добавлен 22.05.2015

  • Основы управления грузовыми перевозками в транспортных системах. Расчет параметров уравнений степенной и показательной парной регрессии. Расчет прогнозного значения расходов на железнодорожные перевозки по линейной модели при увеличении длины дороги.

    курсовая работа [93,2 K], добавлен 29.11.2014

  • Разработка проектных решений по информационно-методическому обеспечению исследования в области эконометрического моделирования. Анализ тенденций миграционных процессов в странах ЕС и их зависимость от имеющихся факторов, учитываемых при построении модели.

    курсовая работа [2,6 M], добавлен 30.10.2015

  • Прогнозирование, его основные подходы и виды. Текущее состояние российского кинематографа, его проблемы и тенденции. Прогнозирование числа выходящих кинофильмов в Российской Федерации методом экстраполяции временного ряда и методом наименьших квадратов.

    курсовая работа [280,0 K], добавлен 20.06.2014

  • Взаимосвязи экономических переменных. Понятие эконометрической модели. Коэффициент корреляции и его свойства. Линейная парная регрессия. Метод наименьших квадратов. Основные предпосылки и принципы регрессионного анализа. Статистика Дарбина-Уотсона.

    шпаргалка [142,4 K], добавлен 22.12.2011

  • Трендовые экономические процессы и их анализ: итерационные методы фильтрации, метод Четверикова, Шискина—Эйзенпресса. Ряд Фурье и его использование для прогнозирования динамики с сезонными колебаниями. Аддитивная и мультипликативная модели сезонности.

    курсовая работа [1,2 M], добавлен 14.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.