Разработка имитационной модели предприятия с помощью языка GPSS World
Элементы теории, классификация и имитационное моделирование систем массового обслуживания. Обзор работ в области разработки систем поддержки принятия решений. Предпроектное обследование склада нефтепродуктов, расчет имитационной модели на языке GPSS.
Рубрика | Экономико-математическое моделирование |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.05.2016 |
Размер файла | 188,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Содержание
Введение
Глава 1. Теоретические аспекты теории массового обслуживания
1.1 Элементы теории массового обслуживания
1.2 Классификация систем массового обслуживания
1.3 Имитационное моделирование систем массового обслуживания
1.4 GPSS - язык имитационного моделирования
Глава 2. Нефтеперерабатывающие предприятия как объекты логистики
2.1 Обзор работ в области разработки систем поддержки принятия решений
2.2 Проблемы группирования продуктов и смешивания различных типов сырья
Глава 3. Предпроектное обследование склада нефтепродуктов Якутской нефтебазы
3.1 Обследование склада нефтепродуктов Якутской нефтебазы ОАО «Саханефтегазбыт»
3.2 Разработка имитационной модели на языке GPSS
3.3 Расчетная работа
3.4 Анализ и краткие выводы расчетной работы
Заключение
Список использованных источников
Приложения
Введение
Актуальность темы исследования. Рынок нефтепродуктов, оказывающий мультиплицирующее воздействие практически на все отрасли народного хозяйства и экономики страны в целом, традиционно остается интересным для изучения объектом. Доминирующее положение на внутреннем рынке нефтепродуктов в настоящее время занимают крупные нефтяные компании, которые осуществляют свою деятельность на всех ее сегментах, объединяя в единое целое технологическую цепочку: добыча нефти - переработка (производство нефтепродуктов) - оптовая торговля - розничная реализация через сеть фирменных автозаправочных станций. В то же время обобщить всю производственно-сбытовую цепь товародвижения нефтяной компании в рамках одной работы не представляется возможным.
Элементная декомпозиция позволяет выявить пять типов объектов данной системы: нефтеперерабатывающие заводы (НПЗ), нефтебазы (НБ), автозаправочные станции (АЗС), управления технологического транспорта (УТТ), транспортные коммуникации (автомобильные дороги, железные дороги, нефтепродуктопроводы).
Через систему нефтепродуктообеспечения, имеющую территориально-распределенную разветвленную сетевую структуру, ежедневно проходят огромные объемы нефтепродуктов. Управление этими потоками является сложной оптимизационной задачей большой размерности, эффективное решение которой невозможно без применения соответствующих математических методов и моделей. В свою очередь материальные потоки сопровождаются не менее значительными информационными потоками (планы и графики отпуска нефтепродуктов с нефтеперерабатывающих заводов, транспортировки, завоза и потребностях нефтепродуктов на распределительных объектах и т.д.).
Система управления потоками нефтепродуктов в современных рыночных условиях требует, с одной стороны, использования и переработки больших объемов информации, с другой - максимального сокращения времени принятия управленческих решений о перераспределении потоков нефтепродуктов и других ресурсов.
Таким образом, все вышеперечисленное обуславливает актуальность разработки имитационной модели функционирования системы нефтепродуктообеспечения нефтяной компании, интегрирующей всю цепочку поставок нефтепродуктов от нефтеперерабатывающих заводов до конечных потребителей и позволяющую осуществлять оптимизацию во взаимосвязи их закупки, транспортировки, складирования и сбыта. Такая модель должна как можно более полно описывать хозяйственную и инвестиционную деятельность нефтяной компании в сфере нефтепродуктообеспечения, что позволит использовать ее для проведения многовариантных расчетов при различных сценарных условиях как инструмент выработки и обоснования принимаемых управленческих решений.
Все выше сказанное предопределило выбор темы, постановку цели и задач исследования.
Цель дипломной работы - разработать имитационную модель предприятия с помощью языка GPSS World.
Для достижения указанной цели определены следующие задачи исследования:
- изучение литературы;
- рассмотрение и анализ исследуемой системы;
- разработка концептуальной модели;
- представление модели в виде системы массового обслуживания;
- моделирование системы.
Объектом исследования выступает работа склада нефтепродуктов (на примере Якутской нефтебазы ОАО «Саханефтегазсбыт»)
Предметом исследования данной дипломной работы является имитационная модель работы склада нефтепродуктов Якутской нефтебазы ОАО «Саханефтегазсбыт».
Методология и методы исследования. Теоретической и методологической основой исследования послужили научные труды и публикации отечественных и зарубежных ученых в области управления предприятиями нефтепродуктообеспечения, прикладной математики, проектирования информационных систем. Исследование проводилось с использованием принципов системного подхода и имитационного компьютерного моделирования.
Информационную, нормативную и эмпирическую базу исследования составили материалы нефтяных компаний (в частности ОАО «Саханефтегазсбыт»), экспертные оценки, научная литература по теме дипломной работы, данные, размещенные на официальных сайтах в сети Интернет, а также собственные расчетные материалы автора.
Данная работа состоит из трех глав, которые отражают все этапы проделанной работы. Первая глава посвящена теоретическим аспектам теории массового обслуживания. Вторая глава посвящена обзору работы нефтеперерабатывающей промышленности. Третья глава полностью посвящена исследованию системы и построению имитационной модели работы склада нефтепродуктов Якутской нефтебазы с помощью языка GPSSWorld.
Практическая ценность работы заключается в том, что ее положения и выводы могут быть использованы нефтяными компаниями для совершенствования системы принятия управленческих решений в сфере нефтепродуктообеспечения.
Глава 1. Теоретические аспекты теории массового обслуживания
1.1 Математическое моделирование систем массового обслуживания
При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы - систем массового обслуживания [4, 333].
Согласно Т.Ю. Новгородцевой и Д.С. Матусевичу, под системой массового обслуживания понимают объект (предприятие, организация и др.), деятельность которого связана с многократной реализацией исполнения каких-то однотипных задач и операций [5, 5].
Авторы Бережная Е.В. и Бережной В.И. утверждают, что системы массового обслуживания - это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.
Требованием или заявкой называется объект, который необходимо обслужить: железнодорожные составы, проходящие через железнодорожный узел, покупатели, приобретающие товар и т.д. Как видно, объект является носителем запроса. Поэтому в дальнейшем под требованием понимается и сам запрос на обслуживание. Например, запрос на ремонт станка, запрос на продажу товара покупателю и т.д.
С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединится к очереди других требований (ранее поступивших) требований. Канал обслуживания выбирает требование, из находящихся в очереди, с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания. Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.
Примерами систем массового обслуживания могут служить:
посты технического обслуживания автомобилей;
персональные компьютеры, обслуживающие поступающие заявки или требования для решения тех или иных задач;
отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий;
аудиторские фирмы;
телефонные станции и т.д.
Каждая СМО (рис.1) включает в свою структуру некоторое число обслуживающих устройств, называемых каналами обслуживания (к их числу можно отнести лиц, выполняющих те или иные операции, - кассиров, операторов, менеджеров и т.п.), обслуживающих некоторый поток заявок (требований), поступающих на ее вход в случайные моменты времени. Обслуживание заявок происходит за неизвестное, обычно случайное время и зависит от множества самых разнообразных факторов. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерности загрузки СМО - перегрузке с образованием очередей заявок или недогрузке - с простаиванием каналов.
Таким образом, в СМО имеются: входящий поток заявок, дисциплина очереди, поток необслуженных (покинувших очередь) заявок, каналы обслуживания с механизмом обслуживания и выходящий поток обслуженных заявок.
Рис.1. Структура СМО.
Раскроем содержание каждого из указанных выше компонентов.
Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием "вероятностное распределение моментов поступления требований". Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идет о системе облуживания с параллельно-групповым обслуживанием.
Дисциплина очереди - это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:
первым пришел - первый обслуживаешься;
пришел последним - обслуживаешься первым;
случайный отбор заявок;
отбор заявок по критерию приоритетности;
ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием "допустимая длина очереди").
Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся: продолжительность процедуры обслуживания и количество требований, удовлетворяемых в результате выполнения каждой процедуры. Для аналитического описания характеристик процедуры обслуживания оперируют понятием "вероятностное распределение времени обслуживания требований".
Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обсуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.
Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т.д.). Прежде всего, следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система подобного рода способна обслуживать сразу несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживание.
Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т.е. в обслуживающей системе процедура обслуживания требований реализуется последовательно. Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.
Рассмотрев основные компоненты систем обслуживания, можно констатировать, что функциональные возможности любой системы массового обслуживания определяются следующими основными факторами:
вероятностным распределением моментов поступления заявок на обслуживание (единичных или групповых);
вероятностным распределением времени продолжительности обслуживания;
конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
количеством и производительностью обслуживающих каналов;
дисциплиной очереди;
мощностью источника требований.
В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:
вероятность немедленного обслуживания поступившей заявки;
вероятность отказа в обслуживании поступившей заявки;
относительная и абсолютная пропускная способность системы;
средний процент заявок, получивших отказ в обслуживании;
среднее время ожидания в очереди;
средняя длина очереди;
средний доход от функционирования системы в единицу времени и т.д.
Итак, предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие систему массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам [2, 82 - 85].
Согласно общей классификации система массового обслуживания разделяется на три подсистемы.
Первая подсистема - это система массового обслуживания без потерь. Под термином система без потерь (с полным ожиданием) понимают систему, в которой, если все приборы заняты, требование становится в очередь и не покидает ее до тех пор, пока не будет обслужено.
Вторая подсистема - это система с частичными потерями. Подобная подсистема характеризуется тем, что требование либо не становится в очередь, если эта очередь превышает по длине некоторую величину (система с ограниченной длиной очереди), либо становится в очередь, но покидает ее, если время пребывания в ней превышает определенную величину (система с ограниченным временем пребывания), или, если время ожидания в очереди начала обслуживания превышает определенную величину (система с ограниченным временем ожидания начала обслуживания).
Третья подсистема - это система без очередей. Под этим термином понимают систему, в которой требование покидает систему, если все обслуживающие устройства (приборы) заняты. В такой системе, очевидно, очереди не может быть.
Системы, имеющие очередь, подразделяются на системы с одной очередью и системы с несколькими очередями.
Все системы массового обслуживания делятся на системы с одним каналом и системы с конечным числом каналов обслуживания. Под термином канал понимают обслуживающее устройство в цехе, пропускающее через себя требование. В тех случаях, когда приборов много удобно (математически более просто) считать, что их бесконечное число.
Все системы массового обслуживания можно разделить на системы с бесконечным числом требований (например, запросы на телефонные переговоры, на обслуживание покупателей, автомашины на бензозаправках и т.д.) и с конечным числом требований в системе (группа ремонта станков в цехе: число станков известно, тренировка футболистов футбольной команды, лечение больных студентов в институтской поликлинике и т.п.).
Представленная классификация, конечно, не исчерпывает все множество различных систем массового обслуживания. Эти системы могут классифицироваться и по другим признакам.
Так, весьма важной характеристикой является дисциплина обслуживания, под которой понимают порядок выбора требований из очереди. В соответствии с этим системы подразделяются на четыре вида.
СМО с типом дисциплины "первый пришел - первый обслуживается" - дисциплина "живой очереди";
СМО с типом дисциплины "последний пришел - первый обслуживается" - примером такой системы является склад, заполненный изделиями, из которого на доработку удобно брать изделия, поступившие последними;
СМО с типом дисциплины выбора требований случайным способом;
СМО с типом дисциплины выбора требований в соответствии с присвоенными приоритетами.
Другими вариантами классификаций могут быть следующие.
Поступление требований может быть единичным и групповым.
Требования могут обслуживаться параллельно работающими приборами, но может быть и система, в которой приборы расположены последовательно так, что как только будет обслужено требование первым прибором, то начнет обслуживаться и другое и т.д.
Интенсивность обслуживания прибором может быть постоянной или зависеть от длины очереди, приоритетов или каких-либо других факторов.
Наконец, системы массового обслуживания различают по характеру входного потока и по характеру обслуживающих устройств.
По характеру входной поток требований разделяется на детерминированный поток требований и стохастический (рис.2).
Детерминированный входной поток может быть двух видов. В первом случае требования поступают через равные промежутки времени. Другим видом детерминированного потока является поток, в котором требования поступают по известной программе - расписанию, когда моменты поступления новых требований известны заранее.
Если промежутки времени между поступлениями требований случайны, то это будет стохастический процесс.
Стохастический поток требований подразделяется на три вида: поток с произвольными стохастическими свойствами, рекуррентный поток и совершенно случайный или пуассоновский поток требований.
Произвольный поток требований характеризуется тем, что на него не накладывается никаких ограничений на стохастическую независимость интервалов между поступлениями требований, а также на характер вероятностных законов, описывающих интервалы между требованиями.
Входной поток называется рекуррентным, если он характеризуется следующими свойствами:
продолжительность интервалов между поступлениями требований стохастически независимы;
продолжительность интервалов описывается одной и той же плотностью распределения.
Входной поток называется совершенно случайным или простейшим, если для него характерно:
продолжительность интервалов между поступлениями требований статистически независимы;
продолжительность интервалов описывается одной и той же плотностью распределения;
вероятность поступления требований на достаточно малом интервале Дt зависит только лишь от величины Дt (это свойство называется стационарностью или однородностью прихода);
вероятность поступления требований на интервале Дt не зависит от предыстории процесса;
характер потока требований таков, что в любой момент времени может поступить только одно требование.
Таким образом, простейший поток требований или совершенно случайный поток - это поток, определяющейся свойствами стационарности, ординарности и отсутствием последствия одновременно.
Предположения о совершенно случайном входном потоке требований эквивалентно тому, что плотность распределения интервалов времени между последовательными поступлениями требований описывается экспоненциальным законом:
(1.1)
где л - интенсивность поступления заявок в систему.
Если интервалы распределены по экспоненциальному закону, то процесс пуассоновский. Такие процессы называются М-процессами (Марковскими).
Кроме закона Пуассона часто применяется закон распределения Эрланга.
(1.2)
Обозначения Кендалла систем массового обслуживания.
Аналогично входному потоку процесс обслуживания требований может быть детерминированным и стохастическим.
Детерминированный процесс обслуживания характеризуется постоянной величиной времени обслуживания
где - интенсивность обслуживания, которая представляет собой число требований, обслуживаемых в единицу времени.
Стохастический процесс обслуживания может быть произвольным, рекуррентным или совершенно случайным, как и при описании входного потока требований [15].
При рассмотрении систем массового обслуживания часто используются обозначения предложенные Кендаллом. Они позволяют описать СМО с помощью следующих трех элементов: вид входного потока, распределение продолжительности обслуживания, число обслуживающих приборов.
Используются следующие обозначения:- пуассоновское или экспоненциальное распределение;- постоянная величина;k - распределение Эрланга;- общий вид распределения;- рекуррентный входной поток.
Общий вид, характеризующий систему массового обслуживания, представляет собой следующую последовательность:
где Н1 - характеристика входного потока, H2 - характеристика времени обслуживания прибора, i - число приборов.
Например, система M /D /s - система с s приборами, обслуживающая поступающие требования за строго определенный интервал времени, поступающие требования образуют пуассоновский поток [16].
Одноканальная СМО содержит один канал (n = 1), и на ее вход поступает пуассоновский поток заявок Пвх интенсивность (среднее число событий в единицу времени) которого inПвх=л. Так как интенсивность входящего потока может изменяться во времени, то вместо л записывают л (t). Тогда время обслуживания каналом одной заявки Тоб распределено по показательному закону и записывается в виде: , где л - интенсивность отказов.
Состояние СМО характеризуется простаиванием или занятостью ее канала, т.е. двумя состояниями: S0 - канал свободен и простаивает, S1 - канал занят. Переход системы из состояния S0 в состояние S1 осуществляется под воздействием входящего потока заявок Пвх, а из состояния S1 в состояние S0 систему переводит поток обслуживании Поб: если в данный момент времени система находится в некотором состоянии, то с наступлением первого после данного момента времени СМО переходит в другое состояние. Плотности вероятностей перехода из состояния S0 в S1 и обратно равны соответственно л и µ. Граф состояний подобной СМО с двумя возможными состояниями приведен на рис.3.
Рис.3. Граф состояний одноканальной СМО с отказами.
Для многоканальной СМО с отказами (n > 1) при тех же условиях состояния системы обозначим по числу занятых каналов (по числу заявок, находящихся в системе под обслуживанием, так как каждый канал в СМО либо свободен, либо обслуживает только одну заявку).
Таким образом, подобная СМО может находиться в одном из следующих (n+1) состояний: s0 - все n каналов свободны; s1 - занят только один из каналов, остальные (n-1) каналов свободны; si - заняты i - каналов, (n-i) каналов свободны; sn - заняты все n каналов. Граф состояний такой СМО приведен на рис.4.
Рис.4. Граф состояний многоканальной СМО с отказами.
При этом имеет место а
Пользуясь общим правилом составления дифференциальных уравнений Колмогорова, можно для приведенных на рис.2 и рис.3 графов состояний составить системы дифференциальных уравнений:
например, для одноканальной СМО (рис.2) имеем:
для многоканальной СМО (рис.3) соответственно имеем:
Решив первую систему уравнений, можно найти значения p0 (t) и p1 (t) для одноканальной СМО и построить графики при трех случаях:
) л >µ;
) л=µ;
) л<µ (рис.5 а, б, в). Можно также определить предельную пропускную способность СМО. Решение второй системы уравнений для многоканальной СМО в аналитическом виде получить вручную сложно, и его обычно получают с помощью ЭВМ в численном виде.
В целом, характеристики одноканальной СМО с отказами приведены ниже и особых пояснений не требуют [17].
Таблица 1. Характеристики одноканальной СМО с отказами
Характеристика в момент времени t |
Обозначения, формулы |
|
Вероятность того, что канал свободен |
||
Вероятность того, что поступившая заявка будет принята к обслуживанию |
||
Вероятность занятости канала |
||
Вероятность отказа заявки |
||
Относительная пропускная способность СМО (средняя доля обслуженных заявок среди поступивших) |
||
Абсолютная пропускная способность СМО (среднее число обслуженных заявок за единицу времени) |
||
Интенсивность выходящего потока обслуженных заявок |
||
Среднее время обслуживания заявок |
||
Среднее время пребывания заявки в системе |
||
Вероятность того, что канал свободен |
||
Вероятность того, что поступившая заявка будет принята к обслуживания |
||
Вероятность занятности канала |
||
Вероятность отказа заявке |
||
Относительная пропускная способность СМО |
||
Абсолютная пропускная способность СМО |
||
Интенсивность выходящего потока Пвых обслуженных заявок |
||
Среднее время обслуживания заявок |
||
Среднее время пребывания заявки в системе |
Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивностью л. Интенсивность потока обслуживания равна µ (т.е. в среднем непрерывно занятый канал будет выдавать µ обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.
Предположим, что независимо от того, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т.е. клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость. Граф состояний СМО в этом случае имеет вид, показанный на рис.6.
Состояния СМО имеют следующую интерпретацию:
S0 - канал свободен;
S1 - канал занят (очереди нет);
S2 - канал занят (одна заявка стоит в очереди);
Sn - канал занят (n-1 заявок стоит в очереди);
SN - канал занят (N-1 заявок стоит в очереди).
Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:
(1.11)
где с=л/µ; n - номер состояния.
Решение приведенной выше системы уравнений (1.10) для нашей модели СМО имеет вид:
(1.12)
(1.13)
Тогда
Следует отметить, что выполнение условия стационарности для данной СМО необязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превышать N-1), а не соотношением между интенсивностями входного потока, т.е. не отношением л/µ=с. Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1): вероятность отказа в обслуживании заявки:
(1.14)
относительная пропускная способность системы:
(1.15)
абсолютная пропускная способность:
(1.16)
среднее число находящихся в системе заявок:
(1.17)
среднее время пребывания заявки в системе:
(1.18)
средняя продолжительность пребывания клиента (заявки) в очереди:
(1.19)
среднее число заявок (клиентов) в очереди (длина очереди):
. (1.20) [2, 89 - 92].
Теперь рассмотрим более подробно СМО, имеющую n-каналов с неограниченной очередью. Поток заявок, поступающих в СМО, имеет интенсивность л, а поток обслуживаний - интенсивность µ. Необходимо найти предельные вероятности состояний СМО и показатели ей эффективности.
Система может находиться в одном состоянии S0, S1, S2,…,Sk,…,Sn,…, нумеруемых по числу заявок, находящихся в СМО: S0 - в системе нет заявок (все каналы свободны); S1 - занят один канал, остальные свободны; S2 - заняты два канала, остальные свободны; …, Sk - занято k каналов, остальные свободны; …, Sn - заняты все n каналов (очереди нет); Sn+1 - заняты все n каналов, в очереди одна заявка; …, Sn+r - заняты все n каналов, r заявок стоит в очереди, ….
Обратим внимание, что по мере увеличения в СМО от 0 до n увеличивается число каналов обслуживания. При числе заявок в СМО, большем, чем n, интенсивность потока обслуживания сохраняется равной nµ.
Формулы для предельных состояний СМО с ожиданием выглядят следующим образом:
(1.27)
(1.28)
(1.29)
Вероятность того, что заявка окажется в очереди равна:
(1.30)
Для n-канальной СМО с ожиданием, используя прежние формулы, можно найти:
среднее число занятых каналов:
(1.31)
среднее число заявок в очереди:
(1.32)
среднее число заявок в системе:
(1.31) [4, 349 - 360].
1.2 Имитационное моделирование систем массового обслуживания
Несмотря на то, что математическое программирование и стохастическое моделирование имеют широкий диапазон применения, при рассмотрении многих важных задач организационного управления возникает необходимость обращаться к совершенно иным методам анализа.
Методы математического моделирования пока не смогут обеспечить исчерпывающего анализа таких задач организационного управления, как:
Формирование инвестиционной политики при перспективном планировании. Инвестиционная политика крупных фирма должна, в частности, учитывать финансовое обеспечение научно-исследовательских и опытно-конструкторских работ при создании новых видов продукции, возможности расширения рынка сбыта, критериальные оценки основных проектов, оценку степени риска при планировании тех или иных комплексов работ, источники финансирования (кредит, привлечение капитала продажей акций и т.д.), увеличение фонда заработной платы, размещение и сокращение финансовых активов, сравнительную оценку вариантов слияния с другой фирмой и приобретения последней и т.п. Полноценная операционная модель, с помощью которой можно было бы анализировать различные варианты инвестиционной политики, должна учитывать стохастическую природу и динамический характер инвестирования, а также предусматривать способ просеивания огромного количества стоящих перед фирмой альтернатив.
Выбор средств обслуживания (или оборудования) при текущем планировании. При этом рассматривались задачи определения количества контрольных прилавков в большом торговом центре, количества бензоколонок на бензозаправочной станции и количества лифтов в строящемся здании. Можно привести много других примеров, в которых рассматриваются вопросы распределения кадров, планировка заводских помещений, выбор мощности оборудования и т.д. Типичными вопросами, возникающими в связи с решением задачи выбора средств обслуживания или оборудования, являются вопросы, начинающиеся словами: сколько?, каких размеров? и как разместить?.
Разработка планов с обратной информационной связью и операционных предписаний. Примеры такого рода задач также многочисленны, хотя они не сразу могут прийти на ум тем, кто не имеет достаточного профессионального опыта. К важным задачам данного класса относится, например, задача выработки правил составления календарных планов на предприятиях с мелкосерийным производством, комбинатах по ремонту различных изделий, вычислительных центрах и т.д. Эти предписания, или операционные алгоритмы, должны учитывать гарантийные сроки выполнения заказов, потребности в обслуживании, наличные ресурсы, производственные мощности, темпы повышения квалификации рабочих (или приток дополнительной квалифицированной рабочей силы), уровень снабжения сырьем. По мере поступления информации о новых уже выполненных заказах предприятие сталкивается с задачей уточнения или полного пересмотра своих планов-графиков.
Почему описанные выше классы задач с трудом поддаются анализу? Причина заключается в необходимости одновременного учета факторов неопределенности, динамической взаимной обусловленности текущих решений и последующих событий, в комплексной взаимозависимости между управляемыми переменными исследуемой операционной системы, а в ряде случаев также и в том, что требуется рассматривать строго дискретную и четко определенную последовательность интервалов времени. Такого рода "глобальные" системные задачи обладают слишком большой размерностью и наличием слишком большого количества внутренних взаимосвязей, в силу чего их не удается решить методами математического программирования.
Наиболее эффективным из существующих в настоящее время операционных методов, выходящих за рамки обычного математического программирования, является метод имитационного моделирования на ЭВМ.
При имитационном моделировании, прежде всего, строится экспериментальная модель системы. Затем производится сравнительная оценка конкретных вариантов функционирования системы путем "проигрывания" различных ситуаций на рассматриваемой модели.
При этом факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами исследуемой системы представляют в виде формул, хранящихся в памяти быстродействующей ЭВМ. Имитирование системы начинают с некоторого вполне конкретного исходного состояния. В результате принимаемых решений, а также вследствие ряда контролируемых и неконтролируемых событий, среди которых могут быть и события случайного характера, система переходит в последующие моменты времени в другие состояния. Эволюционный процесс, таким образом, продолжается до тех пор, пока не наступит конечный момент планового периода. Отрезки времени внутри планового периода нередко оказываются четко определенными и образуют упорядоченную последовательность на достаточно большом периоде имитирования.
Изложенные выше соображения позволяют понять, почему метод имитационного моделирования удается реализовать только с помощью ЭВМ. Для получения статистической надежности, достаточной для обоснования управляющих решений, как правило, требуется многократное повторение имитационных тестов. Каждый сеанс имитирования настолько сложен, что попытка осуществить имитирование вручную (при разумных затратах времени) скорее всего потерпела бы полный крах. Поэтому неудивительно, что имитационное моделирование на ЭВМ обычно представляет собой весьма дорогостоящий способ исследования больших систем [11, 346 - 349].
Структуру имитационной модели в большинстве случаев удобно описывать, определяя содержание фигурирующих в ней динамических процессов и результатов функционирования имитируемой системы. Обычно динамические процессы протекают в соответствии с определенными правилами принятия решений. Результаты функционирования реальной системы, как правило, атрибутированы (т.е. имеют вполне определенный физический смысл). Кроме того, наблюдаются атрибутивные связи, устанавливающие способ суммирования результатов функционирования системы.
В любой момент времени имитационная модель находится в некотором вполне определенном состоянии. Состояние системы характеризуется не только результатами, полученными к текущему моменту времени, но нередко включает в себя и некоторые ретроспективные данные.
Зная состояние системы и ее динамику, можно определить "действия" и состояния системы во все последующие моменты времени. Имитационные модели, обладающие эволюционной структурой, часто называют каузальными.
Построив модель, операционист обязательно задается вопросом: "Насколько она реалистична?" Более правильным было бы спросить: "Позволяет ли модель разобраться в существе имитируемого процесса и можно ли с ее помощью прийти к надежным умозаключениям?" В конечном счете, поскольку имитационная модель может описывать реальные явления лишь приближенно, ее следует оценивать по возможности проведения на ее основе анализа управляющих решений, представляющих собой предмет конкретного операционного исследования. Определив цель имитационного эксперимента, операционист строит каждый элемент модели с надлежащей степенью детализации и точности. Здесь необходимо сделать предостережение. Опытные специалисты по имитационному моделированию утверждают, что даже для начинающего операциониста не представит труда построить модель из отдельных компонентов, каждый из которых будет соответствовать действительности, однако после "сшивания" отдельных частей получаемая в результате модель может вести себя не так, как имитируемая реальная ситуация. Поэтому не следует слепо предполагать, что имитационная модель как единое целое является в достаточной степени точной только потому, что каждая из составляющих ее частей, рассматриваемая изолированно от других, представляется вполне адекватной описываемому процессу. Это предостережение особенно важно по той причине, что цель имитационного моделирования заключается в воспроизведении поведения всей функциональной системы в целом, а не отдельных ее частей [11, 356 - 358].
При построении имитационной модели, предназначенной для углубленного анализа проблем организационного управления, преследуют, по крайней мере, одну из следующих целей:
1) Изучение действующей функциональной системы. Рассмотрим промышленную фирму, которая недавно зарегистрировала увеличение числа заказов на свою продукцию и отметила, затем заметное ухудшение качества обслуживания своих клиентов в части соблюдения сроков выполнения этих заказов. У этой фирмы может появиться желание построить имитационную модель, с помощью которой можно было бы изучить, каким образом существующие процедуры определения сроков выполнения принимаемых заказов, календарного планирования производства и оформления заявок на поставку сырья порождают наблюдаемые задержки.
2) Анализ гипотетической функциональной системы. Обратимся к больнице, руководство которой рассматривает вопрос внедрения новой системы управления запасами медицинских препаратов. Руководство больницей может изъявить желание построить с использованием ретроспективных данных имитационную модель, чтобы проверить, каким будет средний уровень средств, связанных в запасах, и как часто будут возникать нехватки различных видов препаратов в случае, если будет реализован предлагаемый план.
3) Проектирование более совершенной функциональной системы. Рассмотрим предприятие с мелкосерийным производством, в котором станочные мощности распределены в соответствии с приоритетами, присвоенными выполняемым работам. У фирмы может появиться желание построить имитационную модель для нахождения эффективного способа определения системы приоритетов с тем, чтобы все работы могли выполняться без больших задержек и чтобы при этом коэффициент использования оборудования предприятия был достаточно высок.
Перейдем теперь к описанию этапов построения и использования имитационной модели.
Шаг 1. Построение модели. Содержание данного этапа почти не отличается от содержания этапа построения операционной модели любого другого типа. Опасность при этом заключается в излишней детализации модели, которая может привести к слишком большим затратам машинного времени при выполнении соответствующего эксперимента. Лучший способ уберечься от такого рода опасности заключается в том, чтобы постоянно помнить о конкретной цели исследования. Например, если модель должна помочь в выборе одного из двух вариантов размещения нового складского помещения, то, по-видимому, нет необходимости при построении имитационной модели делить плановый период на часы или дни: вполне достаточно использовать отрезки времени, продолжительность которых равняется 1 недели. Однако если с помощью модели нужно решить, сколько в новом складе должно быть погрузочно-разгрузочных платформ (например, одна или две), то, возможно, возникнет необходимость имитировать процесс функционирования упомянутого складского помещения, ориентируясь на отрезки времени продолжительностью от 5 до 15 мин.
Шаг 2. Разработка проекта эксперимента. Операционист сможет уменьшить вероятность той или иной ошибки и, таким образом, потери времени, если он подробно разработает сопровождающие эксперимент процедуры до того, как модель будет "приведена в действие". Это означает, что операционисту необходимо тщательно продумать, какие функциональные характеристики имитируемой системы планируется измерять. Кроме того, следует определить, с помощью какого метода математической статистики будут учитываться флуктуации экспериментальных данных, полученных в результате этих измерений.
Шаг 3. Разработка программного обеспечения. Весь имитационный эксперимент проводится на быстродействующей ЭВМ. Другими словами, все стадии эволюционного развития модели, так же как и генерирование случайных событий, протекают в ЭВМ. Если имитируемая система обладает очень простой структурой, то может оказаться, что при разработке соответствующего "вычислительного варианта" модели удобнее всего использовать один из стандартных языков программирования типа Фортран, PL/I или Алгол. Однако представляется более вероятным, что предпочтение будет отдано одному из языков моделирования, такому, как Симскрипт или GPSS, трансляторы с которых имеются для многих больших ЭВМ. В процессе практического применения метода имитационного моделирования операционист убедится, что перечисленные выше этапы не являются полностью независимыми и не выполняются в строго установленной последовательности. Так, например, если специалист по исследованию операций уже владеет языком моделирования, скажем GPSS, то он, возможно, захочет "сформулировать" имитационную модель сразу на этом языке.
Операционисту, не являющемуся одновременно специалистом в области программирования для ЭВМ, транслировать выбранную им имитационную модель в соответствующую машинную программу никогда не придется. Тем не менее знать содержание основных этапов отображения модели на машинные программы представляется совершенно необходимым.
Для проигрывания простых типовых моделей можно использовать так называемые специальные стандартные программы, которые требуют от операциониста лишь задания определенного количества входной информации. Наиболее показательными примерами таких программ являются моделирующие программы управления запасами. Существует несколько специальных стандартных программ, проверяющих стратегию управления запасами с точки зрения их эффективности. Чтобы использовать такого рода программы, необходимо задать конкретные предписания (которые формулируются, например,
следующим образом: "при снижении уровня запасов до 4 единиц заказать 10 дополнительных единиц") или располагать формулой для определения этих предписаний при известном уровне спроса. При этом в качестве входной информации необходимо представить также либо ретроспективные данные относительно спроса, либо распределение вероятностей для уровней спроса. При наличии всей указанной выше информации машинная программа обеспечивает имитирование функциональной системы для любого заданного операционистом числа интервалов времени, а также вычисляет такие статистические характеристики системы, как средний уровень запасов, количество оформляемых заказов и т.д.
Однако гораздо чаще модель требует специального программного обеспечения. Если модель относится к числу лишь умеренно сложных, применяется нечасто и программируется специалистами, не имеющими большого опыта работы с имитационными моделями, то, по-видимому, наиболее легкий способ решения задачи - использовать такие языки, как Фортран, PL/I или Алгол.
Эти языки хорошо известны всем программистам, занимающимся программированием, связанным с решением научных проблем; при этом программисту для выполнения трансляции на машинный язык требуется знать лишь подробное описание исследуемой модели.
Однако языки типа Фортран, PL/I и Алгол обладают существенным недостатком. Программист, использующий один из таких языков, вынужден заново составлять подпрограммы для ряда вычислительных процедур, которые используются почти во всех имитационных процессах. Другими словами, программисту, как говорится, вновь приходится изобретать велосипед. Так, например, во многих случаях имитационная модель предполагает генерирование случайных переменных, и, следовательно, для каждой такой переменной требуется своя подпрограмма. Кроме того, поскольку представляется желательным накапливать статистические данные по ряду характеристик операционной системы, необходимо составить подпрограммы, реализующие соответствующие вычислительные процедуры. Наконец, значительные трудозатраты возникают в связи с разработкой компактного способа представления выходных имитационных данных.
Даже в случае не очень сложных моделей требуется тщательная проработка вопросов размещения информации внутри машинной памяти, составления основной программы, обеспечивающей правильное следование событий и продвижение имитационного процесса по оси времени. Чтобы облегчить задачу программного обеспечения имитационного моделирования, разработан ряд специализированных машинных языков. При использовании специализированных программ требуется лишь задать функции распределения вероятностей, после чего генерация случайных событий по заданному закону распределения осуществляется автоматически. Некоторые из программ обеспечивают сбор статистических данных по тем или иным исследуемым характеристикам операционной системы и выдачу результатов имитирования в определенной, заранее установленной форме. С помощью тех же программ осуществляется упорядочение событий и регистрация во времени каждого перехода системы из одного состояния в другое.
Почему же программы, обладающие такими преимуществами, не используются во всех случаях имитационного моделирования? Имеется несколько весьма веских причин, не позволяющих пока ориентироваться только на специализированные программы. Одна из причин заключается в том, что языки специализированных программ в некоторой степени отличаются от языков типа Фортран, PL/I или Алгол, и, следовательно, программист сталкивается с необходимостью освоения новых элементов языка и самого метода программирования.
Одним из наиболее эффективных моделирующих языков является Симскрипт. Чтобы овладеть этим языком, необходимо знать Фортран. Симскрипт, обладая значительной гибкостью, весьма сложен в обращении. К числу языков примитивного типа относится универсальный язык моделирования GPSS. Это совершенно автономный (замкнутый) язык, легко поддающийся изучению, но, естественно, обладающий ограниченными возможностями. Его мы рассмотрим более подробно.
1.3 GPSS - язык имитационного моделирования
Исторически GPSS - это одна из первых систем моделирования общего назначения.
Язык разработан в 1961 году (Джефри Гордоном) фирма IBM вслед за разработкой компилятора с языка ФОРТРАН. Представляет собой Фортран ориентированную версию языка имитационного моделирования. Язык выдержал множество модификаций для самых различных операционных систем и ЭВМ (60…70-е годы - IBM 360/370, 70…80-е годы - PDP/11, ЕС ЭВМ и СМ ЭВМ, 80-е годы - IBMPC) и в то же время сохранил почти неизменными внутреннюю организацию и основные блоки.
Идеальное средство для начинающих осваивать имитационное моделирование. GPSS достаточно легок в освоении, а наличие в нем функций, переменных, стандартных атрибутов, графики и статистических блоков существенно расширяет его возможности.
Язык привнес множество важных концепций в каждую из коммерческих реализаций языков компьютерного моделирования дискретных событий, разработанных с тех пор. Ни один из языков моделирования не оказал на имитацию столь большого воздействия, как GPSS. Можно даже сказать, что GPSS заложил основы большинства современных языков и систем моделирования. Например, сходство языков СЛЭНГ и GPSS простирается вплоть до заимствования большинства ключевых слов.
Система GPSS предназначена для написания имитационных моделей систем с дискретными событиями. Например, для моделирования систем с материальными и информационными потоками. Наиболее удобно в системе GPSS описываются модели систем массового обслуживания, для которых характерны относительно простые правила функционирования составляющих их элементов. Хотя наличие дополнительных встроенных средств позволяет моделировать и некоторые другие системы (например, распределение ресурсов между потребителями).
В системе GPSS моделируемая система представляется с помощью набора (сети) абстрактных элементов, называемых объектами:
Каждый объект принадлежит к одному из 4-х (5 тип - разные) типов объектов;
Каждый объект характеризуется рядом атрибутов (параметров), отражающих его свойства, например таблица 1.
Таблица 1.
Общий формат предложений GPSS
Номер строки |
{Метка} |
Оператор |
Операнды |
{Комментарии} |
|
до 10 цифр |
до 20 символов: цифры |
А,B,C,D,E |
Каждому исполняемому оператору может быть сопоставлен блок со стандартизованным графическим изображением. Это позволяет на этапе построения моделей до написания текстов программ построить блок диаграмм, отображающих последовательность продвижения динамических объектов.
Общая схема проведения имитационного моделирования в системе GPSS:
1) Модель, дополненная необходимыми управляющими предложениями операционной системы, вводится в ЭВМ и поступает на обработку ассемблером GPSS,
2) Ассемблер GPSS проводит синтаксический контроль модели и преобразует ее во внутреннюю форму, удобную для проведения моделирования. Модель во внутренней форме передается с помощью программы ввода интерпретатору модели
Интерпретатор выполняет моделирование. Во внутренней форме все объекты, описанные в модели, получают последовательные номера в порядке поступления. Последовательности номеров выстраиваются отдельно по типам объектов: среди устройств, накопителей, очередей и т.д. Эти номера могут быть напрямую указаны в модели программистом.
Интерпретатор модели является основной частью системы моделирования GPSS. Функции интерпретатора:
Создание транзактов;
Проводка их через блоки модели с одновременным выполнением действий, связанных с каждым блоком. Движение транзактов в модели соответствует движению отображаемых ими объектов в реальной системе.
Ведение модельного времени
Всякое изменение состояния модели, например, переход транзактов от одного блока к другому, можно рассматривать как некоторое событие, происходящее в определенный момент условного (системного) времени, задаваемого "часами" системы, работа которых организуется интерпретатором.
Фактически, "часы" в интерпретаторе GPSS - это целая переменная, значение которой соответствует текущему моменту условного времени модели.
При построении модели пользователь должен задаться соотношением единицы системного времени, используемого в модели, к реальному времени, в котором происходит функционирование моделируемой системы.
Отметим, что системное время никак не связано с машинным временем, затрачиваемым на выполнение моделирования.
Очередность событий
В процессе моделирования интерпретатор автоматически определяет правильную очередность наступления событий. В случае, если нужные действия в намеченный момент времени выполнены быть не могут (например, занято устройство, к которому обращается транзакт), интерпретатор временно прекращает обработку "застрявшего" транзакта, но продолжает следить за причиной, которая вызвала блокировку его обработки. Как только эта причина исчезает (например, освобождается занятое устройство), интерпретатор возвращается к обработке задержанноготранзакта.
...Подобные документы
Исследование вычислительных систем неоднородной структуры. Применение программы GPSS для создания имитационной модели предложенной системы массового обслуживания. Оценка погрешности, переходного периода, чувствительности и устойчивости измерений.
курсовая работа [63,6 K], добавлен 20.07.2012Разработка программной имитационной модели работы билетной кассы железнодорожного вокзала на языке GPSS World. Описание пошаговой работы программы и плоскости отклика модели. Исследование функционирования модели на чувствительность изменения факторов.
курсовая работа [1,3 M], добавлен 22.06.2015Построение модели, имитирующей процесс работы отдела обслуживания ЭВМ, разрабатывающего носители с программами для металлорежущих станков с ЧПУ. Этапы решения задач по автоматизации технологических процессов в среде имитационного моделирования GPSS World.
курсовая работа [64,6 K], добавлен 27.02.2015Элементы теории массового обслуживания. Математическое моделирование систем массового обслуживания, их классификация. Имитационное моделирование систем массового обслуживания. Практическое применение теории, решение задачи математическими методами.
курсовая работа [395,5 K], добавлен 04.05.2011Имитационное моделирование как метод анализа экономических систем. Предпроектное обследование фирмы по оказанию полиграфических услуг. Исследование заданной системы с помощью модели типа "Марковский процесс". Расчет времени обслуживания одной заявки.
курсовая работа [42,0 K], добавлен 23.10.2010Изучение теоретических аспектов эффективного построения и функционирования системы массового обслуживания, ее основные элементы, классификация, характеристика и эффективность функционирования. Моделирование системы массового обслуживания на языке GPSS.
курсовая работа [349,1 K], добавлен 24.09.2010Процедура проведения имитационных экспериментов с моделью исследуемой системы. Этапы имитационного моделирования. Построение концептуальной модели объекта. Верификация и адаптация имитационной модели. Метод Монте-Карло. Моделирование работы отдела банка.
курсовая работа [549,5 K], добавлен 25.09.2011Разработка системы массового обслуживания с ожиданием, частичной взаимопомощью между каналами и ограниченным временем нахождения заявки в системе. Создание аналитической и имитационной модели, проверка ее адекватности. Описание блок-схемы алгоритма.
контрольная работа [280,8 K], добавлен 18.11.2015Построение схемы сети. Расчет интенсивностей входных потоков для каждой СМО. Проверка стационарности сети. Модель сети на языке моделирования GPSS. Сравнение расчетных и экспериментальных данных по критерию Стьюдента. Проверка адекватности модели.
контрольная работа [94,6 K], добавлен 28.07.2013Исследование особенностей разработки и построения модели социально-экономической системы. Характеристика основных этапов процесса имитации. Экспериментирование с использованием имитационной модели. Организационные аспекты имитационного моделирования.
реферат [192,1 K], добавлен 15.06.2015Общие понятия теории массового обслуживания. Особенности моделирования систем массового обслуживания. Графы состояний СМО, уравнения, их описывающие. Общая характеристика разновидностей моделей. Анализ системы массового обслуживания супермаркета.
курсовая работа [217,6 K], добавлен 17.11.2009Разработка теории динамического программирования, сетевого планирования и управления изготовлением продукта. Составляющие части теории игр в задачах моделирования экономических процессов. Элементы практического применения теории массового обслуживания.
практическая работа [102,3 K], добавлен 08.01.2011Понятие экономико-математического моделирования. Совершенствование и развитие экономических систем. Сущность, особенности и компоненты имитационной модели. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.
курсовая работа [451,4 K], добавлен 23.04.2013Понятие товарно-материального запаса. Внедрение систем имитационного моделирования, предназначенных для решения различного рода экономических задач. Решение конкретной задачи по управлению запасами с неудовлетворительным спросом с помощью GPSS World.
курсовая работа [61,6 K], добавлен 03.03.2011Описание компьютерного моделирования. Достоинства, этапы и подходы к построению имитационного моделирования. Содержание базовой концепции структуризации языка моделирования GPSS. Метод оценки и пересмотра планов (PERT). Моделирование в системе GPSS.
курсовая работа [594,0 K], добавлен 03.03.2011Моделирование процесса массового обслуживания. Разнотипные каналы массового обслуживания. Решение одноканальной модели массового обслуживания с отказами. Плотность распределения длительностей обслуживания. Определение абсолютной пропускной способности.
контрольная работа [256,0 K], добавлен 15.03.2016Применение теории игр для обоснования и принятия решений в условиях неопределенности. Цель изучения систем массового обслуживания, их элементы и виды. Сетевые методы планирования работ и проектов. Задачи динамического и стохастического программирования.
курсовая работа [82,0 K], добавлен 24.03.2012Обзор методов разработки и испытания имитационных моделей сложных систем. Анализ производственной деятельности ООО СПК "Федоровский". Описание имитационной модели потоков внутренних ресурсов сельскохозяйственной организации в среде Vensim PLE 6.2.
курсовая работа [2,6 M], добавлен 13.06.2014Построение имитационной модели технологического процесса методом Монте-Карло, ее исследование на адекватность. Оценка и прогнозирование выходных характеристик технологического процесса с помощью регрессионных моделей. Разработка карт контроля качества.
курсовая работа [1,2 M], добавлен 28.12.2012Построение имитационной модели бизнес-процесса "Управление инцидентами" компании "МегаФон" с целью прогнозирования совокупной стоимость ИТ-сервиса по обслуживанию инцидентов. Разработка моделирующих алгоритмов для реализации компьютерных программ модели.
курсовая работа [2,6 M], добавлен 09.04.2012