Адаптивная мультипликативная модель Хольта-Уинтерса. Параметры сглаживания

Порядок построения адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Оценка точности построенной модели с использованием средней ошибки аппроксимации. Нормальность распределения остаточной компоненты по R/S-критерию.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 18.07.2016
Размер файла 353,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Задание 1

адаптивный мультипликативный модель аппроксимация

В табл. 1 представлены поквартальные данные о кредитах от коммерческого банка на жилищное строительство за 4 года (16 кварталов).

Таблица 1

t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Y(t)

31

40

47

31

34

44

54

33

37

48

57

35

42

52

62

39

Построить адаптивную мультипликативную модель Хольта-Уинтерса с учетом сезонного фактора, применив параметры сглаживания б1 = 0,3; б2 = 0,6; б3 = 0,3.

Оценить точность построенной модели с использованием средней ошибки аппроксимации;

Оценить адекватность построенной модели на основе исследования:

случайности остаточной компоненты по критерию пиков;

независимости уровней ряда остатков по d-критерию (в качестве критических использовать уровни d1 = 1,10 и d2 = 1,37) и по первому коэффициенту автокорреляции при критическом уровне значения r1 = 0,32;

нормальности распределения остаточной компоненты по R/S-критерию с критическими значениями от 3 до 4,21.

Построить точечный прогноз на 4 шага вперед, т.е. на 1 год.

Отобразить на графиках фактические, расчетные и прогнозные данные.

Решение

Для оценки начальных значений а(0) и b(0) применим линейную модель к первым 8 значениям Y(t). Линейная модель имеет вид:

Метод наименьших квадратов дает возможность определить коэффициенты линейного уравнения по формулам:

Таблица 2

t

Y(t)

t-t

(t-t)

Y-Y

(Y-Y)(t-t)

1

31

-3,5

12,25

-8,3

28,9

2

40

-2,5

6,25

0,8

-1,9

3

47

-1,5

2,25

7,8

-11,6

4

31

-0,5

0,25

-8,3

4,1

5

34

0,5

0,25

-5,3

-2,6

6

44

1,5

2,25

4,8

7,1

7

54

2,5

6,25

14,8

36,9

8

33

3,5

12,25

-6,3

-21,9

36

314

0

42

0

39

Рассчитаем:

Уравнение с учетом полученных коэффициентов имеет вид:

Для сопоставления фактических данных Y(t) и рассчитанных по линейной модели значений Yp(t) составим таблицу (табл. 3).

Таблица.3

t

1

2

3

4

5

6

7

8

Y(t)

31

40

47

31

34

44

54

33

Yp(t)

36,00

36,93

37,86

38,79

39,72

40,65

41,58

42,51

Коэффициент сезонности есть отношение фактического значения экономического показателя к значению, рассчитанному по линейной модели. Поэтому в качестве оценки коэффициента сезонности I квартала F(-3) может служить отношение фактических и расчетных значений Y(t) I квартала первого года, равное , и такое же отношение для I квартала второго года (т.е. за V квартал t=5) . Для окончательной, более точной, оценки этого коэффициента сезонности можно использовать среднее арифметическое значение этих двух величин.

Аналогично находим оценки коэффициентов сезонности для II, III и IV кварталов:

Построим адаптивную мультипликативную модель Хольта-Уинтерса (табл. 4) используя следующие формулы:

Таблица 4. Модель Хольта-Уинтерса

t

Y(t)

a(t)

b(t)

F(t)

Y(t)

Абс. погр., E(t)

Отн. погр., в %

1

2

3

4

5

6

7

8

0

-

35,07

0,93

0,7879

-

-

1

31

36,03

0,94

0,8597

30,91

0,09

0,29

2

40

36,96

0,94

1,0825

40,03

-0,03

0,08

3

47

37,63

0,85

1,2576

48,14

-1,14

2,42

4

31

38,74

0,93

0,7953

30,32

0,68

2,20

5

34

39,64

0,92

0,8585

34,11

-0,11

0,31

6

44

40,58

0,93

1,0835

43,90

0,10

0,22

7

54

41,94

1,06

1,2755

52,21

1,79

3,32

8

33

42,55

0,92

0,7835

34,20

-1,20

3,62

9

37

43,36

0,89

0,8554

37,32

-0,32

0,87

10

48

44,26

0,89

1,0840

47,94

0,06

0,12

11

57

45,02

0,85

1,2699

57,60

-0,60

1,05

12

35

45,51

0,74

0,7748

35,94

-0,94

2,67

13

42

47,11

1,00

0,8771

39,57

2,43

5,79

14

52

48,07

0,99

1,0827

52,15

-0,15

0,29

15

62

48,98

0,97

1,2674

62,29

-0,29

0,47

16

39

50,07

1,00

0,7773

38,70

0,30

0,76

24,50

Проверка качества модели.

Для того чтобы модель была качественной уровни, остаточного ряда E(t) (разности между фактическими и расчетными значениями экономического показателя) должны удовлетворять определенным условиям (точности и адекватности). Для проверки выполнения этих условий составим таблицу 5.

Таблица 5. Промежуточные расчеты для оценки адекватности модели

t

E(t)

Точка поворота

E(t)2

[E(t)-E(t-1)]2

E(t)xE(t-1)

1

0,09

-

0,008

-

-

2

-0,03

0

0,00

0,02

0,00

3

-1,14

1

1,29

1,22

0,04

4

0,68

1

0,46

3,30

-0,77

5

-0,11

1

0,01

0,62

-0,07

6

0,10

0

0,01

0,04

-0,01

7

1,79

1

3,22

2,88

0,17

8

-1,20

1

1,43

8,94

-2,14

9

-0,32

1

0,10

0,76

0,38

10

0,06

1

0,00

0,14

-0,02

11

-0,60

0

0,36

0,43

-0,03

12

-0,94

0

0,87

0,11

0,56

13

2,43

1

5,92

11,35

-2,28

14

-0,15

1

0,02

6,68

-0,37

15

-0,29

1

0,09

0,02

0,04

16

0,30

-

0,09

0,35

-0,09

Сумма

0,68

10,00

13,89

36,86

-4,59

Проверка точности модели.

Будем считать, что условие точности выполнено, если относительная погрешность (абсолютное значение отклонения abs{E(t)}, поделенное на фактическое значение Y(t) и выраженное в процентах 100%* abs{E(t)}/ Y(t) в среднем не превышает 5%. Суммарное значение относительных погрешностей (см. гр. 8 табл. 4) составляет 24,50, что дает среднюю величину 24,50/16 = 1,53%, что не превышает 5%.

Следовательно, условие точности выполнено.

Проверка условия адекватности.

Для того чтобы модель была адекватна исследуемому процессу, ряд остатков E(t) должен обладать свойствами случайности, независимости последовательных уровней, нормальности распределения.

Проверка случайности уровней. Проверку случайности уровней остаточной компоненты (гр. 2 табл. 5) проводим на основе критерия поворотных точек. Для этого каждый уровень ряда Е сравниваем с двумя соседними. Если он больше (либо меньше) обоих соседних уровней, то точка считается поворотной и в гр. 3 табл. 5 для этой строки ставится 1, в противном случае в гр. 3 ставится 0. В первой и в последней строке гр. 3 табл. 5 ставится прочерк или иной знак, так как у этого уровня нет двух соседних уровней.

Общее число поворотных точек в нашем примере равно р=10.

Рассчитаем значение :

Функция int означает, что от полученного значения берется только целая часть. При N = 16.

Так как количество поворотных точек р=10 больше q=6, то условие случайности уровней ряда остатков выполнено.

Проверка независимости уровней ряда остатков (отсутствия автокорреляции). Проверку проводим двумя методами:

1) по d-критерию критерий Дарбина-Уотсона (критические уровни d1=1,10 и d2=1,37):

Так как полученное значение больше 2, то величину d уточним:

1,10<1,35<1,37 - критерий Дарбина-Уотсона не дает ответа на вопрос о независимости уровней ряда. В этом случае проверим независимость уровней по первому коэффициенту автокорреляции.

2) по первому коэффициенту автокорреляции r(1):

Если модуль рассчитанного значения первого коэффициента автокорреляции меньше критического значения < rтабл., то уровни ряда остатков независимы. Для нашей задачи критический уровень rтабл. = 0,32. Имеем: =0,33 > rтабл. = 0,32 - значит уровни зависимы.

Проверка соответствия ряда остатков нормальному распределению определяем по RS-критерию. Рассчитаем значение RS:

,

где - максимальное значение уровней ряда остатков ;

- минимальное значение уровней ряда остатков ;

S - среднее квадратическое отклонение.

;

Так как 3,00<3,77<4,21, полученное значение RS попало в заданный интервал. Значит, уровни ряда остатков подчиняются нормальному распределению.

Расчет прогнозных значений экономического показателя.

Составим прогноз на четыре квартала вперед (т.е. на 1 год, с t=17 по t=20). Максимальное значение t, для которого могут быть рассчитаны коэффициенты и определяется количеством исходных данных и равно 16. Рассчитав значения и (см. табл. 1.4) по формуле:

,

где k - период упреждения;

- расчетное значение экономического показателя для t-го периода;

- коэффициенты модели;

- значение коэффициента сезонности того периода, для которого рассчитывается экономический показатель;

- период сезонности.

Определим прогнозные значения экономического показателя Yp(t) для: t = 17, 18, 19 и 20.

На нижеприведенном рисунке проводится сопоставление фактических и расчетных данных. Здесь же показаны прогнозные значения о кредитах на год вперед. Из рисунка видно, что расчетные данные хорошо согласуются с фактическими, что говорит об удовлетворительном качестве прогноза.

Рис. 1. Сопоставление расчетных (ряд 1) и фактических (ряд 2) данных

Задание 2

Даны цены (открытия, максимальная, минимальная и закрытия) за 10 дней. Интервал сглаживания принять равным пяти дням. Рассчитать:

- экспоненциальную скользящую среднюю;

- момент;

- скорость изменения цен;

-индекс относительной силы;

- % R, %K, % D

Расчеты проводить для всех дней, для которых эти расчеты можно выполнить на основании имеющихся данных.

дни

цены

макс.

мин.

закр.

1

735

701

715

2

750

715

738

3

745

715

720

4

725

707

712

5

738

702

723

6

747

716

744

7

835

755

835

8

875

812

827

9

853

821

838

10

820

760

767

1) Экспоненциальная скользящая средняя (EMA) определяется рекуррентной формулой

ЕМАt=k*Ct+(1-k)*EMAt-1

Здесь k=2/ n+1 - коэффициент сглаживания;

Ct - цена закрытия текущего дня t;

EMAt-значение ЕМА текущего дня t;

EMA t-1 - значение EMA вчерашнего дня t-1.

Значения EMAt рассчитывают по указанной рекуррентной формуле для .

В качестве начального значения ЕМАn берут значение простой скользящей средней MAn.

Для определения начального значения ЕМА, используем формулу простой скользящей средней.

ЕМА 5 = МА5= 1/5 *(715+738+720+712+723)=720,01

Дальнейшие расчеты выполним по формуле экспоненциальной скользящей средней при k=2/5+1=1/3. Получим

ЕМА6=1/3*744+2/3*728,01=733,34

ЕМА7=1/3*835+2/3*763,67=783,3

ЕМА8=1/3*827+2/3*784,78=798,89

ЕМА9=1/3*838+2/3*802,52=814,3

ЕМА10=1/3*767+2/3*790,68=782,82

t

Ct

EMA(t)

1

715

2

738

3

720

4

712

5

723

6

744

728,01

7

835

763,67

8

827

784,78

9

838

802,52

10

767

790,68

Покажем исходные цены закрытия и найденную экспоненциальную среднюю на графике, проведем анализ

С 5-го по 6-й день при восходящем тренде скользящая средняя находится под графиком цен - следует покупать;

2) Момент

Момент рассчитывается как разница конечной цены текущего дня и цены n дней тому назад:

MOMt=Ct-Ct-n

Значения МОМt, рассчитывается t>=n+1

МОМ(6)=744-715=29

МОМ(7)=835-738= 97

МОМ(8)=827-720=107

МОМ(9)=838-712= 126

МОМ(10)=767-723= 44

t

Ct

МОМ(t)

1

715

2

738

3

720

4

712

5

723

6

744

29

7

835

97

8

827

107

9

838

126

10

767

44

Положительные значения момента говорят об относительном росте цен; Поэтому при анализе графика MOMt следует обратить внимание на его расположение по отношению к горизонтальной линии нулевого уровня.

В 9-й день рекомендуется покупка финансового инструмента;

В 10 день рекомендуется продажа финансового инструмента;

3) Скорость изменения цен;

Скорость изменения цен ROC, рассчитывается как отношение конечной цены текущего дня к цене n дней тому назад, выраженное в процентах:

ROCt=Ct/Ct-n*100%

ROC6=744/715*100%=104,06

ROC7=835/738*100%=113,14

ROC8=827/720*100%=114,86

ROC9=838/712*100%=117,70

ROC10=767/723*100%=106,09

t

Ct

ROC(t)

1

715

2

738

3

720

4

712

5

723

6

744

104,06

7

835

113,14

8

827

114,86

9

838

117,70

10

767

106,09

В 6-й 7-ой и 8-й день если график скорости изменения цен расположен выше уровня 100%, рекомендуется покупка финансового инструмента;

С9-го по 10 дни рекомендуется продажа финансового инструмента;

4) Индекс относительной силы

Значения RSI изменяются от 0 до 100. Этот индикатор может подавать сигналы либо одновременно с разворотом цен, либо с опережением, что является его важным достоинством.

RSI= 100-100/1+AU/AD,

где, AU - сумма приростов конечных цен за n дней;

AD - сумма убыли конечных цен за n дней;

Расчеты приведены в таблице

Дни

Цены закрытия

Изменение (+/-)

RSI

1

715

-

-

2

738

23

-

3

720

-18

-

4

712

-8

-

5

723

11

-

6

744

21

95,2

7

835

91

-49,0

8

827

-8

-21,3

9

838

11

-62,5

10

767

-71

600,0

Рассмотрим график RSI

5) %R, %K, %D

Стохастические линии строятся на основе - данных о ценах закрытия Ct, минимальных Lt и максимальных Ht ценах.

Чаще всего используются кривые %K; %R; %D.

Расчеты представлены в таблице

Дни

Цены

t

%Rt

%Dt

макс.

мин.

закр.

1

735

701

715

-

2

750

715

738

-

-

3

745

715

720

-

-

4

725

707

712

-

-

5

738

702

723

34,78

65,22

6

747

716

744

90,32

9,68

7

835

755

835

383,87

-283,87

169,66

8

875

812

827

358,06

-258,06

277,42

9

853

821

838

393,55

-293,55

378,49

10

820

760

767

164,52

-64,52

305,38

Рассмотрим стохастические линии %R, %K, %D на графике

График %R

В 7,8,9 - дни рекомендуется прекратить финансовые операции (график находится в критической зоне «перепроданности»);

График %К

Является зеркальным отражением графика %R. Для него верхняя критическая зона является зоной «перекупленности», а нижняя - зоной «перепроданности». Таким образом, выводы по графику %К совпадают с выводами по графику %R.

Задание 3

1. Банк выдал ссуду, размером 1500000 руб. Дата выдачи ссуды 17.01.02, возврата 13.03.02. День выдачи и день возврата считать за 1 день. Проценты рассчитываются по простой процентной ставке 20% годовых. Найти:

1) точные проценты с точным числом дней ссуды;

2) обыкновенные проценты с точным числом дней ссуды;

3) обыкновенные проценты с приближенным числом дней ссуды.

Решение

1) К = 365, t = 57, I = 1500000 * 0,20 * 55 / 365 = 45205,48 руб.

2) К = 360, t = 57, I = 1500000 * 0,20 * 55 / 360 = 45833,33 руб.

3) К = 360, t = 58, I = 1500000 * 0,20 * 56 / 360 = 46666,67 руб.

2. Через 180 дней после подписания договора должник уплатил 1500000 руб. Кредит выдан под 20% годовых (проценты обыкновенные). Какова первоначальная сумма и дисконт?

Решение

P = S / (1 + ni) = 1500000 / (1 + 0,20 * 180 / 360) = 1363636,36 руб.

D = S - P = 1500000 - 1363636,36 = 136363,64 руб.

3. Через 180 предприятие должно получить по векселю 1500000 руб. Банк приобрел этот вексель с дисконтом. Банк учел вексель по учетной ставке 20% годовых (год равен 360 дням). Определить полученную предприятием сумму и дисконт.

Решение

D = Snd = 1500000 * 0,20 * 180 / 360 = 150000,00 руб.

P = S - D = 1500000 - 150000 = 1350000,00 руб.

4. В кредитном договоре на сумму 1500000 руб. и сроком на 4 года, зафиксирована ставка сложных процентов, равная 20% годовых. Определить наращенную сумму.

Решение:

S = P * (1+i)n = 1500000 * (1 + 0,20)4 = 3110400,00 руб.

5. Сумма размером 1500000 руб. представлена на 4 года. Проценты сложные, ставка 20% годовых. Проценты начисляются 2 раза в году. Вычислить наращенную сумму.

Решение:

N = 4 * 2 = 8

S = P * (1+j / m)N = 1500000 * (1 + 0,20 / 2)8 = 3215383,22 руб.

6. Вычислить эффективную ставку процентов, если банк начисляет проценты 2 раза в год, исходя из номинальной ставки 20% годовых.

Решение:

iэ = (1 + j / m)m - 1 = (1 + 0,20 / 2)2 - 1 = 0,2100, т.е. 21%.

7. Определить, какой должна быть номинальная ставка при начислении процентов 2 раза в году, чтобы обеспечить эффективную ставку 20% годовых.

Решение:

j = m * [(1 + iэ)1/m - 1] = 2 * [(1 + 0,20)(1/2) - 1] = 0,19089, т.е. 19,089%.

8. Через 4 года предприятию будет выплачена сумма 1500000 руб. Определить ее современную стоимость при условии, что применяется сложная процентная ставка 20% годовых.

Решение:

руб.

9. Через 4 года по векселю должна быть выплачена сумма 1500000 руб. Банк учел вексель по учетной ставке 20% годовых. Определить дисконт.

Решение:

P = S (1 - dсл)n = 1500000 * (1 - 0,20)4 = 614400,00 руб.

D = S - P = 1500000 - 614400,00 = 885600,00 руб.

10. В течение 4 года на расчетный счет в конце каждого года поступает по 1500000 руб., на которые 2 раза в году начисляются проценты по сложной годовой ставке 20%. Определить сумму на расчетном счете к концу указанного срока.

Решение:

руб.

Размещено на Allbest.ru

...

Подобные документы

  • Построение адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора и согласно параметрам сглаживания. Средняя ошибка аппроксимации. Определение коэффициентов заданного линейного уравнения. Проверка точности построенной модели.

    контрольная работа [1,6 M], добавлен 20.01.2010

  • Построение адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Оценка точности построенной модели с использованием средней относительной ошибки аппроксимации. Определение суммы банковской ссуды, долга по ссуде и дисконта.

    контрольная работа [393,0 K], добавлен 06.12.2007

  • Построение адаптивной мультипликативной модели Хольта-Уинтерса, оценка ее точности и адекватности с использованием средней относительной ошибки аппроксимации. Построение точечного прогноза. Отражение на графике фактических, расчетных и прогнозных данных.

    контрольная работа [816,2 K], добавлен 23.03.2013

  • Построение адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Коммерческий расчет экспоненциально скользящей средней цены с использованием интервала сглаживания. Построение графиков фактических, расчетных и прогнозных данных.

    контрольная работа [626,5 K], добавлен 28.04.2011

  • Построение адаптивной мультипликативной модели Хольта-Уинтерса с учетом сезонного фактора. Определение эффективной ставки процента по вкладу в банке, номинальной ставки при начислении процента. Расчет дисконта по формуле математического дисконтирования.

    контрольная работа [756,3 K], добавлен 05.04.2011

  • Порядок построения линейного регрессионного уравнения, вычисление его основных параметров и дисперсии переменных, средней ошибки аппроксимации и стандартной ошибки остаточной компоненты. Построение линии показательной зависимости на поле корреляции.

    контрольная работа [75,1 K], добавлен 29.01.2010

  • Основные задачи и принципы экстраполяционного прогнозирования, его методы и модели. Экономическое прогнозирование доходов ООО "Уфа-Аттракцион" с помощью экстраполяционных методов. Анализ особенностей применения метода экспоненциального сглаживания Хольта.

    курсовая работа [1,7 M], добавлен 21.02.2015

  • Графическое решение и оптимальный план задачи линейного программирования. Свойства двойственных оценок и теорем двойственности. Адаптивная модель Брауна. Свойства независимости остаточной компоненты, соответствия нормальному закону распределения.

    контрольная работа [556,2 K], добавлен 17.02.2010

  • Сглаживание с помощью метода скользящей средней. Анализ исходного ряда на наличие стационарности. Тест Дики-Фуллера. Выделение сезонной компоненты в аддитивной и мультипликативной модели. Составление уравнения тренда в виде полинома пятой степени.

    лабораторная работа [2,6 M], добавлен 17.02.2014

  • Основные математические модели макроэкономических процессов. Мультипликативная производственная функция, кривая Лоренца. Различные модели банковских операций. Модели межотраслевого баланса Леонтьева. Динамическая экономико-математическая модель Кейнса.

    контрольная работа [558,6 K], добавлен 21.08.2010

  • Построение доверительного интервала для коэффициента регрессии в заданной модели. Оценка качества модели по анализу ошибки аппроксимации, индекса корреляции и F-критерия Фишера. Оценка эластичности спроса в зависимости от цены. Уравнение авторегрессии.

    контрольная работа [156,8 K], добавлен 28.02.2011

  • Экономико-математическая модель для анализа ресурсов в форме отчета устойчивости. Проверка продуктивности технологической матрицы коэффициентов прямых материальных затрат. Оценка точности моделей на основе средней относительной ошибки аппроксимации.

    задача [142,9 K], добавлен 03.05.2009

  • Обзор корреляционного поля. Доверительные интервалы регрессии. Оценка качества линейной модели прогнозирования. Проверка ее на соответствие условиям теоремы Гаусса-Маркова. Точечный и интервальный прогнозы. Нахождение средней ошибки аппроксимации.

    контрольная работа [47,9 K], добавлен 09.08.2009

  • Возможные ошибки спецификации модели. Симптомы наличия ошибки спецификации первого типа. Проблемы с использованием замещающих переменных. Построение функции Кобба-Дугласа. Проверка адекватности модели. Переменные социально-экономического характера.

    презентация [264,5 K], добавлен 19.01.2015

  • Аддитивная модель временного ряда. Мультипликативная модель временного ряда. Одномерный анализ Фурье. Регрессионная модель с переменной структурой. Сущность адаптивной сезонной модели Тейла – Вейджа. Прогнозирование естественного прироста населения.

    курсовая работа [333,1 K], добавлен 19.07.2010

  • Структура и параметры эффективности функционирования систем массового обслуживания. Процесс имитационного моделирования. Распределения и генераторы псевдослучайных чисел. Описание метода решения задачи вручную. Перевод модели на язык программирования.

    курсовая работа [440,4 K], добавлен 30.10.2010

  • Расчет параметров уравнения регрессии, среднего коэффициента эластичности и средней ошибки аппроксимации по рынку вторичного жилья. Определение идентификации моделей денежного и товарного рынков, выбор метода оценки параметров модели, оценка его качества.

    контрольная работа [133,1 K], добавлен 23.06.2010

  • Построение ряда динамики. Расчет параметров линейного, степенного, экспоненциального (показательного), параболического, гиперболического трендов с помощью пакета Excel. Вычисление относительной ошибки аппроксимации. Оценка адекватности линейной модели.

    практическая работа [165,9 K], добавлен 13.05.2014

  • Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.

    контрольная работа [136,3 K], добавлен 25.09.2014

  • Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа [71,8 K], добавлен 10.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.