Множественная регрессия и корреляция

Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.

Рубрика Экономико-математическое моделирование
Вид задача
Язык русский
Дата добавления 14.05.2016
Размер файла 52,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Аналитическая записка к работе по теме: «Множественная регрессия и корреляция»

Задача: По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. тенге) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ().

Номер предприятия

y

x1

x2

1

7

3,6

9

2

7

3,6

11

3

7

3,7

12

4

8

4,1

16

5

8

4,3

19

6

8

4,5

19

7

9

5,4

20

8

9

5,5

20

9

10

5,8

21

10

10

6,1

21

11

10

6,3

21

12

11

6,9

23

13

11

7,2

24

14

12

7,8

25

15

13

8,1

27

16

13

8,2

29

17

13

8,4

31

18

14

8,8

33

19

14

9,5

35

20

14

9,7

34

Требуется:

Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.

Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.

Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.

С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .

С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .

Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Решение:

Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:

y

x1

x2

yx1

yx2

x1x2

x1^2

x2^2

y^2

1

7

3,6

9

25,2

63

32,4

12,96

81

49

2

7

3,6

11

25,2

77

39,6

12,96

121

49

3

7

3,7

12

25,9

84

44,4

13,69

144

49

4

8

4,1

16

32,8

128

65,6

16,81

256

64

5

8

4,3

19

34,4

152

81,7

18,49

361

64

6

8

4,5

19

36

152

85,5

20,25

361

64

7

9

5,4

20

48,6

180

108

29,16

400

81

8

9

5,5

20

49,5

180

110

30,25

400

81

9

10

5,8

21

58

210

121,8

33,64

441

100

10

10

6,1

21

61

210

128,1

37,21

441

100

11

10

6,3

21

63

210

132,3

39,69

441

100

12

11

6,9

23

75,9

253

158,7

47,61

529

121

13

11

7,2

24

79,2

264

172,8

51,84

576

121

14

12

7,8

25

93,6

300

195

60,84

625

144

15

13

8,1

27

105,3

351

218,7

65,61

729

169

16

13

8,2

29

106,6

377

237,8

67,24

841

169

17

13

8,4

31

109,2

403

260,4

70,56

961

169

18

14

8,8

33

123,2

462

290,4

77,44

1089

196

19

14

9,5

35

133

490

332,5

90,25

1225

196

20

14

9,7

34

135,8

476

329,8

94,09

1156

196

total

208

128

450

1421,400

5022

3145,500

890,590

11178

2282

srednee

10,400

6,375

22,500

71,070

251,100

157,275

44,53

558,9

114,1

Найдем средние квадратические отклонения признаков:

,

,

,

Определим параметры линейного уравнения множественной регрессии.

Для нахождения параметров линейного уравнения множественной регрессии

Необходимо решить следующую систему линейных уравнений относительно неизвестных параметров , , :

Для этого воспользуемся формулами:

; ;.

Рассчитаем сначала парные коэффициенты корреляции:

;

;

.

Находим:

= 0,992

= 0,966

= 0,967

Находим:

b1= 1,093

b2= 0,037

a= 2,587

Таким образом, получили следующее уравнение множественной регрессии: множественный регрессия корреляция детерминация

y=2.587+1.093*x1+0.037*x2

Коэффициенты и стандартизованного уравнения регрессии находятся по формулам:

;

.

B1=0,885

B2=0,111

Т.е. уравнение будет выглядеть следующим образом:

ty=0,057377364tx1+0,111006358tx2+E

Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.

Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:

.

Вычисляем:

Э1= 0,671

Э2= 0,081

Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,67% или 0,08% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .

Коэффициенты парной корреляции мы уже нашли:

= 0,992

= 0,966

= 0,967

Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. = 0,967>0.7). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.

При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:

ryx1*x2=0,883

ryx2*x1=0,231

если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи.именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.

Рассчитаем коэффициент множественной корреляции при использовании формул:

При выполнении вычислений Ryx1x2=0,993

Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.

Нескорректированный коэффициент множественной детерминации Ryx1x2=0,986 оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет 98.6% и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами - на весьма тесную связь факторов с результатом.

R2=0.987

определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более98%) детерминированность результата в модели факторами и .

Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:

.

В нашем случае фактическое значение -критерия Фишера=589,096

Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .

С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:

;

.

Найдем и .

;

.

Имеем

;

.

Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.

Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .

Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:

,

.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.

    контрольная работа [155,8 K], добавлен 11.12.2010

  • Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа [141,3 K], добавлен 05.05.2010

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Расчёт параметров линейного уравнения регрессии. Оценка регрессионного уравнения через среднюю ошибку аппроксимации, F-критерий Фишера, t-критерий Стьюдента. Анализ корреляционной матрицы. Расчёт коэффициентов множественной детерминации и корреляции.

    контрольная работа [241,8 K], добавлен 29.08.2013

  • Методика расчета линейной регрессии и корреляции, оценка их значимости. Порядок построения нелинейных регрессионных моделей в MS Exсel. Оценка надежности результатов множественной регрессии и корреляции с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [3,6 M], добавлен 29.05.2010

  • Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.

    контрольная работа [681,9 K], добавлен 03.08.2010

  • Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [914,4 K], добавлен 01.12.2013

  • Построение доверительного интервала для коэффициента регрессии. Определение ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности изменения материалоемкости продукции. Построение линейного уравнения множественной регрессии.

    контрольная работа [250,5 K], добавлен 11.04.2015

  • Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.

    контрольная работа [173,8 K], добавлен 22.11.2010

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации. Определение средней ошибки аппроксимации. Статистическая надежность моделирования с помощью F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа [58,3 K], добавлен 17.10.2009

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Построение уравнения множественной регрессии в линейной форме, расчет интервальных оценок его коэффициентов. Создание поля корреляции, определение средней ошибки аппроксимации. Анализ статистической надежности показателей регрессионного моделирования.

    контрольная работа [179,4 K], добавлен 25.03.2014

  • Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.

    контрольная работа [108,5 K], добавлен 28.03.2018

  • Поля корреляции, характеризующие зависимость ВРП на душу населения от размера инвестиций в основной капитал. Оценка параметров уравнения парной линейной регрессии. Коэффициент множественной корреляции. Способы оценки параметров структурной модели.

    контрольная работа [215,1 K], добавлен 22.11.2010

  • Методика расчета параметров множественной регрессии и корреляции. Тест на выбор "длинной" или "короткой" регрессии. Тест Чоу на однородность зависимости объясняемой переменной от объясняющих. Тест Бреуша – Пагана. Тест Дарбина на наличие автокорреляции.

    лекция [40,3 K], добавлен 13.02.2011

  • Факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге. Составление матрицы парных коэффициентов корреляции исходных переменных. Тестирование ошибок уравнения множественной регрессии на гетероскедастичность. Тест Гельфельда-Квандта.

    контрольная работа [1,2 M], добавлен 14.05.2015

  • Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.

    контрольная работа [192,2 K], добавлен 23.06.2012

  • Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа [243,1 K], добавлен 17.01.2016

  • Выборка и генеральная совокупность. Модель множественной регрессии. Нестационарные временные ряды. Параметры линейного уравнения парной регрессии. Нахождение медианы, ранжирование временного ряда. Гипотеза о неизменности среднего значения временного ряда.

    задача [62,0 K], добавлен 08.08.2010

  • Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    контрольная работа [298,2 K], добавлен 19.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.